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Strong gravity, black holes, and hadrons
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Analogies between the properties of black holes (in the framework of strong gravity) and those of elementary
particles are discussed especially in connection with recent works on black holes with gauge charges and black-
hole thermodynamics.

Recent renewal' ' of interest in general relativity
playing some role in elementary-particle physics
has drawn attention to certain striking resem-
blances between the properties of black holes and
those of elementary particles. For instance, black
holes are characterized by only a few observable
parameters such as mass, angular momentum, and
charge. These are the measurable parameters for
an elementary particle where these quantities oc-
cur in discrete or quantized units. One could pic-
ture particles as quantum black holes of the strong
gravity field (i.e. , mediated by massive spin-2)
particles as was done in Refs. 2, 3, 6, 7, and 8.
Moreover, it is known that a charged rotating black
hole, a Kerr-Newman black hole, has a gyromag-
netic ratio of 2, the same value as that for an el-
ementary particle. Although they have a magnetic
moment, charged black holes with angular momen-
tum do not have an electric dipole moment, which
is also true for elementary particles. In a recent
paper, Tennakone' has pictured the proton to be a
black-hole singularity of the Reissner-Nordstrom
metric in the strong gravitational field, assuming
that the usual, results of general relativity are ap-
plicable in the case of strong gravity.

If the structure of space-time in the immediate
vicinity of hadrons is presumed to be determined
by strong gravity, it is natural to replace the New-
tonian constant G„by the strong gravitational cou-
pling constant Gf, the dimensionless constant then
being of the same magnitude as the strong-inter-
action dimensionless constant. Now the Einstein
field equations G„„=KT „relate a geometrical in-
variant quantity (i.e., the Einstein tensor G„„)on
the left-hand side to an invariant physical quantity
(i.e., the conserved energy-momentum tensor T „)
on the right-hand side through a proportionality
(coupling) constant v. It must be emphasized that
the derivation of the equation places no restriction
whatsoever on the numerical value of the constant

For instance, in the standard derivation of the
field equation from an action principle with the
Lagrangian density 2 = v 'Rl-g+ Z [where R is
the curvature scalar and g = det(g, „), 2 = matter
Lagrangian density], x is a factor of dimensions

g 'cm ' sec' whose numerical value is entirely un-
determined at this stage. It is only when one uses
the field equations as the basis for a relativistic
theory of gravitation that one relates to the New-
tonian constant G„. Since Einstein used his field
equations to describe a. theory of gravitation, he
chose ~= 8mG„/c', so a.s to be consistent with New-
tonian gravitation theory. Following this it has be-
come customary to always relate K to the New-
tonian constant as a matter of habit since all ap-
plications of general relativity have hitherto been
to macrophysics.

Apart from this there is no other compelling
reason why the coupling parameter K should be re-
lated only to the Newtonian constant. The existence
of massive spin-2 meson states (like the f meson)
in nature does suggest the possibility of a short-
range strong gravitational interaction which would
determine the metrical properties of space-time
in the region near an elementary particle. This
field would then also be described by an Einstein-
type field equation (since by now it is well known
that starting from a linear spin-2 relativistic the-
ory and successively adding all self-interactions
in a consistent way one does recover field equation
of the Einstein type).

With a new metric f„„and a strong coupling con-
stant ~f-—8vG&/c' to make it consistent with strong-
interaction physics, one would now have a Lagran-
gian density

fR(f)+ —4 g-R(g)+ Z(fg), -1 1

Kf K

where R(f) is the curvature scalar constructed
from f,„and its derivatives a,nd 2(fg) describes
interaction between f-mesons and gravitons. If
one drops this term, and considers that z /v&«1,
the only dominant term is wz

