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Quark-parton model for the structure function W2 of the proton and neutron
in their rest systems
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The deep-inelastic structure function W, is calculated using the impulse approximation for mass-shell
partons in the target-nucleon rest system. Bjorken scaling and the approach to scaling are shown to follow
from parton kinematics in the rest system. The partons are identified as quarks and a simple harmonic-
oscillator quark model is used to fit the proton and neutron structure functions down to x —0.1. The
neutron structure function requires an inherently non-SU(6) quark model based on relative coordinates that
we argue should replace shell-model SU(6) quark models that have been used extensively.

I. INTRODUCTION

The parton model" has had great success in ex-
plaining the general features of deep-inelastic lep-
ton-nucleon scattering, especially the phenomenon
of Bjorken scaling. ' However, while the experi-
ments point more and more to the identification of
the partons as the three old-fashioned quarks, ~ the
usual derivation of the parton model takes place in
an infinite-momentum frame, which makes its
relation to the low-energy quark model obscure,
if not surprising.

In this paper, we treat the parton kinematics for
deep-inelastic electron (or muon) scattering in the
laboratory frame, the rest system of the initial nu-
cleon. ' Making the usual parton-model assumption
of incoherent absorption of the virtual photon by a
single parton, we derive scaling as a consequence
of parton kinematics in the Bjorken limit. %'e can
also, by this method, investigate the approach to
scaling since we do not start at infinite momen-
tum.

Because our treatment is in the rest system of
the target nucleon, it makes sense to use a quark-
model momentum distribution for the partons. As
an example, we take a simple Gaussian distribu-
tion, consistent with the low-energy harmonic-
oscillator quark model, ' and find a good fit to the
scaled proton structure function E,(x) for a large
range of the scaling variable x. In order to fit the
neutron and proton structure functions simulta-
neously, we consider an oscillator quark model
with two different force constants, and find a good
fit with parameters that are consistent with what
might be expected from the quark model.

Our conclusion is that the same simple quark
model gives a good description of nucleons both
for deep-inelastic scattering and kcnv-energy prop-
erties, while suggesting an explicit type of SU(6)
breaking for the quark model.

In this paper, we concentrate on the electron-in-

II, PARTON KINEMATICS AND SCALING

The structure functions for electron-nucleon
scattering are usually defined in terms of the two
invariants, q' and

v=P ~ q/M,

where q is the four-momentum transfer to the nu-
cleon (or the four-momentum of the virtual photon
exchanged) and P is the initial four-momentum of
a nucleon of mass M. Another useful variable is
the invariant squared mass of the produced had-
rons, which is related to the other invariants by

W~=(P+ )~=qM22+v M+.q2 (2)

In this framework, elastic scattering corresponds

duced structure functions and then only on E,(x).
Except for a few considerations, we leave the ex-
tension to neutrino scattering and details of E,(x)
to later publications. It is well known that, for
spin-& partons, the electron-induced, scaled struc-
ture functions are related by' E,(x) = xE,(x), cor-
responding to the ratio, R, of longitudinal to trans-
verse photon absorption being zero. Experimental-
ly, R is small (20+10 /p) for most of the range of
x (assuming that the experiments have reached the
scaling region for R).' The model we discuss here
has R = 0 and only three spin--,' partons (quarks).

In Secs. II and III of this paper, we use the kine-
matics of virtual-photon absorption by partons in
the laboratory system to derive scaling and the ap-
proach to scaling. In Secs. IV and V we put in
quark dynamics in the form of a Gaussian mo-
mentum distribution for the partons and fit E,(x)
for both proton and neutron with a reasonable
choice of two different oscillator quark-model
"force constants. " In Sec. VI we compare our
parameters with corresponding quark-model pa-
rameters. In Sec. VII we discuss our results and
the conclusions we can draw from them.
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to virtual photon absorption with 8"=M' so that the
invariants are related by

q' = -2M v (elastic scattering) .
This requires the form'

W, (v, q') = 5(v+ q'/2M),

(3)

(4)

where the sum is over each parton in the nucleon.
We do the q( integration and then the z (= coss~,}

integration making use of the 5 function. This
leaves

,((, f~~(~,'((&.
&m

where p is the minimum momentum for which
-1 ~ z ~ 1 is possible. Solution of the equation

v(p'+m')'"-
) p) ) q)z+-.'q'=0

for z= +1 shows that p is given by

P~= (v/2} ) (1 —4M'x'/q')'" —(1 —4m'/q')'" ), (1o)

with

x= -q'/2Mv .
The new variable x is the usual Bjorken scaling
variable" and is limited by the kinematics to be
0&x&1.

