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The Roy equations, combined with unitarity, can be regarded as a system of integral equations for the 7r-m

scattering amplitude in a finite energy region. Even when the partial-wave absorptive parts above this finite

range are prescribed, and the two 5-wave scattering-length paraineters are held fixed, the singular equations
have multiple solutions, some of which could be missed in a direct numerical study. We regularize the system

by a modified N/D method, in which the full manifold of solutions is parametrized explicitly. If 8{so) is the

phase shift of a particular wave at the cutoff point, then that wave carries a number of arbitrary, real

parameters equal to the integer part of 28(so)/m, provided 8{s) & —m/2. We suggest that the X/D formulation

is appropriate for applications of the Roy equations.

I. INTR()DUCTION

The Roy equations' for m-m scattering may be
combined with elastic unitarity to provide a set of
nonlinear, singular, integral equations for physi-
cal partial-wave amp1itudes. The equations are
valid in a finite domain of energy, which contains
an interval 4 ~ s & so of the physical region, but
they entail also the absorptive parts of partial
waves for s ~ so. In applications the latter are ex-
ternally assigned parameters, which are usually
taken from a Regge-pole model. The S-wave scat-
tering lengths also appear as free parameters.

Calculations by several authors' indicate that the
Roy equations are effective in constraining the low-
energy amplitudes for m-m scattering. That is a
pleasing result, since the equations follow from
basic principles of field theory; they are derived
by taking partial-wave projections of fixed-t dis-
persion relations. The main theoretical uncertain-
ty, which appears to be not too detrimental, arises
from the poorly known high-energy absorptive
parts. In practice there has been another source
of uncertainty in the circumstance that the equa-
tions do not in general have a unique solution, even
when the high-energy absorptive parts and the S-
wave scattering lengths are fixed. Except for their
restriction to a finite range of energy, the Roy
equations with unitarity resemble partial-wave
dispersion relations. The latter display the Cas-
tillejo-Dalitz-Dyson (CDD) ambiguity, which is to
say that the multiplicity of solutions increases with
the high-energy asymptotic value of the phase
shift. As we shall see, the Roy equations have a
similar property, but with the value of the phase
shift at the cutoff point so determining the multi-
plicity.

Numerical solutions of the Roy equations have
been sought through a procedure of choosing par-

ticular unitary formulas for the partial waves. ' A

few parameters in the formulas are adjusted so as
to achieve an approximate solution. Although this
is certainly a well-justified method of looking for
solutions, it has the drawback that one cannot be
sure of finding all solutions of interest. The para-
metrization used may not cover all possibilities,
or the search over parameter space may be too
costly in computation time. Furthermore, one
would like to see a systematic numerical refine-
ment of proposed approximate solutions. A stan-
dard method for obtaining a precise solution from
an approximate one is to linearize the equation
about the approximate solution, i.e., to apply the
Newton-Kantorovich method or some similar
scheme. ' The solution of a linear equation gives
the first correction to the approximate solution,
but in the case of the Roy equation the linear
equation has multiple solutions, in general, due to
the presence of a Cauchy kernel. e Thus, an analy-
sis of the CDD ambiguity cannot be avoided, even
in a direct numerical study of the Roy equation.

Our purpose in this paper is to replace the sin-
guls. r Roy equations by equivalent nonsinguiar R/D
equations. The parameters determining the solu-
tion multiplicity appear explicitly in the N/D equa-
tions, and every solution of the Roy equations cor-
responds to some choice of those parameters.
Furthermore, the At/D equations provide a better
framework for numerical computations. The Fr6-
chet derivative of the N/D operator is a Fredhoim
operator, which ensures that the Newton-Kantor-
ovich method can be applied in a straightforward
way, and that solutions can be followed as para-
meters are varied in small steps. '

The finite energy cutoff of the Roy equations in-
troduces a new feature of solution multiplicity not
present in the usual CDD problem on an infinite
energy interval. As 5(so) is increased, the num-
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ber of parameters in the N/D equation increases
by one whenever 5(s,) passes throug;h a positive-
integer multiple of m/2. By contrast, the number
of parameters in the usual problem increases by
two whenever 5(~) passes through a positive-inte-
ger multiple of m. This fact emerged in a recent
work of Pomponiu and Wanders, ' and was implicit
in an earlier discussion of the finite-interval N/D
equation. ' Pomponiu and Wanders study solutions
of the Roy equation in an infinitesimal neighbor-
hood cf a given solution, by making a local linear-
ization in the manner of Refs. 6, 7, and 10. A
full justification of this technique would require
the methods of bifurcation theory in order to show
that solutions of the linearized equation actually
correspond to solutions of the nonlinear one. By
the N/D method we are able to avoid bifurcation
theory, and at the same time obtain a global,
rather than a merely local treatment of solution
multiplicity. Our results agree with those of
Pomponiu and Wanders as far as they are com-
parable. " We find that the number of parameters
in the N/D equation for a given pa.rtial wave is

provided that 6(s,) ~ ——,'v, where [x] denotes the
integer part of x. Barring certain extraordinary
cases (such as the kernel of the N/D operator
having a unit eigenvalue), the dimension of the
manifold of solutions will be equal to the sum over
the various partial waves of the numbers d of
(1.1).

We find that, if 5(s,) & ——,'w, there are stringent
conditions which are necessary for the Roy equa-
tions to have a solution at all. It is hard to see
how these conditions could be met, and it is also
interesting to observe that experimentally deter-
mined m-m phase shifts are always greater than

1
27T ~

The unit change in the number of parameters at
odd-integral values of 25(s, )/m is associated with
a logarithmic singula, rity in the kernel of their/D
equation at s = s, . Because of the singularity,
Fredholm theory does not apply. Such marginally
singular equations have been regularized by vari-
ous methods. '" " We apply the method of Ref. 9,
in which a Mehler transform is used to invert the
singular part of the integral operator. The equa-
tion is thereby reduced to a regular Fredholm
equation, but one containing a new free parameter
if n ~ —,', where n = 5(s,)/m —[5(so)/m]. As n tends
to unity, this parameter drops out, but two new
ones enter, namely the position and residue of an
extra CDD pole. The number of CDD poles is
[5(so)/w], and halfway between the integer values
of 5(s,)/v at which CDD poles enter one acquires
"half a CDD pole"; i.e. , the single parameter as-

sociated with the logarithmic singularity.
Our analysis deals mainly with the unitarity inte-

gral over the finite cut 4 & s &sp and is not much
influenced by the fact that the left-cut terrors in the
Roy equations are nonlinear functionals of all the
partial-wave absorptive parts. Nevertheless, one
would like to have an existence proof for solutions
of the full nonlinear system, including an assur-
ance that partial waves have the correct. threshold
behavior. " Such a proof has been provided for the
original Roy equations with sufficiently small in-
puts (S-wave subtraction constants and high-energy
absorptive parts), and with the restriction that

