Screening correction for hadron-deuteron absorption cross sections near 200 GeV/c

J. E. A. Lys»

Fermi National Accelerator Laboratory,⁺ Batavia, Illinois (Received 25 March 1977)

We have determined the screening-correction factor G_a for proton-deuteron and positive-pion-deuteron absorption cross sections near 200 GeV/c. The determination uses measured cross sections on nucleon and deuteron targets, with an assumption about the one- and two-prong absorption cross sections on deuterons. The values found for G_a are larger than the corresponding total-cross-section screening-correction factors, but are in reasonable agreement with a simple geometrical prediction.

I. INTRODUCTION

We have used measured cross sections to determine the screening correction $\delta \sigma_a$, and thence the correction factor G_a , for proton-deuteron and pion-deuteron absorption cross sections near 200-GeV/c incident momentum. Here the absorption cross section corresponds to all processes in which the incident hadron disappears during the collision or reappears with one or more produced particles. The quantities $\delta \sigma_a$ and G_a are defined, for an incident hadron h , as follows:

$$
\delta \sigma_a = \sigma_a(hd) - \sigma_a(hp) - \sigma_a(hn) , \qquad (1)
$$

$$
G_a = \frac{-\delta \sigma_a}{\sigma_a(hp) + \sigma_a(hn)}
$$

= $1 - \frac{\sigma_a(hd)}{\sigma_a(hp) + \sigma_a(hn)}$ (2)

[Note that the denominator in Eq. (2) contains the sum of the nucleon cross sections rather than the deuteron cross section; the choice is arbitrary.]

We know of no previous accurate determination of $\delta\sigma_a$ or G_a . An experimental problem that hinders any such determination is the difficulty in separating the pseudoelastic reaction $hd \rightarrow hpn$ from topologically similar absorption reactions such as $hd \rightarrow hpm\pi^0$. That is, the one- and two-prong contribution to the absorption cross section is difficult to measure (prong counts, or final-state charge multiplicities, assume a charged incident hadron).

over 20 years ago, Qlauber' predicted from simple geometrical considerations

$$
\delta \sigma_a = -\sigma_a(hp) \sigma_a(hn) \langle r^{-2} \rangle / 2\pi , \qquad (3)
$$

where $\langle r^2 \rangle$ is the mean inverse square deuteron radius. The resulting prediction for G_a is in general different from the prediction for the totalcross-section correction factor, G_{r} , which follows from the simple formula $1,2$ (which neglects isospin complications, ' and assumes purely imaginary forward scattering amplitudes with a momentumtransfer dependence much smaller than that for the deuteron form factor)

$$
\delta \sigma_T = - \sigma_T (h p) \sigma_T (h n) \langle r^{-2} \rangle / 4 \pi . \tag{4}
$$

We note that the ratio between $\delta\sigma_{\alpha}$ and $\delta\sigma_{\gamma}$ given by Eqs. (3) and (4) is also obtained, to a very good approximation (within 5% at 200 GeV/c) from the detailed formulas given by Franco and Glauber. '

It is clearly of interest to compare the predictions of Eq. (3) with experimental results. In addition, a measurement of G_a is important to experiments that attempt to extract free-neutron inelastic cross sections from measurements on deuterons.⁴ Such experiments often assume that $G_a \simeq G_{T}$. Finally, G_a may be relevant to rescattering studies', for example, in deuterium the parameter $\bar{\nu} = A\sigma_a (h\bar{p})/\sigma_a (h\bar{A})$, which is used extensively in studies of hadron-nucleus interactions,⁶ is related to G_a by the equation

$$
1 - G_a = 1/\overline{\nu} \ . \tag{5}
$$

II. DETERMINATION OF $G_{\tilde{A}}$

 $\operatorname{Recently, bubble{\text-}chamber\,expression}^{\eta,\,8}$ have reported accurate measurements of $\sigma_{n}(hd)$, for incident protons and negative pions with momenta near 200 GeV/ c , for three and more prongs. At this high energy, the one- and two-prong absorption cross sections are relatively smaller than at lower energies, and reasonable estimates of their magnitudes can be made. Then, with the help of measured hadron-nucleon cross sections, we can determine the quantity G_{a} .