'v' fR(f) which lead-s
to an Einstein-type equation for the f„„field with
a constant K&. This merely suggests that strong
interactions curve the space much more strongly
than in the usual Newtonian case, an idea also ex-
pressed and justified (independently of strong grav-
gravity) in Refs. 9 and 10. Again, a.s we are in-
terested in the strong gravity field in the immedi-
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ate neighborhood of hadronic matter, any exponen-
tial factors of the form e "oc(.erring in "he @met-

ric components due to the fiait range of the strong
gravity can be neglected. This is also done in Ref.
8. Thus we see that the solutions of the new field
equations after these considerations will be the
same as those of the usual Einstein equations, or
in any case are very likely to be a good approxi-
mation to them. The reasonable results obtained
by the author of Ref. 8 as well as the results of
this paper seem to support this.

However, the metric used by Tennakone does
not enable us to incorporate the angular momen-
tum or spin of the particle. For this we have to
invoke the Kerr metric in the context of strong
gravity; that is, space-time in the vicinity of ha-
dronic matter is assumed to be dominated by a
strong gravitat'ional field with a coupling con-
stant"" 6&=6.7 & 10~' cgs units. In earlier
papers, 3'6 we had indicated that, by using quan-
tized values for the angular momentum J occur-
ring in the Kerr metric, a mass formula for the
hadronic resonance states is obtained as

Now, it is a generally accepted experimental. fea-
ture of hadron spectroscopy that all hadron reso-
nances lie on rising Regge trajectories, i.e., ap-
pear in a Chew-Frautschi plot as straight lines,
the angular momentum being linear in the mass
squared, with a universal slope n = (1 GeV) '.
Equations (1) and (3) automatically imply a linear
relationship between J and H~„'(the usua-l Regge
theory makes no clear-cut prediction on this de-
pendence) with a slope of the right order of mag-
nitude. Qfe can also consider mass formulas re-
sulting from the charged Kerr metric, i.e., the
Kerr-Newman metric which is an exact solution of
the Einstein-Maxwell equations. It seems plausible
as pointed out by Salam" that if internal symmet-
ries are incorporated into the structure of Ein-
stein's fieM equations then in the corresponding
charged Kerr-type solution, the charge Q' would
be replaced by I(I+ 1), where I is the isotropic
spin, and J2 would be replaced by J(J+1). In ef-
fect this would give a mass formula of the type

m„2 b=, +I(I+ 1),J(J+ 1)
2120 6 (3)

where fs is a constant involving G&, A, and c. This
is a typical SU(4)-type formula for a Regge ha-

(G~/h)&n „'= Jc .

It is worth noting that Eq. (1) implies a quadratic
dependence of angular momentum on the resonance
mass 2n„; i.e., a plot of J versus 2I2„- would appear
as straight lines with a universal slope given by

dronic trajectory. A Kerr-Newman-type metric
is thus seen to provide hadronic mass formulas in-
volving SU(6)-type combinations such as I(I+ 1) and

J(J+ 1). That an equation like (3) gave reasonable
numerical agreement with actual particle masses
when using the strong-gravity coupling constant 6&
was shown in Befs. 3, 6. It is of interest to note
that Eq. (3) also arises by imposing the condition
that a Kerr-Newman black hole be extremely
charged and rotating.

Further, it is interesting to note that the Christo-
doulou-Huffini mass formula'2 for charged rotating
black holes (the formula holding for any general
black hole, not merely extreme ones), i.e. ,

