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Keiji Igi~
Fermi National Accelerator Laboratory, Batavia, Illinois 60510 t

(Received 21 January 1977)

%e discuss in detail a factorization property of Regge slopes between ordinary and new hadrons proposed
earlier. This is supported experimentally in a known case, and the {tensor) D~~ mass in this scheme is

predicted to be 2.43 GeV. In addition, we obtain relations between boson slopes and baryon slopes

with four flavors. By combining these with the slope-factorization property, we can predict all of the baryon
slopes. Predictions for both boson and baryon spectra are also given.

I, INTRODUCTION

Recent discoveries of new hadrons' strongly
suggest a new degree of freedom (charm") in
particle physics. This new degree of freedom also
leads to the prediction of a rich spectrum of addi-
tional new hadrons. Hence we need dynamics for
these new hadrons. It has been known for some
time that the concept of duality for hadrons in the
sense of finite-energy sum rules (FESR) has con-
vincing experimental support. 4 Before charm was
found, it turned out to be very useful to combine
the quark model with duality in order to construct
a consistent hadron dynamics. Since charm has
now been found, there is a great need for a new
hadron dynamics to accommodate charm in the
duality scheme of hadrons.

There are many similarities as well as differ-
ences between the ordinary and the new hadrons.
One of the differences is that the Regge slopes of
the new hadrons appear to be smaller than those
of the ordinary ones if one approximates the g-g
trajectory by a straight line passing through the
g(3098) and the 8~=2' g(3550), which are exchange-
degenerate to each other. As is well known, one
can write a dual amplitude explicitly when the
slopes of the Regge trajectories are equal in
both the s and the t channels. %hen the two slopes
are different, however, the 84 amplitude of the
Veneziano type would lead to an increasing ex-
ponential behavior as s approaches infinity at fixed
angles even in the physical regions. ' This might
throw some doubt on the possibility that the new
hadrons could be related to ordinary hadrons
through duality.

This difficulty could be overcome in the following
way. ' CaUan et al. ' and Kang and Schnitzer' sug-
gested an interesting possibility some time ago in
order to understand the difference in the slopes of
ordinary and new hadrons in the resonance regions.
They took a string picture of hadrons' in which a
quark and an antiquark with finite masses are
attached by a massless string, and considered the
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FIG. l. Schematic view of the boson trajectories:
p-f, P-f', D*-D**, and g-X. All our considerations
apply only to the low- and medium-high-energy region
S «S~.

rigid rotation of such a system. This would give
rise to the leading Regge trajectory if quantized.
If one considers the g-X Regge trajectory as the
cV system, for example, the slope of the g-X tra-
jectory is small for low spins since one can make
the nonrelativistic approximation while it would

approach a universal slope at high spins since the
c-quark mass would be negligible compared with
the energy of the string in that region. Thus, the
slopes of the new and ordinary hadrons will both
approach a universal slope at infinity even though
these slopes are different in the resonance regions
(see Fig. I). If this is the case, the new and

ordinary hadrons could be related through duality
without contradicting Mandelstam's arguments. '

It is not yet known, however, how to construct
an explicit dual model for arbitrary trajectories
in practice even if it is possible in principle. Sup-
pose we can approximate trajectories by straight
lines at Iow and moderately high, energies and con-
sider the FESR duality connecting a sum of s-chan-
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nel resonances to the t-channel Regge poles in
these regions. A 84 amplitude connecting any pair
of trajectories in the s and t channels satisfies
this duality. Expanding such an amplitude at mod-
erately high energies and imposing the factoriza-
tion property of Regge residues, "we were led to
a new factorization property" "of Regge slopes
relating ordinary and new bosons and also one"
relating ordinary and new baryons.

This paper is an expanded version of Ref. 11,
and in addition includes new predictions and appli-
cations. By requiring a definite signature for the
u channel n in the (u, t) and (u, s) dual terms for
rN - rN as well as for all possible combinations
of external particles with four flavors, we obtain
relations between boson slopes and baryon slopes.
Thus we can calculate the actual magnitudes of
all baryon slopes by combining the slope-factoriza-
tion property with the above relations connecting
baryon slopes with boson slopes. We then obtain
rich predictions for the baryon spectrum as well
as the boson spectrum.