We estimate the one- and two-prong absorption cross sections with the formulas

$$
\sigma_a(hd, N = 1, 2) = (1 - G_a) [\sigma_a(hn, N = 1)
$$

$$
+ \sigma_a(hp, N = 2) + \Delta](1 - \alpha R),
$$

$$
(6)
$$

$$
\Delta = \int \frac{d\sigma}{dt} (h p + p X, N = 2) 2S(t) dt , \qquad (7)
$$

 16

2181

 $\alpha = 0.5 \pm 0.5$. (8)

Here R equals the fraction of hd events with $N \ge 3$ that rescatter, N equals the prong count, and $S(t)$ is the deuteron form factor. Equation (6) follows from a spectator model of the hadron-deuteron interaction, with a screening correction and with allowance for multiplicity- increasing rescattering. We assume that the screening-correction factor is just G_a , and we assume that the probability of a multiplicity- increasing rescatter following a oneor two-prong hadron-nucleon inelastic interaction is between zero and R . The term Δ arises from the symmetry requirements of the two-nucleon wave function.⁹ The expression for Δ in Eq. (7) assumes that nucleon spin-flip and charge-flip contributions to $\sigma_a(hp, N=2)$ are negligible at values of the four-momentum transfer t where $S(t)$ is nonnegligible.

We believe that Eq. (6) , with the rather generous errors on the multiplicity-increasing rescatter probability, should be valid. Similar formulas are almost always implied, at least at beam momenta above \sim 1 GeV/c, when free-neutron cross sections are extracted from deuterium data. At Fermilab energies, studies of multiplicity distributions^{5,7,8,10} indicate at most small differences between the multiplicity distributions of hadron-deuteron interactions that have a spectator nucleon and of free hadron-nucleon interactions, in agreement with the primary assumption in Eq. (6). Also, the observation^{5, 7, 8,10} that rescattering produces rather small increases in mean multiplicity over that for hadron-nucleon interactions indicates a value for α of \sim 0.5 rather than \sim 1.0.

Combining Eq. (2) and Eq. (6) yields

$$
1 - G_a = \frac{\sigma_a(hd, N \ge 3)}{\sigma_a(hn) + \sigma_a(hp) - [\sigma_a(hn, N = 1) + \sigma_a(hp, N = 2) + \Delta](1 - \alpha R)}
$$
(9)

This is the equation we actually use to determine G_a . We have neglected $\sigma_a(\pi^d, N=0)$, which we expect to be ~0.01 mb since¹¹ at 205 GeV/c, $\sigma_a(\pi^* p, \pi)$ $N = 0$) ≈ 0.01 mb.

There are no direct measurements available of $\sigma_{n}(hn, N=1)$, so we estimate values as follows:

$$
\sigma_a(\pi^*n, N=1) = (0.6 \pm 0.1) \sigma_a(\pi^*p, N=2) , \qquad (10)
$$

$$
\sigma_a(pn, N=1) = (0.6 \pm 0.1) \sigma_a(pp, N=2) . \eqno{(11)}
$$

Relations of this form follow¹⁰ from charge symmetry and, in the incident proton case, vertex independence considerations. The numerical factor in each case represents the probability that, in a

two-prong inelastic interaction, a struck proton remain a proton or yield a hyperon-positive kaon pair. Values of 0.6 ± 0.1 are suggested by 100pair. Values of 0.6 ± 0.1 are suggested by 100-
GeV/c data,¹⁰ and are expected to vary little with energy. We take $\sigma_a(p \cdot h, N = 2) / \sigma_a(p \cdot h)$ from Ref. 12, and $\sigma_a(\pi^*p, N=2)/\sigma_a(\pi^*p)$ from Ref. 11, assuming¹³ that $\pi^* p$ and $\pi^* p$ multiplicity distributions are the same near 200 GeV/c.