In the deep-inelastic region of large v, we can
expand Eq. (10) resulting in

p = -,'M
)
x(1-Mx/2v) —(m'/M'x)(1 —m'/2vMx)

)

+O(1/v ). (12)

In the scaling limit, v- ~, p approaches a func-
tion of x alone,

which results in the usual Mott formula for the
elastic scattering cross section of an electron by
a point particle of mass M.

The key assumption of the parton model con-
sidered here is that the virtual photon is absorbed
by a single parton of charge Q,e, mass m„and
laboratory momentum p. For such a parton we
wouM have

W2( vi, qz) = Qi25( v)+ q2/2m'),

where v, is the parton-invariant variable p q/m, .
Evaluated in the laboratory system, v is given by

v =P ~ q/m = (vE - p ~ q)/m, (6}

where E = (p~+ m2}i 2. We take the partons to have
(spherically symmetric) momentum distributions
&,(p }. Then the nucleon structure function is given
by

(((, q*)=Q, 'f((('p4, (p)o(», -p t(+0*/2),

limp =-,'M )x-m'/M'x) -=p (x) .

Using this and the relation

I ql = (~ —q')'"
= v(1+ 2Mx/v)'~' — v

we can rewrite Eq. (8) as

lim vW, (v, q') =E,(x)

(14}

III. NEAR-SCALING

One of the features of deep-inelastic scattering
has been that scaling seems to occur at surprisiag-
ly low values of q~. Although the parton-model as-
sumption of incoherent absorption of the virtual
photon is too naive to allow much speculation on
when it should be expected to break down, we can
make a couple of observations.

We might expect (assuming equivalence of all
partons) that the cross section for electron scat-
tering would be proportional to )(P)AZ, Q, ) n)) ',
where A is the photon absorption operator and n
and P are the initial and final hadron states. The
coherent parton contribution would come from
cross products and would be proportional to
Z, ,P,Q~. But, as first emphasized by Gottfried, "
this double sum vanishes for the proton, given the

(15)

Equation (15) is our main result and shows that,
in the scaling limit v- ~, the combination vS'2 is
a function only of the scaling variable x. The form
of E,(x}depends on the parton momentum distribu-
tion (P,(p) in the nucleon rest system with the x de-
pendence coming only from the lower limit of the
integral in Eq. (15). The partons are assumed to
satisfy the mass-shell condition p'= m before and
after absorbing the virtual photon and this leads
to our starting point, Eq. (5). This mass-shell
condition is not satisfied in field-theoretic treat-
ments of the partons, ' but is characteristic of
quark-model treatments of resonance decays. '
Our model is thus an extension of this type of
quark model to deep-inelastic scattering. As far
as the initial nucleon state is concerned, our mod-
el rests on the same basis as has been discussed
for these quark models, ' even though the virtual
photon is very far off its mass shell. As x-0 or
1, the initial parton momentum becomes very
large and the use of a mass-shell momentum dis-
tribution might be expected to break down so that
our approach should only be valid for a middle
range of x values where the mass-shell condition
applies.
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x' = 2x/[1+ (1+2Mx/v}'i'], (18)

as an effective near-scaling variaMe to be used in
Eq. (17).

The near-scaling structure function has been
fitted phenomenologically using the variable'

x'„„=x/(1+M/2v) . (19)

%e can compare this with our x' by expanding Eq.
(18) to find

quark charges -'„-'„and -3 . [The vanishing of

Z, »Q,.Q, is equivalent to (Z,Q,)'=Z,Q,'.] This
would help explain early scaling for any model
with these quark charges. The argument fails for
the Ban-Nambu" model with integral quark
charges. However, the argument also fails for
the neutron for which (Z,Q,}'=0wZ, Q,

' for any
combination of quark charges. Experimentally the
neutron also seems to show early scaling, al-
though the experiment is not as clear cut as for the
proton. '

The early scaling in inelastic electron-proton
scattering can also be correlated with the rapid
falloff (-1/q') of the proton elastic form factor.
In each case, coherent effects seem to be dis-
appearing more rapidly than anticipated.