QB 2 J2
222 — P'P2 jp+ ~ +

9'H2
gq %222 gq

(where m„ is the irreducible mass which does not
decrease in black-hole interactions), strongly re-
sembles hadronic mass formulas involving SU(6)
combinations like Eq. (3), if Q' and J' are replaced
by I(I+1) and J(J+1). However, in order to have a
complete SU(6) formula, we need an additional
parameter to identify with the hypercharge l',
which does not occur in Eqs. (3) and (4). This
could possibly be done through a recent work of
Bekenstein, "who has shown through a new solu-
tion that an additional scalar charge could also be
an observable parameter of a black hole in addi-
tion to mass, angular momentum, and electric
charge. This could then be identified with the hy-
percharge. We would then have a, complete SU(6)-
type formula. In this connection, it is of interest
to note that recently' solutions were constructed
for the coupled Einstein-Yang-Mills field equations
which describe the exterior of a rotating black hole
having gauge charges such as isospin and hyper-
charge. These solutions for the Einstein- Yang-
Mills equations are the analog of the Kerr-Newman
solution for the Einstein-Maxwell equations and
now correspond to spinning black holes with gauge
charges instead of or in addition to electric charge,
the equation of the event horizon being written as

(6)

where the constants M, a, Q~ are interpreted as the
mass, angular momentum per unit mass, and
gauge charges, respectively. The mass formula
for these black holes will now resemble Eq. (4)
with appropriate additional terms for the gauge
charges Q~. The singularity structure of the new
solutions will be the same as that for the Kerr-
Newman solution with the same inequalities be-
tween M, a, and (Qo)' =y~,Q~Q' to prevent or per-
mit naked singularities. The gauge fields consid-
ered can belong to any I.ie group which has an in-
variant group metric y~„ i.e., gauge groups usu-
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ally considered by particle physicists. These
gauge groups include the vector mesons mediating
strong and other intex'actions, the gauge charges
then being the conserved quantities like isospin
and hypercharge derived by applying Noether's
theoxem to the appropxiate gauge symmetries.
Moreover, the generalization of the Higgs mecha-
nism to curved space; i.e., solutions of the Ein-
stein-Higgs equations can generate black-hole so-
lutions characterized by massive gauge fields.
Such solutions Rre not yet known but one would rea-
sonably expect them to exist. The Israel-Carter
uniqueness conjecture can be extended to these
new black-hole solutions and it leads to the identi-
fication of various gauge charges as distinct ob-
servable parameters of the black holes. For the
Kexx-Newman solution Wald" has shown that the
inequality m2 ~ a + Q2 is always maintained, if it
is satisfied initially. This would also hold for the
new black-hole solutions. We thus see that with
quantized values for a, Q, etc., and in the con-
text of strong gravity, the mass formulas for these
black holes [Eqs. (3) and (4) ] will really look like
the SU(6) mass formulas for hadrons and will give
reasonable numerical values with the strong grav-
itational constant. Qf course, we note that we end

up with squared-mass formulas for all hadrons,
i.e., for both mesons and baryons, whereas the
usual Gell-Mann-Okubo (GMO) mass formula is
quadratic for mesons and linear in the mass for
baxyons. Whether we should use the linear mass
or (mass)' has been an unsettled question since
then. Although the linear mass was used for the
original GMO mass formula for baryons the latest
indications" are that the (mass)' formula is nu-
merically more accurate even for the baryonic
case. It must be remarked that the unitary sym-
metries [SU(3) or SU(6)] used for the classification
of strongly interacting particles are approximate,
their experimental success being attributed to the
rather phenomenological introduction of symmetx'y-
breaking terms (which give additional degrees of
freedom such as f, Y, etc.) as a perturbation on
the mass operator; i.e., we have a theory with a
flat-space invariant P„P' (Poincard invariant or
mass operator) together with an interaction which
gives a nondegenerate mass spectrum, i.e., mass
splitting. ' An "elementary particle" u ithout intrin-
sic degrees of freedom such as isospin, hyper-
charge, etc. , can be described by a single value
for its mass (i.e., a degenerate state) given by the
invariant mass operator P„P"=m', i.e., charac-
terized by an irreducible representation of the
Poincare group as its symmetry group. Symmetx"y-
breaking interaction terms would Dow perturb this
flat-space mass opex'ator giving rise to a mass
spectrum (nondegenerate state) describing elemen-