~
5(s ) ~

be sufficiently small. " The allowed range
of 5(s,) is a subinterval of -',-v & 5(s„)& '=, w, so tha. t
no free parameters would enter the N/D equations.
Correspondingly, the existence proof entails a
demonstration of uniqueness within a restricted
class of functions. Existence proofs for the N/D
version of the Roy equation may also be construct-
ed,"with the advantage that 5(s,) need not be
small. The required analysis of CDD terms is
similar to that needed for the N,''D version of the
Low equation, "' and it depends on the smallness
of all inhomogeneities, including CDD pole resi-
dues. An interesting question arises as to whether
all solutions of the N/D equations may be reached
by parameter continuatiorr from the case with small
inhomogeneities. In any event, an interesting way
to look for solutions of the E/D Boy equations is to
continue numerically from small-parameter solu-
tions. The latter may be computed by simple iter-
ation of the .V/D system.

The plan of this paper is as follows. In Sec. II we
give the general form of the Boy equation for a
particular angular momentum and isospin. The
Cauchy unitarity integral is written separately,
and the remainder (an effective driving term) is
given in Appendix A in terms of sums and inte-
grals over all partial waves. In Sec ~ III we set up
the N/D representation on a finite interval, and
examine its properties. We are then led to a sep-
arate study of the singular part of the 1v'/D oper-
ator in Sec. IV. The final integral equation is of
the Fredholm type, as is proved in Appendix B.

II. ROY EQUATION AS A NONLINEAR SYSTEM

+ (s —4) 'C', (s), (2 1)

where A» is the absorptive part of the amplitude
I", in the state of isospin I and angular niomentum

The Roy equations are derived by projecting
twice-subtracted, fixed-3 dispersion relations onto
Legendre polynomials. They have the form

ds' s2 s —4 '
zE (s) =—,—, , Ai(s')s' —s s" s' —4
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l. The expression for C„given in Appendix A, in-
volves a sum over absorptive parts for all angular
momentum and isospin states, and the two S-wave
scattering lengths. Thus the Roy equations provide
a means of calculating the real parts of the partial-
wave amplitudes, given their imaginary parts and

the scattering lengths.
Although the general form (2.1) is valid for all s,

the infinite series for C, (s) converges only for lim-
ited values of s; in the physical region the domain
of convergence is 4- s ~s, . If one has a fully
crossing symmetric amplitude at hand, then one

may use Bose symmetry to halve the interval on
which the partial-wave projection is made, and

then it may be shown that s, = 60. However, in
practice one needs to combine (2.1) with unitarity
in order to obtain a nonlinear system of equations
for the amplitudes. In seeking solutions of this
system only two-channel crossing symmetry is en-
forced exactly, and this means that the projection
interval may not be halved. It can be shown that
one is then limited to s, = 32 (Ref. 15).

We rewrite the Roy equation as follows:

1 Bp ds'
f', (s) =—,a,(s')+ Bi(s),

4

where

f', (s) = (s —4) '+', (s),
a', (s) = (s —4) 'A~(s),

and

(2.2)

(2 3)

(2.4)

p s+s
B~((s) = C, (s) —— ds' „a',(s')

77 4 S

1 dS S I+ — —ar(s') .
m s' —s s" (2.5)

S

Suppose now that the scattering lengths, and a~(s')
for s' ~ s„are prescribed. We may then use elas-
tic unitarity,

4 1/2
a&(s)=(s-4)', Ifi(s.) I', (2.6}

to convert (2.2) into a nonlinear equation for f~
Strictly speaking, elastic unitarity is exact only
for s &16; but one knows from experiment that
there is essentially no inelasticity below the KK
threshold, so that one may take (2.6) to be correct
for s esp=32.

The cutoff at s, =32 may perhaps be smaller than
one would like. It should be mentioned, however,
that an improved set of equations, due to Mahoux,
Roy, and Wanders, "to which our treatment is
equally applicable, allows a. value sp 125.

In the following it will be convenient to take sp to
be slightly less than 32, so that the series defining
C, (s) actually converges for s ~ s, . In fact, with

such a choice, C, (s) is analytic in a complex neigh-
borhood of [4, so]. The third term in BI(s) has a
logarithmic singularity at s =s„which we separate
as follows:

1
= ——a, (s,) ln ' +-

7t
' '

g sp s,

III. 8'/D METHOD ON A FINITE INTERVAL

In this section we suppress the indices (l, f) and
invoke the unitarity equation (2.6) to write the Roy
equation (2.2} for a particular channel as

1 'o q(s')f(s,')f(s')ds'
7r s —sI (3.1)

where

s —4 '/
4(s) = (s —4)', (3.2)

+ —,[a', (s') —a', (s,)]~ . (2.7)
Sp

We may then represent B',(s) as

IB',(s) = ——ar(s, )ln(s, —s) + BI(s), (2.8)
7l'

where B,(s) is analytic in a domain 0, which con-
sists of some complex neighborhood of [4, s ],
minus a cut along the real axis to the right of
s = sp. The exact form of Q may be computed from
the theory of the Roy equations, but it is of no im-
portance in our discussion. We assume that the in-
put function a, (s) is Holder-continuous for s, ~ s
~ s, + e. It follows that B', (s) is Holder-continuous,
and hence bounded, for 4 ~ s - s, .