Whatever the reason for the incoherence assump-
tion working so well, if we believe it then it makes
sense to use our equations to consider the ap-
proach to scaling in the "near-scaling" region
-q'-I'. The most direct way to do this is to use
the exact equation (8) to define (v'- q')'i'W, (v, q')
as a function of the scaling variable p (v, q') as
given by Eq. (10}. This requires having a parton
momentum distribution such as we use for the
specific model considered in Secs. IV and V.

Near-scaling can be related more closely to the
usual scaling variable x in the following way. %e
define a near-scaling variable x' as the solution of
the sealing-limit equation (13)

x'=[8 ( qv')ap (v, q')]/M (x ~& gpss/M) (16)

but with p (v, q') given by the exact equation (10).
Then we ean rewrite Eq. (8) as

v W,(v, q') = (1+ 2Mx/v) 'i 'F, (x'),
where F,(x') would be the sealing-limit function
evaluated at the value x' calculated by the above
procedure. The near-scaling variable x' ap-
proaches x in the scaling limit.

In the usual quark model with m'«M', near-
scaling will result primarily from the first term
in Eq. (10) and at large x. We can make use of
this fact to find a somewhat simpler approximate
form for x'. Taking the scaling limit for the
second term of Eq. (10), but treating the first
term exactly, our procedure leads to"

x' =x/(1+Mx/2v) . (20)

This approaches the phenomenological form (19)
for large x, but tends to give less shift in x. The
additional factor (1+ 2Mx/v) ' ' in Eq. (17) also
tends to reduce the effect of near-scaling. . In fact,
because of the trend of F,(x), the two effects in
Eq. (17) [the shift from x to x' and the factor
(1+2Mx/v) ' '] tend to cancel and we find very
little change in F2(x) in the near-scaling region.

This is demonstrated in Fig. 1 where the experi-
mental vW, (v, q') is plotted in the near-scaling
region along with our result using Eqs. (1'I}and

(18) (dashed curve). " The phenomenological fit'
using the form (19) is shown as the solid curve.

%e see from Fig. 1 that our near-scaling result
(which has no free parameters once the scaled
structure function has been fitted) tends to fit vW,
(until -q' «1 GeV') leaving out the resonance con-
tribution. This is appropriate for the parton model
we are considering, where the process of elastic
electron-parton scattering leads to Eq. (8) for the
proton structure function. Then the final hadron
state is arrived at in the following way. The quasi-
free parton does not escape, but, on reaching
whatever quark restraining force there is, radi-
ates (like soft bremsstrahlung) one or more pions. '
After the parton has lost energy to pions (and per-
haps kaons) in this fashion, the hadron system
falls back into resonant states which undergo fur-
ther decay. In such a model, resonances cannot
be produced via quasi-free parton scattering with-
out at least one additional pion being radiated.
The direct resonance production peaks seen in
Fig. j. then have to be the result of coherent pro-
duction, not accounted for by our model. The phe-
nomenological fit using Eq. (19) just happens to ac-
count for the falloff of this coherent contribution,
but is not directly related to the parton model we
are considering.

There are experimental indications of further
deviations from scaling at high -q '." Any such
deviations would not be related to the near-scaling
discussed here, but could be manifestations of
parton structure.

IV. A QUARK MODEL OF THE PROTON STRUCTURE

FUNCTION

%'e now relate the scaled structure function of
Eq. (15) to a simple quark model for the proton.
For simplicity we start with the same normal. ized
Gaussian momentum distribution for each parton,

&(p)=[1/(a vw )3]e n le (21)

With this &(p), the integral in Eq. (15) can be
evaluated exactly and we have
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E,(x) = ( Q q,*/n M) e ' "
with p (x) given by Eq. (13). In the fractionally
charged quark model of the proton with Z&Q,

~ =1,
we obtain a good fit (Fig. 2)M to the proton struc-
ture function with m =Mj7 and a' =0.05M~ so that

F (x) 0 26e-s(x-1/49' P (22')
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FIG. 2. The scaled proton structure function E&g) of
Eq. {30p) plotted as a function of ~'=1/x' (x' approaches
x in the scaling limit). The experimental points are
from Ref. 8.
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FIG. 1. The proton structure function vS'&(v, q~) plot-
ted as a function of 8' for various values of co=1/x. The
experimental points are from Ref. 8. The solid curve is
the phenomenological fit of Ref. 8. The dashed curve is
our near-scaling result using Eqs. (17) and (18).