We take $\sigma_a(hp) = \sigma_r(hp) - \sigma_{el}(hp)$, and use measured total cross sections^{14,15} at 200 GeV/c. We assume that the elastic-to-total-cross-section ratios¹⁶ at 200 GeV/c are the same as those at 175 GeV/ c (they exhibit little change between 100 and 175 GeV/c), and are the same for pn as for

TABLE I. Quantities involved in the determination of G_a . Values of Δ , G_a , and $\sigma_a(hd, N)$ $=1,2$) are calculated from Eqs. (7), (9), and (6), respectively (see text).

Quantity	205 GeV/ $c \pi d$	200 GeV/c pd
$\sigma_a(hd, N \geq 3)$ (mb)	35.43 ± 0.33 , Ref. 8	55.05 ± 0.78 , Ref. 7
R	0.14 ± 0.01 , Ref. 8	0.174 ± 0.018 , Ref. 7
$\sigma_{\mathcal{T}}(h\dot{p})$ (mb)	24.33 ± 0.10 , Ref. 14	38.97 ± 0.16 , Ref. 14
$\sigma_{\bm{\tau}}(hn)$ (mb)	23.84 ± 0.10 , Ref. 14	39.67 ± 0.24 , Ref. 15
$\sigma_{\alpha 1}(h\bar{p})/\sigma_{\tau}(h\bar{p})$	0.140 ± 0.005 , Ref. 16	0.182 ± 0.007 , Ref. 16
$\sigma_{\rm el}(hn)/\sigma_{\rm T}(hn)$	0.143 ± 0.004 , Ref. 16	0.182 ± 0.007 ^a
$\sigma_a(hp, N=2)/\sigma_a(hp)$	0.080 ± 0.004 , Ref. 11	0.089 ± 0.008 , Ref. 12
$\sigma_{\alpha}(hn, N=1)/\sigma_{\alpha}(hn)$	$0.048 \pm 0.008^{\mathrm{b}}$	$0.053 \pm 0.010^{\circ}$
Δ (mb)	0.26 ± 0.04	0.36 ± 0.07
G_a	0.083 ± 0.011	0.080 ± 0.018
$\sigma_{\rm e}(hd, N=1, 2)$ (mb)	2.49 ± 0.25	4.13 ± 0.54
$P_{a,2}(hd)$ ^d	0.066 ± 0.006	0.070 ± 0.008

 $^{\circ}$ Assumed equal to pp value.

 b Via Eq. (10).

 c Via Eq. (11). σ_{a} (hd, N = 1, 2)/ σ_{a} (hd). pp. Charge symmetry allows the use of $\pi^* p$ total and elastic cross sections for π ⁿ cross sections. We evaluate the quantity Δ using exponential fits to the $d\sigma/dt$ data^{17,18} and using a sum of Gaussians¹⁹ for $S(t)$.

Finally, the values we insert into Eq. (9), and the resulting values of G_a , are given in Table I. The major contribution to the error in G_a comes from the error in $\sigma_a(hd, N \ge 3)$, for both π^d and $pd.$ Also given in Table I are the values of $\sigma_a(hd, N = 1, 2)$ and of $P_{a, 2}(hd) = \sigma_a(hd, N = 1, 2)/\sigma_a(hd)$ obtained from Eq. (6). To indicate the sensitivity of G_a to $\sigma_a(hd, N = 1, 2)$, we note that a 10% change in the latter would alter G_a by 0.006, for both πd and pd.