In this paper we shall be exclusively interested in
studying the manifold of solutions of the system
(2.2), (2.6), for agivenB~. Solutionof the systemfor
given', is just one step in the solution of the complete
problem, since &, actually depends in a nonlinear
wayonthea, (s}for4 & s ~s . Afterreplacingthe
equationwith givenB~by anN/Dsystem, we can ex-
press a„and hence B„ in terms of the N func-
tions, N, (s), 4 ~s ~so. We thereby obtain a, com-
plete nonlinear system for the N„which we regard
as the appropriate system of equations for a thor-
ough study of the Roy problem. The multiplicity of
solutions arising from the Cauchy unitarity integral
[the first term in (2.2)] is accounted for by explicit
parameters in rhe N/D system, but we cannot rule
out additional multiplicities arising from the non-
linear character of B„ i.e., from possible bifurca-
tion phenomena. An investigation of the latter
would require numerical computation.
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B(s)= —— ' ln(s, —s)+ B(s) . (3.3)
1 sin'6(so)
w q(s,

The function B is analytic in the domain Q de-
scribed in the preceding section, is Holder-contin-
uous for 4 & s - so, and satisfies the reality condi-
tion B(s)=B(s~)*. The parameter sino6(so) comes
from the externally assigned absorptive part, and

may be regarded as given.
A solution of the Roy equation (3.1) is understood

as being a function f having the representation
(3.1), with Holder-continuous boundary values f(s,)
on the closed interval [4, s,], such that f(s) =f(s*)*.
Notice that s=s, is required to be a point of conti-
nuity of f(s,), but that B(s) is logarithmically infi-
nite at s = so The two terms on the right-hand side
of (3.1) must cancel at s = s, . We shall find that the
required cancellation occurs automatically in an
amplitude constructed by the N/D method.

We show first that any solution of the Roy equa-
tion has a certain N/D representation, and that the
N function satisfies an integral equation, the so-
called N equation. Second, we prove that each so-
lution of the N equation leads to a solution of the
Roy equation, provided that the corresponding D
function has no zero on the physical sheet. Finally,
we show how to reduce the problem of solving the
N equation to that of inverting a regular Fredholm
equation.

Suppose that f is any solution of (3.1). The cor-
responding phase shift 6 may be defined so that it
is Holder-continuous and zero at threshold. We
construct from 6 the function

This result implies the asymptote

ls(s)l -(s, —s) "'o' ', s-s, . (3.7)

We first assume that 6(so) ~ 0, and later discuss
the case of negative 6(so). Let us define the num-
bers

n

D(s) = B(s)(s —s,)"g(s —s,) ', (3.10)

where it is understood that D = S if n =0. The s;
are any distinct points in the interval [4, so] such
that sin6(s, ) =0. There are always at least n such
points, but since there may be more than n in gen-
eral, D is not always uniquely defined. The poles
of D at s =s, are mathematically analogous to the
usual Castillejo-Dalitz-Dyson (CDD) poles, but
their physical interpretation is not necessarily the
same, owing to the fact that D is defined with a
finite cut. We shall call them finite-interval CDD
poles, or, less exactly, just CDD poles. The be-
havior of D as s tends to so is

D(s) - ~(so —s), s - s,
0 &a&1, ~WO.

(3.11)

We define N as the numerator function corres-
ponding to the denominator function (3.10):

(3 6)

(3 9)

where [x] means the integral part of x. The de-
nominator function of interest is

1 'o 6(s'}ds'
u (s}= exp

77 4 S —S

which has a phase opposite to that of f(sg:

(3.4)
N(s) =f(s)D(s) . (3.12)

Since f is unitary, one knows that Imf '=-q, and
therefore

u(s, ) =e '""ln(s, ) I
ImD(s, ) = q(s)N(s) . - (3.13)

1 'o 6(s')ds'
exp —P—

77 4 S —S
(3.5}

As in the usual N/D method, one sees that SI =fS
has no cut between 4 and s„ this follows from K(s)
=X(s*)*, and the fact that OI(s,) is real. Thus, the
numerator function Ot is analytic in Q. The func-
tion S is not always an appropriate denominator
function for the N/D method, because of a possible
strong divergence at s = sp.

To determine the behavior of S at sp we note the
following decomposition of the integral in (3.5}:

1 'o 6(s')ds'
77 4 S —SI

1 'o 6(s') —6(so), 6(so) so —s

The N function has no singularities at the points s
= s, &s, . One can see this by noting that N(s, )
-N(s ) =0, 4 ~s&so, s &s;, and that

N(s)=O(ls —s,. l
""), s-s, , 0& p, ~1. (3.14)

The bound (3.14) follows from (3.12), (3.5), and the
requirement sin6(s, ) =0, if p is identifi'ed as the
exponent of Holder continuity of 6. Since the bound

(3.14) rules out a pole at s = s,.&s„and since N has
zero discontinuity over the real exis, we conclude
that N is in fact analytic in Q. An application of
Cauchy's integral theorem then shows that D has
the representation

e, 1 'o q(s')N( s')ds'
I(~s —S ~ 1T s —s

s &so . (3.15)
6(so)' ln(s, —s) + 0(1), s - s, .

7r
(3.6) From (3.12), (3.15), and the analyticity of N we
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see that f(s,) has derivatives of all orders for
4 ~ s ~ sp Unitarity was an es sential as sumption
in deducing this property of f from analyticity in

0 and mere Holder continuity of boundary values.
We are now ready to derive the N equation, which

we do by examining the auxiliary function

A(s) = [f(s) -B(s)]D(s)——,
4

=N(s) —B(s) 1+P ' ——,q(s')—N(s')ds'.c,. 1 'o B(s) —B(s')
(3.16)

It is clear from the first line of (3.16) that A is
analytic in the s plane, except for possible poles
arising from D, and a possible cut [4, so], if we
recall that f —B is just the unitarity integral that
appears in (3.1). Since N and B are analytic in 0,
the second line of (3.16) shows that there is in fact
no discontinuity of A over [4, so]. Since A vanishes
at infinity, it must be simply a sum of poles (if n
& 0) or zero (if n = 0):

n

A( ) p ciB(s;) (3.17)

m = [-6(s,)/v],

P = -6(s,)/ii —m .

(3.19)

(3.20)

Consider the following sequence of denominator
functions:

D" '(s) = (s —s ) 'B(s), j= 1, 2, . . . , m + 1 .