Although F,(x) as given by Eq. (22') has a maxi-
mum at g=-', we see from Fig. 2 that it gives a
good fit down to about x = 0.1. For smaller x, a
more sophisticated model would have to be can-
sidered (See Se. c. V for a further discussion. )

We recall that we have put no final-state inter-
action into this naive parton model. As a conse-
quence, we do not get the threshold condition F,(1)
=0. However, F,(1) as given by Eq. (22') is so
small that we still get a, good fit to F,(x) up to
large x.

U. A QUARK MODEL FOR BOTH NEUTRON
AND PROTON STRUCTURE FUNCTIONS

If SU(6) [or SU(4)] symmetry were good, then
the only difference between the neutron structure
function W," and the proton structure function W~

would be the Z,Q,
' factor in Eq. (22). This would

predict W,"(v, q~)= —,
' W~(v, q~) in contradiction with

the measured;. at~.o as shown in Fig. 3. Experi-
mentally, the ratio r(x) =F,"(x)/Ff(x) varies from
about 0.9 for small x down to about 0.25 near x= 1.
This variation falls within the absolute quark-mad-
el limits" 4 & r & 4 seeming to approach the lower
limit as x approaches 1.

The variation of r(x) with x and the approach of
r(x) to the quark-model lower limit of —,

' near x= 1
can be understood in our simple quark-parton mod-
el as a dependence of the quark wave functions on
the total spin states of each quark pair. This re-
sults in the required SU(6) breaking. We imple-
ment this by using quark wave functions with no
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FIG. 3. The ratio rP) =F2//F2 as determined bp Eqs.
{30n) and {30p) plotted as a function of x'. The experi-

mental points are from Refs. 12 ($), 12 g), and 14 Q).

lIr=rI —rs=rup p B{pi pB) p (24b)

p=r, --,'(r, +r.), I) =-'[p, - '(p, +-p,)], (24 )

in terms of which the Hamiltonian can be written

H=P /6m+p /m+ I) /(4m/3)

+ —,'(k+ —,'k'}r'+ k'p' .
This Hamiltonian can be treated as two uncoupled
oscillators. Solution of the Schrodinger equation
in the momentum representation and the nucleon
rest system leads to the momentum probability
distribution

(p(P, p, ))I=5(P) e/" /' e +/B /(IIbp)B,

where

b'= [ 'm(k+-'k'-)]' ' (2'I)

built-in SU(6) symmetrization. The justification
(and preference) for using these wave functions
has been detailed in an earlier works'

For nucleons the procedure is as follows. The
nucleons, p and n, are constructed from the two
types of nucleon quarks, u and d, which are con-
sidered to be distinct (no relation between them)
and not to be permuted. If some form of statistics
(Bose, Fermi, or parastatistics)" is assumed,
then two identical quarks (e.g. u and u) must be in a
pure spin state. (In the usual quark model this is
spin 1.} We write the internal nucleon quark wave
functions as p(uud) and n(ddu}, in each case taking
the first two quarks to be identical and thus in
pure spin states. The only way for the three quark
spins to add up to J= —,

' is for the unlike quarks u
and d to be in a mixed spin state (a combination af
spin 0 and spin 1 in the usual quark model). Given
spin-dependent forces, the third (unlike) quark will
have a different interaction with the first two (like)
quarks than they will have with each other. In an
harmonic-oscillator model this corresponds to two
different force constants.

Although the quark momenta can be large, we
guide our thinking by looking at a nonrelativistic
oscillator with the Hamiltonian

H = (p, '+p,'+p, ')/2m+ ,'kr„'+ —B'k'(—r~'+r„') .

Assuming charge symmetry for the nucleon
quarks, this Hamiltonian is the same for either
the proton or the neutron. Charge independence
need not be assumed here, but neither is it vio-

t) B = (4mkP/3)'/B . (26)

X Q i()I 5( I/EI —PI ' q+ B (I ) .
f

(29)
After many integrations and passing to the scaling
limit as in Sec. II, the scaled structure function is
given by

E,(x) = (m/ Mr }[[ (Q B+ i() ')/a ]e

+ (q 2/P)e-B(((B(x&/B

where

as= b'+ P B/4 (31)

and p (B() is given by Eq. (13). If all forces were
equal we would have p= a and Eq. (30) would re-
duce to the SU(6)-symmetric result (22).