In Sec. II, we give a derivation of our factoriza-
tion property for boson slopes. We also show that
the factorization property continues to hold even
in the presence of a finite number of satellite
terms. In Sec. III, we derive the factorization of
baryon slopes. We show that the results still hold
even when parity doublets in the resonance regions
are eliminated by a finite number of satellite
terms. In Sec. IV, we derive relations between
boson slopes and baryon slopes. Section V is de-
voted to experimental comparisons. We test our
predictions for boson slopes in a known case. We
also calculate the magnitude of the slope for each
boson and baryon spectra. In Sec. VI, we give
concluding remarks and discussions.

II. FACTORIZATION OF REGGE SLOPES—BOSONS

For simplicity we first consider meson-meson
scattering in order to derive a factorization prop-
erty of Regge slopes relating ordinary and new
boson s.

Suppose we take the reactions

DD -p DD, DD p mm, n m p mm

in the t channel. Then the t-channel p-pole resi-
dues have to factorize":

P t)t)pt)t)( t) )'tK pt't(t) [Ppttptt. (t)] (2.1)

Let us choose the r'& scattering amplitude to be

A' ' (s, t) = -M,(ap(s), ap(t)), (2.2)

where ap(t) denotes the p-f trajectory function
and

Then we obtain

(2.3)P 'tf ff

Similar considerations for the DD and rD scatter-
ing amplitudes' immediately lead to"

t DDPDD(t) p(a (t)}( (2.4)

Pp/per(t) p( (t)) (as*) p (2.5)

up to a constant factor. Here a& (a'st) denotes
the slope of the )t-)( (D*-D*') trajectory, which is
assumed to be linear up to moderately high ener-
gies (Fig. 1). Substitution of Eels. (2.3), (2.4),
and (2.5) into Etl. (2.1) leads us to

(at )attt) (at )a)t) (ai )ap(t) g
t

r(a,(t)} r(a, (t)) r(a, (t))
(2.5)

which must hold for any value of t. Therefore,
we must have the relation

aIp a
p

= (at) g) (2.7)

It is to be noted here that constant factors in front
of the B4 function also have to factorize. More-
over, we can show that this relation continues to
hold even if the amplitudes include a finite number
of satellite terms.

Let us write the &'m, D'm, and O'D scattering
amplitudes as

A„+,-(
( ) ( )) ~ ~ „I'(n —a,(s))I"(tn —a, (t))

r(n —ap(s) —ap(t))

A, +.-( ( ) ()) ~ ~ „r(n-a „(s))1(m —a (t))
I'(n —as*(s) —a

p (t) ) (2.9)

N
D+0-(

( ) ( )) ~ ~ s5 I'(n —ap(s))1'(tn —a, (t))
I"(n —at(s) —a p(t))

(2.10)
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Each term in the sums contributes to the leading
behaviors ln s at high s." Considerations simila, r
to those me had before immediately lead us to

N )) ) err( I)~-)
P..(, w. (&)=)( Q Q ~(I" „„(t))(o'I)&"',

(2.11)

y~D( 1)m-(
PDDP. .(&)~)( Q Q (1", ()) (o.D, ) ('",

Ill. FACTORIZATION OF REGGE SLOPES—BARYONS

We shall now turn to a. discussion of meson-
baryon scattering mith four flavors. Suppose me
can write the (s, u) dual term for the invariant
amplitudes A")(s, u) and 8'"(s, u)."' (Here, the
superscript I denotes an isospin index in the u

channel. ) The parity-conserving helicity ampli-
tudes free from kinematical singularities in the u
channel are then expressed in terms of A~" and
&(I) as follows:

~Di ~
m-&

I'(I -m+ a, (t))

(2.12)
F"'(Wu s) =+(A'"+MB"')- Wu8'" (3.1)

(2.13)

Substituting these into Eq. (2.1), we are led to

(()(I (rl )ap( )( [(~1 )2] np(() (2.14)

as mell as a simi ar factorization for the remain-
ing part, It is to bv noted here that these tmo
relations must hold separately because of their
different functional forms. Hence me again obtain
Eq. (2.7), this time from Eq. (2.14).