(3.21)

Because of (3.7), the first in of the D"' are zero
at s = s„and D'""' has a bound ii(s, —s) "s, 0 ( P

It should be noticed that the separate terms that
appear in the second line of (3.16) can be infinite
at s=s, . Each term is bounded by ii(s —s,}s, p&1,
so that the absence of a discontinuity of A implies
that it is not singular at s = s, (except in the case
in which the largest s, coincides with s,}. It is
seen from (3.16) and (3.17) that a necessary con-
dition on the N function corresponding to a solution
of the Roy equation with 6(s,) ) 0 is

N( ) B( ) g ( ) ( i)
i=1 S —S ~

( ) ( )
( r}N(

7r s —s

s ii so . (3.18)

This is the N equation of the N/D method.
If 6(s,) &0, one can put D = I) and show that N =fD

satisfies the same equation (3.18) (of course with-
out the CDD terms). This case is extraordinary,
however, in that the homogeneous version of Eq.
(3.18) has at least one nontrivial solution. Suppose
6(so) & 0 and define

(1. Since the D"' vanish at infinity, they satisfy
Cauchy representations of the form

1 '0 q(s')N" (s')ds'D"'(s) = ——
7T s —s (3.22)

m+1, P)0

m, P=O.

In particular, if m =0 we have P&0, and (3.21)
holds for D"'. By the arguments given above one
proves that

7T s —s

j= 1, 2, . . . , p . (3.23)

1 p B s' q s' N s' ds'
I

7T 4 s —s

(3.24)

Thus, if 6(s,)&0 we have p linearly independent
nontrivial solutions of the homogeneous version of
(3.18), with p) 1. This suggests that solutions of
the Roy equations with 6(s,) &0 (if any) have a sin-
gular character. It will turn out presently that the
ease --,'ii (6(s,) &0 is actually not singular in gen-
eral, because of peculiarities associated with the
non-Fredholm character of the kernel in (3.18).
The region of actual singularity is 6(s,) &-—,'ii, as
our later discussion will show.

We next seek a converse to the statement that any
solution of the Roy equation provides a solution of
the N equation. Suppose that we have a solution of
(3.18) for 4 (s &s„with some choice of the real
CDD parameters (c,, s;). We require that the s,. be
distinct points in (4, so]. A solution is understood
as being a function N which satisfies (3.18) for 4

s ( sp which is continuous in that region, and
which has the behavior N(s) -ii(so —s} ", 0 (y&1,
s-s, . The right-hand side of (3.18) then provides
an extension of N to a function analytic in Q. Given
the solution N we may construct an amplitude

f(s) = N(s)/D(s)

= B(s)+ Qc;
1 B(s,.)
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where D is computed from (3.15). Suppose that D
has no zeros in the cut plane (including points on
the cut). Then f-B is clearly analytic except for
the cut [4, s,]. Now f is unitary, because of (3.13),
so that the discontinuity of f B i—s q(s)f(s,)f(s ).
Further, the singularity of f—B at s = s, is at most
logarithmic, because of the assumed behavior of
N at s = s0, and the behavior (3.3) of B. [In gen-
eral, the numerator in f Bb-ehaves as ln(s0 —s)(s,
—s)~, and the denominator D as (s, —s) ".] Since
f—B clearly vanishes at infinity, it follows that it
must be equal to the unitarity integral, so that f
solves the Roy equation (3.1). Whatever the choice
of the parameters (c„s,.), a solution of the N equa-
tion gives a solution of the Roy equation, provided
that D has no zero (no so-called "ghost"). For
general B, c,-, and s, , we should not expect D to
be free of ghosts. There are probably many
choices of the CDD parameters (c,, s,) which do
imply ghosts, but every solution of the Roy equa-
tion corresponds to at least one ghost-free choice
of the parameters.

In a practical calculation, it is a simple matter
to check for ghosts. Suppose, for instance, that
6(s0) ~ 0, and define r= [5(s0)/v]. To check for
ghosts we have only to compare x with the number
n of CDD poles of the D function. The D function,
as computed through (3.15) from a solution N of
(3.18), may be represented also as

D(s) = (s —s0)"B(s)R(s), (3.25)

where R is a rational function with the asymptotic
behavior

R(s)-s ", s-~. (3.26)

Since (s —s0)"S(s) has no zeros, ghosts can appear

only as zeros of R. Since R has n poles, (3.26)
shows that there are no ghosts if and only if n= r.

Our next concern is the problem of solving (3.18)
for given B and (c,, s,). This is the practical prob-
lem that arises when the Roy equation is solved by
the N/D method. We first seek solutions of (3.18)
which lead to solutions of the Roy equation with
5(s,) ~ 0. According to (3.11), such solutions
should have the behavior

N(s) - xf(s0)(s0 —s) ', s -s,
0~n&1, v40, (3.27}

where n is given by (3.9). In view of (3.9), sin'vo.
is to be identified with the input parameter
sin'5(s, ) that appears in (3.3). In fact, we shall
henceforth write

B(s)= ln(s, —s)+B(s),
Wq S0

(3.28)

and study solutions of the N equation as functions
of the input parameter sin'wo. . The input function
B is invariant under the transformation n -1—n,
whereas the asymptotic behavior (3.27) is not. We
must then explain how the solutions in the range
0& n &-,' can be different from those in the range
—,
' & n &1. The explanation is that solutions with
o. ~ —,

' in (3.27) are not uniquely determined by the
input parameters (B, sin'vn, c„s,). We shall find
that a new parameter enters for n ~ —,', because of
the non-Fredholm nature of the N equation.

The behavior (3.27} is generated, so to speak, by
the logarithmic singularity in B(s). To study this
matter, it is convenient to isolate the singular
parts in the kernel of the N equation. Taking ac-
count of (3.28), we write

( l)N( l)d I ( 0 } ( 0 }N( l}d I+ M(s l}N( l)d I
m 4 s-s 4

(3.29)(,)
B(s) —B(s') (,}

sin0wn ln(s0 —s) —ln(s0 —s')
[ (,}s s' q '

vq(s, ) s s'

Next, let us change variables as follows:

x+ 1 s0 —4 N(s)
2 s, —s' x+1n(x =

This yields

sinxn ' " ln[(x'+ 1)/(x+ 1)]n(x')dx'
7r 1

x' —x 1

where

)
1

) p B(s)-B(s,)
X+ 1 .„S—S ~

r 1 1
k(x, x')n(x')dx' = — M (s, s')N(s')ds' .x+1 7t

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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In view of (3.28), a is continuous on [1, ~) and as
X

O(x 'lnx), n 40
zz x

O(x '), 0I =0.
(3.35)

According to (3.27), we are interested in solutions
of (3.32) such that zz is continuous on [1,~) and

1
n(x)=0 . , x-~, 0-~n &1. (3.36)

Consequently, it is natural to look for solutions of
(3.32) in a Banach space S, consisting of all real
continuous functions g(x) on [1,~) such that

II@II= sup x' p(x) [
&~, 0 &m &1. (3.37)

The kernel k(x, x') in (3.32) defines a compact inte-
gral operator K on S, for any cz c [0, 1), as we
demonstrate in Appendix B. The other kernel in
(3.32) gives a noncompact operator, because of the
logarithmic singularity. It is not amenable to
Fredholm theory, but it may be analyzed complete-
ly by the special method of the following section.