Vfe have considered a nonrelativistic oscillator
model as our motivation for using the momentum
distribution (26). But once we have arrived at it
by this heuristic route, we treat it as a given mo-
mentum distribution to be used in a relativistic
treatment of the electron-parton scattering. The
momentum distribution is not covariant, but is to
be used only in the rest system of the nucleon.

The appropriate generalization of our equation
(V) for the structure function in terms of the
probability distribution (p( P, p, TI) is

(P(, P'(= f P'P, P'PP'PP(P. P, P)
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A good fit can be found to both the neutron and

proton scaled structure functions with the usual
fractionally charged quarks u(-', ), d(--,'), and the
parameters

m=M/7, n =M /20, P =M /36.
This gives for each nucleon

E99(x) =(1/7M' )[—' V 20 e "" ' '~~

(32)

FIG. 4. The difference I"'~& -E2" as determined by Eqs.
(30p) and (30n) plotted as a function of x'. The experi-
mental points are from Refs. 12 (high x) and 13 gow x).

ture seen in comparison of neutrino- and anti-
neutrino-nucleon scattering for x ~ 0.1.'~ To some
extent this effect can be attributed to quark-anti-
quark pairs (somehow effective for x s 0.1)~ which
are not included in the simple model used bere.
For x&0.1, the indications from v and v scattering
are that quark-antiquark pairs constitute less than
101~ of the parton probability distribution so that
their neglect does seem appropriate for this range
of x, where we find good agreement.

In Fig. 4, we compare the difference of Eqs.
(30p) and (30n) with the experimental difference.
The theoretical curve has a maximum at x-0.3 in
agreement with the data, but then the agreement
becomes progressively worse.

Taking the difference I' ~- I"
2 should cancel out

any contribution from quark-antiquark pairs.
Looked at from this point of view, Fig. 4 might
suggest a model with a quark mass m -M/3 and

q —q pairs used to explain any resulting differences
in Figs. 2 and 3. On the other hand, any model
which fits Figs. 2 and 3 for all x should tend to fit
Fig. 4. We put these speculations off for future
work; we are satisfied for the present with a good
overall fit down to x-0.1 in a simple three-quark
model with q —q pairs completely neglected.

+ & 6 - e(x9-1/4 F9]9 (3op)
VI. QUARK-MODEL COMPARISONS

+ 9 6e-9(x -1/49m) ]9 (30n)

Equations (30p) and (30n) clearly illustrate the dif-
ference between the proton and neutron structure
functions. The proton structure function is given
predominantly by its two like quarks which have a
relatively broad momentum distribution. But the
major contribution to the neutron structure func-
tion is from the third (unlike} quark which has a
sharper momentum distribution. Thus E,"(x) ap-
proaches its minimum value of —,'E, (x) asx- 1 cor-
responding to large p (x) and the contribution of
the third quark becomes negligible. "

In Figs. 2 and 3 we plot the fits of Eqs. (30) to
E99(x) and 9 (x) In each. case, the fit is good down
to x-0.1.

One possibility for extending the model to small-
er x would be by using a distribution in both ener-
gy and momentum S'(p, E}. This would correspond

a, variable mass with m =E -p which could
eliminate or shift downwards the predicted maxi-
mum in E,(x). Such distributions have been used
in connection with relativistic and covariant os-
cillator quark models. ~

The failure of the model at small x could also be
related to deviations from the simple quark pic-

It is of interest to compare the oscillator pa-
rameters (32) with corresponding parameters in
other harmonic-oscillator quark models. These
have all used SU(6)-symmetric, shell-model wave
functions with a single force constant. Thus they
cannot be compared directly with the non-SU(6)
relative coordinate states we have used. But, for
a rough check, we consider our parameter I/O to
represent (in an average sense) the distance be-
tween the two u quarks in a proton, while the
shell-model parameter I/n, represents the
(shorter) distance from each quark to the center.
If we compare r»' for the shell-model states with
what we get for our states, then we find that o.,'
should be compared with 2b'=0.08 GeV'.