Using the p-residue factorization for the reac-
tionsDD- p —DD, DD- p-KK, andEK- p-EK as
a second example, me obtain another nem relation:

CR I) Q y = (Qp + )

Similar considerations for A'K p-AjC, Eg - p- mm, and mm -p - r& lead to the relation

Q yQp = (Q)) e) (2.16)

The P-residual factorization for I"I'- p-EI',
EE- (p -KK, and KK - p -KK does not lead to a
new relation but reduces to Eq. (2.7). Similarly,
the g factorization through EF- g-EE, EE- (CI

-DD, and DD- g-DD reduces to Eq. (2.16). Thus
we have three independent relations without any
inconsistency.

F("'(vu, s) = [(E„-M)!6vvu]f', (Ws, s),
F'I' =[(E,„+bf)IB)(vg ]f,'(vu, s),

and E(~) '(Wu, s) include only the TP = ~ u-channel
Hegge exchanges in the leading order in s. Discus-
sions similar to those in the preceding section im-
mediately lead to the factorization properties for
baryon Regge slopes. "

Here me start from the general case in which
both the g and jg I' include a finite number of
satellite terms. The dual terms for the A~I) func-
tion which give the leading Hegge behavior s &'"

for large s at fixed w canbe mritten as

~„«) I'{P—n, (s))1'(q - (x, (s))
.=0~i, . . . ), " I'(p-&s, (s)-&,(s))

(3.2)

where o. =- n --,', and n is a baryon trajectory
function. Similarly, we can write

8(,) ~ ~ s(, ) I'(p —a„(s))I'(q - n, (u))
I'(p —(rs, (s) —as(s) )

(3.3)

Substitution of Eqs. (3.2) and (3.3) into Eq. (3.1)
gives

(3.4)

(3.5)

Expanding the imaginary part of Eq. (3.4) at moderately high energies in the sense of Ref. 13, we have

ImJ (()- - yl(~g)(~I )as(s) sas(u)
s large

jl 1

Denoting the E(~) for a+b-8-d+c in the s channel as F(~) (ab-B-dc), we can write

ImE"' (ab-8-dc) - — = ) '"(Wu) (o.'-) s"'s"s'"
s urge ab 8 dc bc

(3.6)

(3.7)

Here I31 mas replaced by AV since a» is a, baryon trajectory in the bV channel.
Suppose we take the reactions ab B-ba, a-b-8-dc in the (( channel (Fig. 2). Then the u-channel 8-
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FIG. 2. Beactions ab B ba, ab B dc, and cd
B dc in u channel.

pole residues have to factorize":

—[y (I) (~u} (c I }n s(s)] 2

(3.8)

(aI )a&(a)(aI )a&(u) [(aI )a&(g) ]2

Therefore, we are led to

al ail (al )2

(3.10)

(3.11)

It is to be noted here that this relation still holds
even when parity doublets in the resonance regions
are eliminated by a finite number of satellite
terms.

Let us consider each of the cases which arise
when vP = —and the u-channel 8 baryons are com-
posed of four flavors:

a. d, exchange. Suppose we take the reactions
mN -Nm, ~N ~ ZK, and KE-6 ZK in the
u channels. Then Eq. (3.11) gives us a relation,

a~ as~ = (a'„g)', (3.12}

between s-channel baryon slopes. As we shall see
later (Sec. IV), this kind of relation applies both

to the octet and the decouplet. Similar considera-
tions for mX-A-N&, mN h-CD, and DC-6
-CD immediately lead to"

ag axe = (ac e) (3.13}

b. Y~ exchange, We obtain

a'„~ a„'= (a&*)' (3.14)

from &Z Y* Z&, &Z-Y* ~K, K~ Y'-ZK,
and

are axe = (a~y) (3.15)

Since the functions ) (')(Hs)„s ~ and (a)-)"e(")

are completely different, the following two rela-
tions have to hold separately:

s -(o& (~~)eu s ac
= [)' ( )s)) a eel' ~

(3.9}

from mC-C* Cm, mC C~-SK, KS-C*-SK,
and

ac 0 ag = (axe) (3.17)

from mC-C*-C&, mC -C*-XD, DX-C*-XD.
d. = *exchange. The =*-residue factorization

for KZ -ZK, KZ -™*SF, and FS-=' -SF does
not lead to any new relation but leads to Eq. (3.13).

e. X*exchange. Similarly, the X* factoriza-
tion for DC -X*-CD, DC -X*-SF, and FS-X*
-SF leads to Eq. (3.12).
f. S*exchange. There is no new relation
g. 0 exchange. The 0 factorization for K= -0- "K, K" -A-TF, and FT-0-TF gives us Eq.