In the next section, we analyze the equation

sinzzn ' " ln[(x'+ 1)/(x+ 1)]&j&(x')dx'
y(x) =g(x)+

l

(3.38)
where g(x) is a given continuous function with the
bound

For n ~
2 a new arbitrary constant c enters the in-

homogeneous term. In Appendix B we show that the
operator (1+L)K appearing in (3.41) is compact on

S~, where P&n and 0&P&1. Since S is a subspace
of Sz, the solutions of interest may be found by
studying the equation on Sz by means of standard
Fredholm theory. Let us suppose henceforth that
(1+L)K, regarded as an operator on S~, does not
have 1 as an eigenvalue. One expects that unit
eigenvalues will not normally occur in applications
of the theory. Then (3.41) will have a unique solu-
tion in S~ when the parameters (c, c,, s, ) are speci-
fied. Furthermore, the argument of Sec. IV shows
that this solution actually belongs to S, (if P —o. is
sufficiently small) and in general" has the asymp-
totic behavior zz(x) -~x ", ~40. If there are no
ghosts, this latter behavior implies that Eqs. (3.8)
and (3.9) hold, where 5 is the phase shift computed
from the N/D method, zz is the number of CDD
poles, and n is such that sin'mn is the input pa-
rameter in (3.28). The proof of this assertion fol-
lows from the representation (3.10) of the D func-
tion, which is valid for the D function computed
from a solution of (3.18), provided that there are
no ghosts. We see that a solution in So of the N
equation (3.18) generally leads to a solution of the
Roy equation (for small P —zz. ), and the latter be-
longs to a manifold of solutions depending on d real
parameters, where

O(x""), 0&r&-', r«
O(x '), o. =0.

(3.39)
d = 2zz+ 8 (n ——,') = [25(s,)/zz],

zz= [6(s,)/zz], n =6(s,)/zz —n.
(3.42)

We find that the general solution of (3.38) in the
space S has the form

y(x) = ce (n ——,')P „.(x)+ q(x)

l(x, x')g(x')dx', (3.40)

n(x) = cH(cz ——,')P „(x)+a(x)+ u(x, x')n(x') dx'

where 9 is the step function [H(()=1, $~0, 6($)=0,
/&0], c is an arbitrary real constant, and P„ is
the Legendre function of degree v. The kernel l is
defined in Eq. (4.26); the corresponding integral
operator is called L. If n c S, then g = a+Kn in
(3.32) obeys (3.39) with y= zz. —p. , where p. is the
exponent of Holder continuity of B, assumed to sat-
isfy p, & n ——,'. This property of g = a+Kn follows
from (3.35) and the analysis of K in Appendix B.
Now if n c S is a solution of the singular equation
(3.32), we see from (3.32), (3.38), and (3.40) that
n must also satisfy

To discuss the case 6(s,) &0, we first seek solu-
tions such that -1&5(s,)/zz&0. That is, ni =0 and
0& p&1 in (3.19) and (3.20). The function K) van-
ishes at s =so, which suggests that it is not a con-
venient denominator function; the constraint 5)(s,)
= 0 would have to be imposed as a separate condi-
tion. We choose instead D'" of Eq. (3.21):

D(s) = D'"(s) = (s —so) 'n (s) .

Thus, we look for solutions such that

D(s) - ~(s, —s) ", N(s) —~f(s,)(s, —s) ",
(3.43)

s-so, 0&P&1. (3.44)

N(s) =—,q(s')N(s')ds'. (3.45)
7T 4 S —S

Since D vanishes at infinity it has a Cauchy repre-
sentation of the type (3.22), and the corresponding
N function satisfies

f(x, x') a(x')+ u(x', x")n(x")dx dx'.

(3.41)

In terms of the function n(x) this equation takes the
form (3.32) with a=0. Since the input parameter
sin'zzzz. in (3.32) is to be identified with sin2zzP, the
analysis of Sec. IV shows that n is obtained by
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solving the Fredholm equation IV. SfNGULAR PART OF THE N/D OPERATOR

n(x) = cP 8(x)+ k(x, x')n( x')dx'
1

l(x, x')dx' k(x', x")n(x")dx" .
1

(3.46)

We wish to find the general solution of Eq. (3.38)
in the space S . Our method is based on the obser-
vation that the Legendre function P„(x) has the fol-
lowing Cauchy representation, for -1& Rev & 0
(Ref. 21):

According to (3.44), the desired behavior of n at
large x is

n(x) —xx~, 0&P«1. (3.47)

--,,v-~ 6(s,) & —,x.1 ( 1 (3.48)

The situation changes drastically if 5(s ) &-—,v.
Then we must have c =0 in (3.46), and there must
be a unit eigenvalue of (1+L) for a solution to exist
at all. There is no reason to expect such eigen-
values to occur, and in general one may doubt the
existence of solutions to the Roy equation for 5(s,)

It is interesting that experimental phase
shifts 1n 7T-7T scatter lng are either posltlve ol neg-
ative but small; they do not fall below --, 7)..

To look for a solution with m ~ 1 (and P & 0, say)
one would consider A equations for the rn + 1 func-
tions 1V"' corresponding to the D "' of (3.22). It is
easy to see that these equations become more and
more restrictive as m increases. .ln general the ex-
istence of solutions demands that(1+ I ) have multi-
ple eigenvectors with eigenvalue 1.

To check for ghosts when the amplitude is com-
puted by means of (3.46), one argues as in (3.25)
ff. As long as the computed phase shift satisfies
——,v ~ 5(s,) &0, there will be no ghost.