III. DISCUSSION

In Table II our experimental values of G_a are compared to values predicted by Eq. (3) and to values of G_r [as discussed above, the experimental G_a values do have a theoretical component, via Eq. (6)]. The G_T values are obtained from measured π^*p , π^*d , pn, pp, and pd total cross sec-Eq. (b)]. The σ_T values are obtained from measured π^*p , π^*d , pn , pp , and pd total cross sections.^{14, 15} The predictions for G_a use the values of $\langle r^{-2} \rangle$, given in Table II, which follow from the G_r values and Eq. (4). Since the derivation of Eq. (4) involves some assumptions (as mentioned above) and also neglects an inelastic-screening above) and also neglects an inelastic-screening
term which may be non-negligible,¹⁵ our $\langle r^{-2} \rangle$

- *Present address: Lawrence Berkeley Laboratory, Berkeley, California.
- tOperated by Universities Research Association, Inc., under contract with the United States Energy Research and Development Administration.
- ${}^{1}R. J. Glauber, Phys. Rev. 100, 242 (1955).$
- $2V$. Franco and R.J. Glauber, Phys. Rev. 142, 1195 (1966) .
- ${}^{3}C.$ Wilkin, Phys. Rev. Lett. $17,561$ (1966).
- 4A. Fridman, Fortschr. Phys. 23, 243 (1975).
- ⁵J. E. A. Lys et al., Phys. Rev. D 15, 1857 (1977).
- ${}^{6}W$. Busza, in *High Energy Physics and Nuclear Struc-*
ture—1975, proceedings of the Sixth International Conference, Santa Fe and Los Alamos, edited by D. E. Nagle et al . (AIP, New York, 1975), p. 211.
- T . Dombeck et al., Argonne Report No. HEP-PR-76-62, 1976 {unpublished) .

TABLE II. Comparison of experimental G_a values with predicted values and with ${\cal G}_{\cal T}$ values.

Quantity	205 GeV/ $c \pi d$	200 GeV/ c pd
G_a (expt.)	0.083 ± 0.011	0.080 ± 0.018
G_T (expt.)	0.038 ± 0.002	0.059 ± 0.006
$\langle r^{-2} \rangle$ ^a (mb ⁻¹)	0.040 ± 0.002	0.037 ± 0.004
$G_n^{\ b}$	0.066 ± 0.003	0.095 ± 0.010

 a Via Eq. (4).

 b Via Eq. (3) .

values should be considered "effective" values. The errors in the predicted G_a values are almost wholly due to the errors in $\langle r^{-2} \rangle$.

Table II shows that the experimental G_a values are larger than the G_r values, by several standard deviations in the π ⁻d case. Also, the experimental and predicted values of G_a agree in the pd case, and differ by 1.5 standard deviations in the π_d case, where the errors are smaller.

We conclude that Eq. (3) provides a bettter estimate of G_a than does the assumption that $G_a = G_T$. The question of the accuracy of Eq. (3), or of what value of $\langle r^{-2} \rangle$ to use in Eq. (3), must await more accurate measurements of $\sigma_n(hd)$. However, the use of Eq. (3), with $\langle r^{-2} \rangle$ taken from Eq. (4), does not lead to any strong disagreement with the present data.

- 8 K. Dziunikowska et al., Phys. Lett. 61B, 316 (1976).
- 9 N. W. Dean, Phys. Rev. D 5, 2832 (1972).
- ¹⁰S. Dado et al., Phys. Lett. $60B$, 397 (1976); J. E. A. Lys et al., Fermilab Report No. Pub-77/75, 1977 (unpublished) .
- 11 D. Ljung et al., Phys. Rev. D $\overline{15}$, 3163 (1977).
- ¹²S. Barish *et al.*, Phys. Rev. D $\frac{9}{2}$, 2689 (1974).
- 13 See footnote 4 of Ref. 8.
- 14 A. S. Carroll et al., Phys. Lett. $61B$, 303 (1976).
- $^{15}P. V. R.$ Murthy et al., Nucl. Phys. B92, 269 (1975).
- 16 D. S. Ayres *et al*., Phys. Rev. D $\overline{15}$, 3105 (1977).
- $17S.$ Barish et al., Phys. Rev. D $9.$, 1171 (1974).
- 18 F. C. Winkelmann et al., Phys. Rev. Lett. 32, 121 (1974).
- $19V$. Franco and G. K. Varma, Phys. Rev. Lett. 33 , 44 $(1974).$