Faiman and Hendry used n'=0. 10 GeV' to fit
strong' and electromagnetic" resonance widths.
Copley, Karl, and Obryk" used n'=0. 17 GeV' to
fit (by cancellation) the apparent absence of photo-
production of the N*(1688) in the forward and back-
ward direction. Thornber" used n' = 0.063 GeV' to
fit electroproduction of resonances at low q'. More
recently, Berger and Feld2' have used n'=0. 26
GeV' to fit resonance photoproduction by polarized
protons. However, they find that appreciable mix-
ing between SU(6) states would be required to im-
prove their fit.

We see that n' is not too well pinned down in the
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SU(6) models but that our value of 0.08 is close to
the range of variation. The two higher values
(0.1V and 0.26) are the result of pushing a' up to
try to fit peculiar angular distributions that do not
seem natural to the SU(6) states considered.

Our fit of Eqs. (30) to the structure functions in
fact tie down the oscillator parameters more than
do the low-energy fits T.he ratio (m/a Mw) is
fairly well fixed by the maximum value of E,'~'(x).
The values of a and m are further constrained by
the sharp rise in E,'~'(x) as x decreases from 1 to
-0.3. The parameter P is then well determined by
the trend of r(x). By comparison, a wide range of
range parameters have been used to fit low-energy
data with SU(6) models.

It would be appropriate to redo the low-energy
quark-model fits using the parameters I,o, P we
have found here. This would be a different quark
model than has been used previously, because it is
inherently non-SU(6)-invariant. " It has th virtue
of starting with parameters that are fixed by the
deep-inelastic structure functions. Also, the
method of coupling using only relative coordinates
eliminates difficulties with center-of-mass motion
that arise when shell-model states are used. ' The
model is a bit like a quark-diquark model, "but
with the diquark dynamics built in.

The shell-model fits do not depend directly on
the quark mass, but only on its magnetic moment.
Our value of m =M/7 is about half the value M/3
suggested by the quark magnetic moment (if it is
assumed to be a Dirac moment Q, /2m). However,
relativistic effects" make a considerable change
from the Dirac moment and should be taken into
account in photoproduction and in calculations of
baryon magnetic moments.

Another question that might be asked is: What
about all the SU(6} symmetry of the quark model' ?
We have emphasized in an earlier paper that most
of the apparent SU(6) symmetry of baryons is only
apparent. " Once it is assumed that baryons are
composed of three quarks, many of the static SU(6)
results follow without assuming SU(6) symmetry
and difficulties arise if too much SU(6) symmetry
is assumed. Such difficulties arise in the higher
multiplet structure~ and in attempts at detailed
fits. One of the clearest difficulties with SU(6) in
the quark model is in fact the strong variation in
~(x).

VII. CONCLUSIONS

Our conclusions are summarized below:
(1) Scaling in deep-inelastic electron scattering

can be understood as arising from mass-shell par-
ton kinematics in the laboratory frame (nucleon
rest system) [Eq. (15}].

(2) The approach to scaling [Eqs. (17) and (18)]
also follows from the parton kinematics if the co-
herent resonance production is excluded, as it
should be in this model.

(3) The proton structure function can be fitted
[Eqs. (22) and (22')] with a simple Gaussian mo-
mentum distribution (for quarks in the proton rest
system) down to x-0.1.

(4) The neutron and proton structure functions
can be fitted simultaneously [Eqs. (30p) and (30n)]
(down to x-0.1 —0.2) with harmonic-oscillator mo-
mentum distributions corresponding to bvo spin-
dependent quark-quark force constants.

(5) The study of the structure functions, and par-
ticularly of r(x) =F,"/F f, in the nucleon rest sys-
tem strongly suggests a quark model for both high-
and low-energy phenomena that uses relative co-
ordinates [Eqs. (24)] without imposing any SU(6)
constraints or permutation.

As is usual in parton models, our approach has
been very naive and neglects, among other things,
final-state interactions and initial-flux correc-
tions while our quark model was chosen primarily
for simplicity. So that, perhaps, the excellent fits
we find to the experimental structure functions do
not require the precise Gaussian momentum dis-
tribution we use. But this general features we de-
duce are probably characteristic of nucleon struc-
ture, at least down to x-0.1. These features are
as follows:

(1) The nucleon structure functions result from
a reasonable rest-frame momentum distribution of
point charges with the quark charge values.

(2) The behavior of r(x) is determined by the two
like quarks in a nucleon having a larger spread in
momentum than the odd quark.
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