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When the Regge amplitudes are required to satisfy the kinematical constraints on helicity amplitudes the

scalars can Reggeize both in scalar QED (in agreement with findings of Cheng and Lo) and in non-Abelian

gauge theories. For the SU(2) Yang-Mills model with spontaneously broken symmetry we exhibit a Regge-

pole structure reminiscent of the dual model.

Since 1962, when the notion of Reggeization was
introduced by Gell-Mann et al. ,

' it has generally
been assumed that an elementary particle of

Lagrangian field theory will lie on a Regge tra-
jectory if for a process where the particle ap-
pears as an s-channel pole (1) there exist (two-
particle) nonsense states and (2) the Born helicity
amplitudes satisfy a factorization condition. This
is the case for a fermion in massive QED' and for
the massive vector mesons in a non-Abelian gauge
theory with spontaneously broken symmetry, - but
factorization does not hold for a. scalar in ma, s-
sive QED' or the Higgs scalar in the gauge the-
ory. ' However, Cheng and Lo' have shown that
through eighth order the high-energy behavior of
the annihilation amplitude in scalar QED is con-
sistent with the existence of three Regge tra-
jectories, the scalar lying on one of them. They
concluded that factorization is not a necessary
condition for Reggeization.

The factorizati:on condition arises v hen one
solves the unitarity-analyticity equations at large
J and demands that the continuation to low J of the
solution without Castillejo-Dalitz-Dyson (CDD)
poles agree to order g2 with the Born amplitude
computed there directly. "' The results of Cheng
and Lo seem to cast doubt on the validity of this
procedure.

In this note we show that the unitarity-analy-
ticity procedure properly handled can give results
in agreement with those of Cheng and Lo for the
scalar QED case. The same procedure shows that
the Higgs scalarin a non aphelian SU(2) gauge-
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theory»~ay also Reggeize. This theory, the zero-
slope limit of a dual model, ' exhibits then a rich
Regge-pole structure and has no Kronecker-5
singularities anywhere. For simplicity we dis-
cuss here the scalar QED cases and only quote
results for the Yang-Mills case.

Our observation is that for these cases the solu-
tion without CDD poles does not satisfy the kine-
matical constraints on helicity amplitudes. When
CDD poles are introduced to satisfy the constraints
solutions can be found which agree with field the-
ory and Reggeize the scalars. A modified factor-
ization condition holds but its role now is to fix
the CDD parameters. For simplicity we discuss
the case when vector and scalar have the same
mass. We may ignore signature.

In scalar QED (the singular parts of) the parity-
conserving scalar-vector Born amplitudes are, '
near J=O,
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We do an N/D calculation with N =q 'V and (see
Ref. 2, Appendix A) subtract D so that

D=1 ——, „=1—VK(s) .V ds' p(s')
77 S —S q
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We find the following (no CDD pole) solutions near
Oo
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At J 0 T op does not agree with f,, This is
equivalent to the statement that the Born approxi-
mation does not factorize. '

However, these solutions do not satisfy all the
s = 0 constraints and are not acceptable. These con-
straints read'

T10(J) = 0, (7a)

oo(J ) —T oo(J+ 2) = T „(J)—— T,,(J+ 2)
J

2J+3
+ (J+1)(J+2) T &(&J+1) . (7b)

Voi
1 1X= —V= — V2 2 10 V»

0J bMS J

Since T;,(0, J ) =0 the second one i.' not satisfied
in the vicinity of the (right-most) pole of T» at
o (0). Note that the vanishing of T;, is a conse-
quence of the vanishing of V„ independent of any
particular subtraction scheme for D.

We look at solutions with one CDD pole. This
pole can be introduced in T» to make it vanish at
s= 0 (evasion of constraints') or in T;„ to make

T;,(0, J) 40, in which case Regge poles in T;„
must conspire' with the one in T,, to satisfy the
constraints. Scalar QED chooses the second pos-
sibility" (Cheng and Lo' have also observed the
conspiratorial nature of their results).

Although the CDD pole can be introduced direct-
ly in D'„(s, J), the following equivalent procedure
is more convenient. Introduce a fictitious non-
sense channel at J=O and couple it to the scalar-
vector channel. Solve the new N/D equations for
the scalar-vector amplitudes, let the fictitious
channel threshold approach infinity to avoid inelas-
tic effects in the physical amplitudes (while in-
creasing its coupling strength), and adjust the
fictitious Born amplitudes so that the physical
amplitudes satisfy the constraints. The procedure
is summarized in the following equations:
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These results agree with those of Cheng and Lo'
(but their residues are given in the annihilation
channel). Two Regge poles are present with the
scalar lying on one of the trajectories.