To summarize the work of this and the following
section, we may say that solutions of the Roy equa-
tion with 6(s,) ~ --,'x are members of solution mani-
folds depending on d real parameters, where d is
given by (3.42). Furthermore, these solutions may
be computed through the integral equations (3.41)
and (3.46), in which the d parameters appear ex-
plicitly. An exception to these statements could
occur if the Fredholm operator (1+L) had a unit
eigenvalue, but there is no reason to expect that
to happen.

'

The term cP& in (3.46) is then allowed only if 0 &P( 2, since P z never decreases faster than x ' '.
For 0 &P (—,

' and c 40 one has a unique solution of
(3.46) [we maintain our assumption that (1+I.) does
not have a unit eigenvalue], and that solution is
proportional to c. According to (3.22), D is also
proportional to c, so that f=N/D is independent of
c. Thus there are no free parameters associated
with solutions for which ——,'v ~ 6(s,) &0. Combining
this with our previous results we see that there are
no free parameters associated with solutions for
which

sinvv "dtP„(t)
(+X

("".'"}'J, ",'.j,.".",'.
ssnmv '

1

ln[(x+ 1)/(u+ 1)]
X —B

(4 1)

Recall also that

P„(x)=P, „(x)

and that the asymptotic behavior of P„ is

P„(x)-xx", x-~, x W 0, v & - -,' .
By (4.2) and (4.3) together we have

(X) XX-1 /2+I v+1/2I
I/

(4.2)

(4.4)

y(x) =ce(n --,')P „.(x)+ y(x), (4.5)

where P is any fixed solution in S, and -~&a & ~.
To find a. particular solution P we make use of the
Mehler transform,

dx P „„,,(x)q(x),
1

(4.6)

which is defined for -~&y & ~ provided

4(x) = 0(x~), x —~, P & —,
' . (4.V)

Let us try to find a continuous solution g obeying
the bound (4.7). Proceeding formally, we take the
Mehler transform of (3.38) and make use of (4.1).

for all real v.
We see from (4.1) that P „(x) is a solution in

S~ of the homogeneous fol"111 of (3.38) [l.e. , of (3.38)
with g(x) = 0], provided that ~ - o.'& 1. According to
(4.4), no P„(x) decreases faster than x '/', which
means that we do not get a solution in S with n
& —,

'
by means of the identity (4.1). In fact, it is

possible to show that in 8 the homogeneous form
of (3.38) has only the trivial solution for 0 ~o. & ~,
and only the solution P „(x)for —,

' ~ a & 1. This as-
sertion is proved by an elementary method in Ap-
pendix C, except for the case a = —,'. The case n
= —,

' requires a more involved proof.
If P is any solution of (3.38), and P a particular

solution, then P —4 solves the homogeneous equa-
tion. The general solution in 8 is then
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This yields

ttb)=2(s) ~(„,c™)t)(s),

or

sin'wa g(y)
cosh'wy —sin'wa

(4 8)

(4 9)

(4.11) satisfies (3.38) for 0 ~a (1. Since (3.38) and
(4.11) involve a only through sin'wa, there is no
distinction between the cases 0&a. & 2 and 2&n&1.
A distinction enters only in the solution of the
homogeneous equation in the space S .

The asymptotic behavior of f(x) may be extracted
by noticing that g(y) is analytic in a strip in the y
plane. Since

We hope to find a solution by taking the inverse
Mehler transform of the right-hand side of (4.9).
Mehler transforms obey the following inversion
theorem": Suppose that for all a &1,

f (t) (t —1) ' /4ln(t —1) (= L (1,a),

f(t)t '/'c L(a, ),
where L(a, P} is the class of functions Lebesgue-
integrable on (a, P). Suppose also that f(t) is of
bounded variation in a neighborhood of t = x. Then

—,'[f(»+0)+f(» 0}]

P „,...(x)=O(x-""" ") x- (4.17)

and P„(x) is entire in v, it follows from (3.39) and

(4.6} that g(y) is analytic in the strip
1 1-r+r&Imy&r —r. (4.18)

P, /, .,„(x)= —cothwy[Q, /„,,(x) —Q, /, „(x)j,

It is possible to move the y integration contour in
(4.11) so as to display the large -x behavior, as in
Regge theory. We must first decompose P, &„„
according to the well-known formula~

cost* S —s' *so

x P „„;,(»}g(y) (4 11)

One can now show by direct substitution that g as
given by (4.11) indeed satisfies (3.38). Let I denote
the second term on the right-hand side of (4.11).
We must show that

I= I~+ I2, (4.12}

y dy tanhwy P, /„;,(x)f (y) . (4.10)
mOO

Since g obeys the conditions of the theorem, the in-
verse transform of (4.9) yields

(4.19)

where Q„ is the Legendre function of the second
kind, which is analytic in v for Rev&-1. With y
=u+iv, the second-kind Legendre function has the
uniform bound

(Q, /2„(x) [
Ic(1+ (u ()

' x ' " x~ 1+ 6+1.
(4.20)

To get the best bound on g(x) at large x, one should
move the y contour downward for the term in

Q»„„, and upward for the term in Q», „. The
zeros of the denominator in (4.11) closest to the
real axis are at

sinn@ 2 "dx'ln 1+x' 1+x g x'
I, =

71' x —x y = ~ i (a ——,'}. (4.21)

(4.13)

sinmo. ' " dx'ln 1+x' 1+x sin'ma
I2=

1 x —x 2

"
y dy tanhwy P, /„,,(x)g(y)

cosh'my —sin'no.