(3.15).
h. 8 exchange. The factorization for DX-8

-XD, DX-G-X,Z, and FX,-e-X,F leads to
Eq. (3.16}.

i T+. exchange Equat. ion (3.17) is obtained
through KS T~ SK, KS T* X,F, and FX,-T*-X,F factorization.
j. Xf exchange. Similarly, Eq. (3.14) is obtained

through DS X;-SD, DS-X,*-TF, and FT X,*
TF factorization.
Thus the above baryon exchanges with all pos-

sible combinations of external particles lead us to
a set of results, where in each case one of the six
relations (3.12), (3.13), (3.14), (3.15), (3.16), or
(3.17) holds between u-channel baryon slopes. If
we twist the final states, we obtain relations be-
tween t-channel boson slopes. In each of the cases
mentioned above, we also obtain one of the three
relations (2.7), (2.15}, or (2.16) derived for
meson-meson scattering in Sec, II.

It is interesting to notice that these six relations
manifest the factorization of quark numbers for
each flavor, i.e., we have the following kind of
relations" for baryon slopes with four flavors:

(u 's"c")(u 's" c")= (u 's"c"')' (3.18)

with p, +p, = 2p„q, + q, = 2q„and r, +r, =2r, .
We may visualize the various baryon slopes in

Fig. 3 as a consequence of Eqs. (3.12) through
(3.17). At this stage, however, the magnitudes
of the baryon slopes have not been predicted. We
shall show in Sec. IV that one can relate baryon
slopes with boson slopes, and so one can predict
each baryon slope by combining these with the
slope-f actorization property.

IV. RELATIONS BETVfEEN BOSON SLOPES

AND BARYON SLOPES

from mZ- Y~-Zm, mg Y& SD, andDS Y~

C. C ~ exchange. Here we have

ac 0 ary = (age) (3.16)

We require a definite signature for the u-channel
a trajectory in the (u, f) and (u, s) dual terms for
mN scattering since the h has a definite signature. "
A (u, t) term of the form
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(-
( ) ( ))

1'(1 —a~(u))r(1 —ay(t)}
I'(1 —a ~(u) —a~ (t) )

which behaves as

(4.1)

o-—
2

F(1 —a ~(u)}(a~)"&" s &"

for large s" at fixed u, and a (u, s) term of the
fol m

C,S'

X~
X

8
B,(a~(u), a~(s) },

which behaves as

I'(1 —a (u)}(a') &" s"&'"'

(4.2)

M'-(My, )

for large s at fixed u, generate a negative signa-
ture if (a~) &~") = (a~)"~'")for all values of u.
Therefore, we must have the relation"

FIG. 3. The 6, F*, =*, 0, C*, S*, T*, X*, Xg, and
Q trajectories as functions of M2- PI3/2) .

I I
Ap = Qg. (4.3) show the following relation to hold:

It is to be noted here that generaQy there exists
a (u, s) term of the form B(a~(u},a„s(s)) (II*

N ~) in addition to the B(a~(u), az, (s)}. We will

I IQp= Qg= Qgg ~

Suppose we consider a combination of terms

(4.4}

B,( n~(u), n p (t)) —[aB,(a~(u}, n~(s))+ f)B,( a~(u), a „g(s))]

1 (1 a (u))sup(N)((nl )erg(ll) e i&ay(s) [u(a )ug( ) + h(nl )Og(4I)]] (4 5)

1=a ~ +6 (4.6)

with a+ 0, b 4 0. In order to have a negative signa-
ture for the b, , we must have I IQgg=Q( g.

%e also obtain

(4.9}

IQ@= 0),'3, g ~ (4.8)

Similar considerations for the n in the B,(a~(u),
a~~(t)) and B,(az, (u}, ac ~(s)) term for vII -DC give

lf one assumes n~/np 0 n'„~/az, one can easily
arrive at a contradiction. Qn the other hand, if
one assumes n~/a~= n'„~/a'p, one can easily show
that this quantity has to be equal to unity. Thus,
we arrive at Eq. (4.4). As long as the quark num-
ber for each flavor in any baryon is the same,
this equality has to hold.