tary particles Mlith intrinsic degrees of freedom.
The theory in flat space with an interaction ean be
reduced to an equivalent description of a group of
motions in curved space; i.e., it can be related to
geometry completely in the spirit of general rela-
tivity where the curvature of space-time is caused
by the presence of energy-momentum tensors gen-
erated by various interactions. Using a eurved-
space group (such as the de Sitter group) instead
of the flat-space Poincar6 group one automatically
gets a "generalized" mass operator P„P"which
has additional termse'o giving rise to a mass spec-
trum, i.e., P„P" is no longer a Poincard invariant,
but terms like P„P"+ J(J+ l)+. ~ ~ are now invari-
ants of this curved-space group. This seems more
natural than introducing symmetry-breaking terms.
An elementary particle with intrinsic degrees of
freedom would now be described by representations
of the curved-space group (say de Sitter group) as
the symmetry group and would go by contraction"
into an elementary particle with a single degenerate
mass state given by the usual Poineare invariant.
The use of cux ved-space groups of motion would
be necessitated" by the pxesenee of the strong
gravitational interaction in the immediate vicinity
of hadronic matter. This is one way of understand-
ing the above results. The irreducible mass in (4)
could be regarded as the rest mass of the degener-
ate ground state (say proton for the baryon spec-
trum).

We would Dow menhon R few moxe Rmusxng RDRI-

ogies between the properties of black holes and
those of hadrons. While considering the collision
of two black holes, we have a theorem" due to
Hawking which states that in the interactions in-
volving black holes the total surface area of the
boundaries of the black holes can never decrease.
In stationary processes they remain unchanged at
best. This seems consistent with the observed in-
cx'eRse 1D cx'oss sections iD hadl on collisions, hRd-
rons here being assumed to be quantum black holes
of the strong gravity field. Further, there axe
elegant analogies between the laws of black-hole
dynamics and the laws of ox'dinary thermodynamics.
One remarkable conclusion arising from this anal-
ogy is that a black hole radiates like a black body
whose temperature is inversely proportional to its
mass. ""We would, thexefore, associate with a
black hole of mass M R temperature given by

where k~ is the Boltzmann constant. That a black
hole should be assigned a temperature (proportion-
al to its surface gravity) as given by Eq. (6) was
first suggested by Bekenstein" on the basis of anal-
ogies between thermodynamic quantities and the
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~C
=2&& 1p» "K.

8wG~I Ps
(7)

This would be the upper limit for the temperature

parameters of black-hole dynamics. Direct calcu-
lations by Hawking" showed that a black hole does
radiate like a body with temperature given by Eq.
(6), in agreement with the temperature defined by
Bekenstein. The temperature is seen to depend
(inversely) only on the black-hole mass and on no
other parameter. The smallest black-hole mass
will therefore give rise to the highest temperature.
In the case of strong gravity, G in Eq. (6) would be
replaced by the strong gravitational constant Gf and
3f would correspond to the mass of a hadron, had-
rons being considered as black or "grey" holes of
the strong gravity field. Now the hadron with the
smallest mass is the (spin-0) pion having ni, =140
MeV. Equation (6) then gives (with iaaf = n~„G = Gf)

of hadrons or hadronic matter. It is remarkable
that this upper limit for the temperature is the
same as the limiting temperature arising in ther-
modynamic bootstrap models of hadrons (we also
recall in this connection Fermi's blackbody radia-
tion model for hadronic matter) such as the Hage-
dorn model, where usually k~ T,„-u~,c' - 2 &&

&p "K. There is a measure of experimental sup-
port for the existence of such a temperature as
manifested by a cutoff in the transverse momenta
of colliding hadrons in high-energy experiments.
The existence of an upper limit for the temperature
of hadrons can be conceived of as the fourth law of
thermodynamics. -" Equation (7) giving the upper
limit for the temperature of black holes would then
be a statement of the fourth law of black-hole dy-
namics, the other three laws being already known. "
Many analogies, therefore, exist between the be-
havior of black holes and those of elementary par-
ticles.
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