(4.14)

In I2 we may reverse the order of integrations (by
virtue of absolute convergence) and then apply (4.1)
to eliminate the logarithm. It is then seen that

If 0&a &-,' we move each contour a small distance
5 beyond the corresponding pole; i.e., the contours
are to follow the lines

Imy=+(~a--,'~+6). (4.22)

+ O(» 1/2-( ts-1 /2(-t)) (4.23}

The pole contributions dominate the large-x behav-
ior and

2(a ——,')sin'wa „.
0(») = „~„( )

g(i(a —2))Q, /, .(. , /. ((»)

I~ =I—Is,
sin wa "

y dy tanhwy P, /„(,(x)g(y)
2 cosh2my

(4.15)

y(x) ~-1 /2-( ttt-1 /2( (4.24}

Since Q„(x} is actually asymptotic to xx ' for real
v, we have

(4.16)

Now it is easy to verify that I, =I,: Express g(x')
in terms of g(y), and then apply (4.1). We see that

if g(i(a ——2'))40 and 0(a(2. Of the remaining
cases 0. =0, ~&, the case n =0 is trivial since it
gives (Ct(x) g(x) - (tx '. For a = -,' the upper bound
tc)(x) = O(x ' ') is evident from (4.11) without any
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contour displacements. To get an a,symptote P(x)- vx"'~', rather than a mere upper bound, we note
that (4.11) is continuous at a = —,', and that the limit
a - —, is uniform in x; there is no pole of the inte-
grand at y —0 in the limit, because of the factor
y tanhmy. We may then simply take the limit + -—,

'
of the formula (4.23) to obtain the required asymp-
tote.

satisfies (3.38) if o.'= —,', even though the integral
(4.6) defining its Mehler transform does not con-
verge absolutely in that case.

From (4.11) and (4.6) one sees that the kernel ap-
pearing in (3.40) is

sinatra
"

y dy tanhxy
I x, x')=

2 „cosh'~y —sin'wa

(j(x)-, q, q, (x), n=-, .g(0) (4.26)
"J'-i i"i,(x) &-i ya. i,(x') .

(4.26)

For 0, &-,' we see without moving the contour that
(j)(x) = 0(x '~'), which is to say that the first term in
(4.5) dominates at la.rge x. We may then conclude
that /AS for 0 ~a& 1. For the purposes of the
argument following Eq. (3.41), we remark that if
n(= ()~, then g=a+Kn satisfies (3.39) with y=P —p,
provided P —o; &0 is chosen to be sufficiently small.
Thus, if n belongs to S~ in (3.41), it also belongs to
S, if P is close enough to a. We also note that P

ACKNOW( LEDGMENTS

W'e thank G. Wanders for a seminar talk and con-
versations which inspired this work. We also prof-
ited from conversations with E. Thomas and
A. C. Heemskerk. One of us (R.W.) is indebted to
the Institutes of Theoretical Physics at Groningen
and Amsterdam for hospitality and support during
the course of this work, and to Illinois Institute of
Technology for granting a leave of absence.

APPENDIX A

In this appendix we write the fixed-t dispersion relations of Roy' in the following form:

1 "ds' 1 "ds' s2
E(s, t) =-,'(s+ tC„+uC )n+ — —„g(s, f, s')A(s', 0)+ — —„, + h(s, f, s') A(s', I),

4

1+C,„s—u 1 —C,„ f' (4 —I)'C,„4t+4(4 —t)C,„ (A2)

s' —u '" s' —4+f2f —4 ,2 (A3)

Here C„, C,„, and C,„are the well-known 3 & 3 isospin crossing matrices, and a is a three-component
vector, the first and third components of which are the isospin-0 and isospin-2 9-wave scattering lengths,
and the second component of which is zero.

Following the discussion of Ref. 15, we project (Al) onto I.egendre polynomials, using the full interval
-1 —z, —1. The result is

F,(s) = — —„, , A, (s')+ (s —4)'C, (s),
1 " s' ds' s-4

4
(A4)

C, (s) =(s —4) ' ' dtPg 1+

~ — „h(, t')g(2('+1)A„( ')P, ., (+, )
1 " ds' 2t

(A
4

s" ' '
go~

It may be shown that, if s&32, the infinite series converge for all s (= [4, ~) and all f(= [4-s,0]. More-
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over, C,(s} is an analytic function of s in some neighborhood of the segment [4, so] for any s, &32. These
are the only general properties of C, (s) that we need in this paper.

APPENDIX B

The Banach space S was defined in Sec. III as the set of all real continuous functions g(x) on [I, ~) such
that iigii=suplx' Q(x) I, the norm on the space, is finite. We show that the operator (1+L)K appearing
in (3.41) is compact on SB, for some P&n, 0&P &1. Here o.'is the parameter that appears in the kernel k
as defined in (3.34) and (3.30), and in the kernel l defined in (4.26). The function B(s) in (3.30) is assumed
to be Holder-continuous with exponent y, on the closed interval [4, s,].

We first show that K is compact on Ss, for any P c (0, 1). Let (P„fbe any bounded sequence in Ss; i.e.,
imp„i'd&a. We must show that fKp„) has a convergent subsequence. Consider the sequence Q„}of functions
of s,

(„(s)= x'~Kg„(x), 4 ~s (s, , (Bl)

where s and x are related as in (3.31). If the g„(s) are uniformly bounded and equicontinous, then there is
a subsequence fg„jwhich converges uniformly to a continuous limit |t(s}, by the Ascoli-Arzela theorem.

tlat

Then fKP„] also converges to a limit with respect to the metric induced by the norm on Ss.
To show that the g„(s) are uniformly bounded, we first note that

8 Sp Sp

I $„(s) I
= M(s, s')(x'+1) p„(x')ds™«II /„il(s, —s) IM(s, s')

I (s, —s') ds'.
4 4

The two terms of M, defined in (3.30) may be majorized as follows:

IM, (s, s'}
I
=, q(s') —«I s —s'

I

"B(s}—B(s'}

(B2)

(B3)

Ki S —S

1 ' lns —s
K is —s'i, s&s', 0&6&1.

Sp —S s —s

The contribution of M, to the right-hand side of (B2), call it m, (s), has the bound

S (Sp-4)/(Sp S)I (s) =«(s —s) Is' —s
I
'"(s, —s') sds'= «(s, —s)' ll —v

I

'"v dv(«(s, —s)",

(B4)

(B5)

(B6)

for some 6&0, with K independent of n, s„s,. A calculation using the relation of x to s shows that

where the last inequality is true if p& p, . For convenience in notation we suppose that p& p, . This entails
no loss of generality, since a function Holder-continuous with exponent p, is also Holder-continuous with
any positive exponent p, & p. By (B5) the contribution of M, to g„ is uniformly bounded, and it is easy to
see from (B4) that the contribution of M, has the same property.