Similar considerations with all possible com-
binations of external particles with four flavors
lead to the following relations: By requiring a
definite signature for the u channel 6 in the

B(a~( )u, as*(t)) and,B(a~( )u, n v~(s) ) terms for
rX -EZ, we obtain

Q'~+ = CRgg . (4 7)

A similar requirement for the a in the B,( ~n( )u,

a~(t)) and,B(n~( )u, num(s)) terms for KZ -KZ
leads to

I Inz+ = as* (4.10)

from the B,(a~(u), a++(t)) and B(n~(u), a, „(s))
terms for KZ-DC, and

(4.11)Q((, = (XX'

from the B(a~( )u, a&(t)) and B,(a~(u), a+~(s)) for
DC -DC.

The other baryon slopes 0.'„, a~*„n'~, ne,
which are not directly related to boson slopes,
can be calculated using Eqs. (3.14), (3.15), (3.16),
and (3.17), respectively. Hence, by combining
all of the above properties, we can calculate the
actual magnitudes of all the baryon slopes from
boson slopes.

V. PREDICTIONS AND THE NEW HADRON

SPECTROSCOPY

A. Bosons

We first test our predictions (2.7), (2.15), and
(2.16) for boson slopes. We approximate trajec-
tories such as g-)t, "P-f', and K*-K*' in terms
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of straight lines passing through the corresponding
pair of resonances, and the p trajectory by con-
necting the p and g mesons. Then we have the
following values for these boson slopes [in
(GeV/c) '] using masses from the Particle Data
Group":

a-I

up= 0.88,

O,~I g = 0.82,

O. I~ = 0.79,

al~ = 0.33.

(5.1)

The left-hand side of Eq. (2.16) is evaluated to be
(0.79)(0.88) = (0.83)'. Thus, Eq. (2.16) is well sup-
ported experimentally within the experimental
errors. The relations (2.7) and (2.15) are difficult
to test directly at present. Assuming Eq. (2.7) to
hold and using the values in Eg. (5.1), one can de-
duce

FIG. 4. The p, K*,
fthm,

D*, I'*, and p trajectories as
functions of M2-M2&

(5.1) and (5.2) and taking masses" from experi-
ment, we obtain the following trajectories:

e~~ = 0.54. (5.2}

If we assume an~(s) to be linear and M(D*) = 2.01
GeV, ' we can predict the (tensor) D'* mass to be
2.43 GeV (see also Ref. 22). The relation (2.15}
with the values of a& and a@ given in Eg. (5.1) pre-
dicts

a~(s) = 0.47+ 0.88s,

or ~(s) = 0.34+ 0.83s,

a&(s) = 0.18+0.79s,

n~g(s} = -1.18+ 0.54s,

o,
& (s) = -2.17+ 0.33s .

(5 4)

0,~+ = 0.51 . (5.3)

%e show the p, K', Q, D*, F*, and g trajectories
as functions of M'-M~' in Fig. 4.

%e now discuss the spectroscopy of the new

bosons. Since the boson masses predicted in the
present scheme are different from those in the
conventional scheme, which assumes a universal
slope, one can discriminate the two alternatives by
experiment. Using the boson slopes given in Eqs.

a~(s) = 0.47+ 0.88s,

a+*(s) = 0.30+ 0.88s,

a~(s) = 0.08+ 0.88s,

a~~(s) = -2.56+0.88s,

n„(s) = -7.45+0.88s.

(5 5)

On the other hand, if one assumes" a universal
slope for all bosons, the trajectories are

TABLE I. Predicted masses of resonances on the p, K*, Q, D*, and t}t) trajectories for the
new scheme and for the universal-slope scheme.

gP p-A2

Mass (GeV)
K*-K** P-f '

Case (i)
New scheme
[~&-—0,33 (GeV/c) 9

Case (if.)
New scheme
[+&=0.50 (GeV/c) 2]

Case (iii)
Univer sal-
slope scheme
[~'=0.88 (C V/c&-g

1
2'

3"

1
2'

3

2'

0.776
1.32

1.70

0.776
1.32

1.70

0.776
1.32

1.70

0.892
1.41

1.79

0.892
1.41

1.79

0.892
1.39

1.75

1.02
1.52

1.89

1.02
1.52

1.89

1.02
1.48

1.82

2.01
2.43

2.78

2.01
2.36

2.66

2.01
2.28

2.51

3.10
3.56

3.96

3 ~ 10
3.41

3.69

3 ~ 10
3.28

3.45
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a~= 0.88,

a'„~ = 0.83 (Ref. 24),

aug = 0.79,
a' *=0.54,

as*=0 51

ax~ = 0.33

(5.6)

[in (GeV/c} ']. The other baryon slopes, which are
not directly related to boson slopes, are calcu-
lated, using Eqs. (3.14)-(3.17), to be

a'q = 0.75,
a' *=0.31,

a~~ = 0.48,

a~ = 0.20.