The condition that at J=0 the physical and Regge
solutions agree is equivalent to the factorization
condition

foo=fl..fl '.8
where B„„is the lower right corner 2 && 2 submatrix
of X and B„,is the upper right corner 1 x 2 sub-
matrix of X. This factorization condition provides
an easier way to determine the constants a, b, c,
once the necessity of a CDD pole has been estab-
lished. One can then check that the resulting Regge
amplitudes satisfy the constraints (as might be ex-
pected of amplitudes which agree with the field
theory amplitudes which automatically satisfy
them).

We discuss now the I=0 sector of the non-Abelian
SU(2) model studied in Refs. 2 and 4 containing an
I=1 vector meson p and I=O scalar 0.. We assume
that pl p) l o

At J=0 the I=0 pp Horn amplitudes do not
factorize. 4 The amplitudes must, however, satis-

The three constants a, b, c, correspond to the
three CDD pole parameters (two residues and one
location) and the factor vs multiplying b is re-
quired to satisfy (7a). The parameters a and c are
determined by a conspiracy condition extracted
from (7b): Nea, r the pole at o (0) we must have

T oo
= J(J+ 1) 'T, ,

However, b appears as a free parameter, con-
sistent with the Mandelstam counting argument
which indicates that at J=0 the physical and Regge
solutions may differ by one pa.rameter. "We can
make the solutions agree by choosing b suitably
and we find then that
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FIG. 1. Regge trajectories near @=0 and J=1 for the
Yang-Mills model (Bef. 13).

fy a total of seven constraint equations at s=0.
Two CDD poles must be introduced to satisfy all
the constraints. If both poles are introduced in the
positive-parity amplitudes we can find a Regge
solution which agrees with field theory at J= 0 and

Reggeizes the scalar meson. It is thus possible
that in this SU(2) Lagrangian field theory both
scaLar and vector mesons lie on Regge trajec-
tories and no Eronecker-6 singularities are pres-
ent anywhere.

We find that in this I=O sector four Regge tra-
jectories are present, the Higgs trajectory passing
through J=0 at s =m' and three nonsense-choosing
trajectories passing through J=O at s=O, s=m'/4,
and s = 2m', respectively. The model exhibits a
spectrum of trajectories showing remarkable
regularities. We show in Fig. 1 all the trajec-
tories present in the weak-coupling approximation
at non-negative J." " We have considered only
natural-parity trajectories. These trajectories
are reliable only in the vicinity of J=O and J=1,
but the temptation to continue them with parallel
straight lines is almost overwhelming. We note
that the J=0, s = —m' tachyon point has wrong
signature so that no actual s-plane pole will be
produced. The position of trajectories passing
through integral values of s/m' seems to be in-

sensitive to change from SU(2) to other groups
However, the trajectory passing through s/m'

and J= 0, 1 shifts as the group is changed. '~

To conclude, we discuss our results in light of the
Mandelstam counting argument. For scalar QED
the counting shows that the physical and Regge
solutions may differ by the value of one free pa-
rameter. In our calculations 5 appears to be this
free parameter. and its value cannot be determined
by the kinematical constraints (either at s =0 or at
threshold), consistent with the counting.

This is to be contrasted to the case of the Regge
solution without the CDD pole of Eq. (5). The fact
that this solution did not agree with field theory had
been interpreted as being consistent with the
counting. However, this is not the case: It is im-
possible to make this solution agree with field
theory just by varying one parameter (which would
have to be a subtraction constant in D).

Finally we observe that Reggeization of the
scalar is not a necessity, yet in light of the re-
sults of Cheng and Lo' it takes place. Is there a
criterion which forces the parameter b to have the
right value for Reggeization'P We suspect that
gauge invariance provides such a criterion, as has
been suggested elsewhere. " In S-matrix language,
it may lead to better high-energy behavior than re-
quired by unitar ity and this would modify the
Mandelstam counting. For instance, in scalar
QED unitarity only requires f;0 to be bounded as
s- ~. However, the seagull term e2A„2$*$ re-
quired by gauge lnvarlance makes fOo vanish as
s- in the Born approximation. As another hint
we point to the case of a fermion-meson model
where again s = 0 constraints require introducing
a CDD pole and a free parameter is present, yet
the meson does not Reggeize, as shown by explicit
calculations. " The theory has no gauge invariance.
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