To prove equicontinuity of the |t)„, we show that

lg„(s,) —(„(s,) I
—«ls, —s I'

() s ( )I .= , l~-, —. ..I'(~. s)'f IM(-„-",)lI(. -")~~a'
S

+ «(so —s2)8 iM(s„s') —M(s„s')
i (so —s') Sds'. (Bv)

By the analysis given above, the first term on the right-hand side has a bound like (B6). To handle the
second term, we split the exponent. With a small q, 0& q&1, we write

M(s, s') —M(s, s ) I"'" '= [1M(s„s }I' "+ IM(s, s'}I' ]1M(s„s')-M(s„s'
For the 1 —q powers we introduce the majorizations (B3), (B4), while for the q power we use (B3) and the
mean-value theorem to bound differences as follows:

(B9)
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( i) ( i)
i

s2 —sl 1 ln(so —s) —ln(so —s )
s —s so —s s-s s~ &s&s2. (B10)

When these results are introduced in (B7), one finds that all singularities are integrable for sufficiently
small ll, and the desired bound (B6) comes out. The proof of compactness of K is finished, and it remains
to shoe& tha, t JE is compact.

We must show that the X„(s}are uniformly bounded and equicontinuous, where

g„(s)= x' sf,Ky„(x) = —,'x' s sin've y dy tanhvy
cosh27t. s~n27t ~ 1 /2+OP fl

. (x)f (~,

dx P, q„,,(x)Ãy„( x}. (B12)

If n ——,', the required estimates are obtained im-
mediately if P&0.; the y integral converges expo-
nentially, and one has only to invoke the known be-
havior of P„(x) and P„'(x) at large x and large 1mv.
If 0. & —,', the y-integration contour must be dis-
placed, as in(4. 1V) ff. By (B5) and a similar bound

for the contribution of M2 me find that

(x)Ãy (x) i
xx "'""" -(BI8)

from which it follows that f„(y) is analytic in a
strip

We shall show shortly that (Cl) has only the triv-
ial solution if the real part of X is negative. If X

has a positive real part, then there is only one in-
dependent solution in S~, namely

y(x) =P„{x)e{p-1-Rel ),
where v is defined uniquely by

0&Rev & -~, Imp~ 0. (C5)

It is trivial that (C4) is also a solution of (C2).
We shall noir shiv that it is the most general inde-
pendent solution of (C2). For suppose that &f&(x) is
any solution of (C2), which we may write in the
form

balmy i
& -,' —p+ il . (B14)

The nearest poles in the integrand of (B11)are at

y =+i(, n},—s—o that for n & —, we may move the in-
tegration path beyond the poles if we make an ap-
propriate choice of P, namely, a&P&a+ p, . The
behavior of the integral (B11)at large x is then ob-
tained from (4.11) and (4.23). We see that y„(s) be-
haves as (s, —s) at s= s, . One easily establishes
uniform boundedness and equicontinuity of the g„,
through simple estimates of Legendre functions.
The restriction P&o. is needed for equicontinuity at
at s = so in the case o. ~-,', whereas for o. & ~ one
may take e=P.

APPENDIX C

Here me wish to study the homogeneous integral
equation

(Cl)

and the first iteration of it, namely

ln[(x+ I)/(ll + 1)]
W X —Q

(C6)

Since the same equation is obtained if me replace
A. by -X, ere may limit our attention for conve-
nience to the right half plane, Rek&0. Define

(C7)

then (C6) implies

(C8)

Now when Re A. &0, (C8} has only the trivial solu-
tion; but this means that the left-hand side of (CV)
is necessarily zero, so that ft}, an arbitrary solu-
tion of (C2), also satisfies (Cl).

We see thus that, although &re are primarily in-
terested in the iterated equation (C2), we may lim-
it our attention to (C1). We shall give the proof
now that (Cl) has no nontrivial solution if Re X & 0,
and at most one independent solution in 8&if Re X

&0. Suppose that p(x) belongs to Sa, and that it
satisfies (Cl). Then the number

We limit our search for solutions to the Banach
space, Sz, of continuous functions vrith bounded
norm of the type

is certainly finite, and the number

(C9)

II@II= sup fx' '@(x)f, (CS) (Clo)

for some PE (0, 1). is finite, and positive. We may use (Cl) to rewrite
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this in the form

"„,y+(x)y(f)
x(f+ x)

tion of (Cl). Then

0(x) 4(o) ~ " «e(f)
x x m ~ t+x t

(C14)

Since I is real, we may freely complex-conjugate
the right-hand side of (Cll), so that also

-„,e(x)e*(f)
x(t+ x)—;Jd*

dx dty*t yx t t

&
~~(0)~.

~* "d„"df4*(x)@(f)
x(f+ x)

(C12)

where we have interchanged the dummy integration
variables in the last step. On comparing (C11) with
(C12), we see that

(X+ X~)I= v
~
y(0)

~

', (C13)

and from this it is clear that the real part of X

must be non-negative unless P(x) vanishes identi-
cally.

In the text we are exclusively interested in real
values of A. in the interval [0, 1]. We shall now give
an elementary proof that if

~

X
~

& 1 there cannot be
more than one independent solution of (Cl). This
covers all cases of interest, except the point A. =1.
In fact the uniqueness theorem holds in the whole
complex X plane, but more powerful methods are
needed to treat the case ~X~ ~1. Suppose then that

~

&~ &1, Re&&0, and that Q(x) is a nontrivial solu-

where we have used the definition (C9). Now g(0)
cannot vanish, since if it did P(x)/x would satisfy
the homogeneous equation with -& in place of ~,
and we know that that equation has only the trivial
solution. Hence we can define

1 y(x)
4(x) = —„~(0),

so that

dt
g(x) = ——— g(t) .t+x

(CI6)

(C16)

P[(;x]= ——— —g(t) .
1 A.

" dt
(C17)

Clearly if P belongs to S»„so does P[P]. If g, and

g, belong to S, &„ then

IIP[4, ] —P[4, ]II, g2
—f&[ II(, —g, ll, g„

so we have contraction if
~

X
~

& 1 .
(C16}

We shall show that (C16) has a unique solution, g
( Sy /2 and it then fol low s that the re cannot be
more than one independent solution P of (Cl) in S~,
for if there were more independent solutions, these
would yield independent solutions, P (=- S»„of
(C16) .

The uniqueness proof for (C16) is a simple appli-
cation of the Banach-Cacciopoli contraction map-
ping theorem. " Set
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