{5.7)

[In the case of a~=0.5 (Ref. 20}, see Ref. 25).]
If we connect n(v7 ) and n{$') to form the n, tra-

jectory, we obtain a~=0.88, which agrees with
the predicted value in Eq. (5.6). If we connect
Y,'(T"}and Yf'(Ts ) to form Y~~, we hav'e

In Table I we give the predicted masses of reso-
nances on the p, E', p, D', and )trajectories
respectively for the new scheme and for the uni-
versal-slope scheme.

B. Baryons

%e give here predictions for the baryon slopes.
The use of Eqs. (4.3), (4.7), (4.8), (4.9), (4.10),
and (4.11) together with the boson slopes given in
Eqs. (5.1), (5.2), and (5.3) immediately leads us to

a~(s}= 0, 16+0.88s,

ar*(s) = -0.09+ 0.83s,

a3, ~(s) = -0.35+ 0.79s,

ac(s) = -0.60+ 0.75s,

ac ~(s) = -1.88+ 0.54s .

(5.8)

In Table II, we list the predicted masses of res-
onances on the d, F,*, =*, 0, and C* trajectories
respectively for the new scheme and for the uni-
versal-slope scheme.

Vf. CONCLUDING REMARKS AND DISCUSSIONS

In this paper, we discussed in detail a factoriza-
tion property of Regge slopes between ordinary
and new hadrons proposed earlier. "'"

The equation (2.16) relating slopes between or-
dinary and strange bosons appears to be well sup-
ported experimentally. The other relations (2.7)
and (2.15) for charmed bosons are difficult to test
directly at present. As seen in Table I, however,

a~~ = 0.91.
1

If we connect Yf'($ ) and Y;($'}, however, we
obtain

aq* = 0.83,I

which agrees with the predicted value. More pre-
cise experiments are needed here.

%e are now in a position to discuss the spectro-
scopy of the new baryons. Using the above baryon
slopes and masses, "we have the baryon trajec-
tories:

TABLE II. Predicted masses of resonances on the 6, F~&, , 0, and C* trajectories for the
new scheme and for the universal-slope scheme.

Mass (QeV)

1
C*

Case (i)

New scheme
[Gtp+ =0.33 (GeV/c) ~a~]

1.23

1 ~ 95

1.38

1.77

2.08

1.53

1.90

2.2 f. 2.34

2.50

2.85

3.16

Case {ii)
New scheme
[~&+= 0.50 (GeV/c) ~ n~&]

Case (iii)
Univer sal-
slope scheme
[0. =o.88 {G v/c)-2]

pe
2

1.23

1.95

1.23

1.95

1.38
1.77

2.08

1.38
1.75

2.05

1.53
1.90

2.21

1.53
1.87

2 ~ 15

1.67

2.34

1.67

2.25

2.50
2.79

3,05

2.50
2.72

2.92
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the (tensor) D*" mass in the new scheme is pre-
dicted to be 2.43 GeV for case (i) and 2.36 GeV for
case (ii). On the other hand, the universal-slope
assumption for the D' trajectory predicts the D**
mass to be 2.28 GeV. If a resonance were to be
found experimentally around 2.40' 0.04 GeV for
the D&, D&m, D~~& system, it mould be further
evidence in support of the slope-factorization
property. The SPEAR experiments could clarify
this point, According to the new scheme, the
D*'*(3 ) would be found around 2.72~ 0.06 GeV
rather than at 2.51 GeV, as obtained from the uni-
versal-slope hypothesis. The SPEAR experiments
could also clarify this point. As can be seen from

Table II, the C,* (~ ) (charmed baryon) is predic-
ted to be 2.S2*0.03 GeV in the nev scheme.

In conclusion, ve emphasize that the accomoda-
tion of charm in the duality scheme leads to many
interesting predictions.
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