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Higher-order e terms in the triple-Regge region*
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Using the e expansion of Reggeon field theory, we evaluate the exponent which governs the behavior of
the inclusive diA'erential cross section in the triple-Regge region at second order. It is found that the first-

order result is modified by contributions coming from g
' terms connecting three Pomeron lines, and that

only diagrams with one or two Pomeron lines attached to the external particles are important at asymptotic
enef gies.

I. INTRODUCTION

In the last few years Reggeon field theory has
been studied by many authors' in order to explain
the high-energy data as well as to know what the
asymptotic behavior of the theory would be. In
this direction the critical exponents of the theory
have been studied and computed using Several ap-
proximation schemes. ' 9 In particular, using &-

expansion techniques, the coefficients of the & ex-
pansion of the critical exponents have been evalu-
ated up to second order for the two-body scatter-
ing amplitude. ' ' The results of Baker and Bron-
zan and Dash' show that the second-order contri-
bution is not much smaller than the first-order
contr lbut ion .

A similar study has been done in the triple-Beg-
ge region of the inclusive cross section. ""From
the renormalization- group equation a scaling law
has been obtained showing that the asymptotic en-
ergy behavior of the different contributions is gov-
erned by an exponent. The & expansion of this ex-
ponent has been computed at first order in & show-
ing that the leading contribution is the one in which
a single Pomeron is attached to each external par-
ticle. In this paper we compute the second term in
the e expansion, showing that the results obtained
at first order in 6 are not supported at second or-
der in the sense that the diagrams with two Pom-
erons attached to each external particle are slight-
ly more important than the diagrams with a single
Pomeron.

In Sec. II we collect the results of Ref. 12, mak-
ing the evaluations at second order in Sec. III (de
tails of the evaluations are given in the Appendix).
Finally in Sec. IV the results and conclusions are
presented.

all Reggeon diagrams with s, Pomerons attached
to the particle where the energy E, enters the
diagram and with s3 and s3 Pomerons connected
to the particles in which the respective energies
E, and E, leave th. e diagram (see Fig. i). The re-
normalized contribution I~. .. satisfies the re-
normalization- group equation

p/

E~ + P —+ t + (s~+s2+ 83) —j'q —pq
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NBE & ~ Ngg t

X =Z 3 "Z -'X
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for the triple-Pomeron coupling, the 2-particles-
s-Pomerons vertex, and Pomeron slope, respec-
tively. %'e have also used the dimensionless tri-
ple- P orner on coupling

lnZ, ~ lnZS, 3
N

N

The renormalized and bare quantities are related
by

II. THE SCALING LAW FOR INCLUSIVE CROSS SECTION

I.et us call, following the notation of Abarbanel
et a/. ,

"I. .. the contribution to the partial-waveS1S283
amplitude F(Z„Z„Z„t)coming from the sum of

FIG. 1. Contribution to the triple-Hegge amplitudes
with s&, s&, and s& Pomerons attached to the external
lines.
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p/~ (EN)

where D is the space dimension and E„ is the ar-
bitrary energy chosen in the renormalization pro-
CeduI'e.

Denoting the renormalized proper vertex for m

incoming and n outgoing Reggeons by I'~~"' ', we
choose the following normalization conditions to
fix the Z's

g gT(&E& )
g 1

g~EgEK

g ~T((121 )

8= Sg2%

g -1 (2(()(D+1)/2(~ )-1F(2&i) )
0

The other renormalization constant Z„, is deter-
mined from the normalization condition for the pro-
per renormalized vertex of s Pomerons and the ex-
ternal particles A„,:

(2v)(D.( &/2 2-1

The standard resolution of the renormalization-
group equation' gives the following scaling law for
the infrared behavior of I:

(22)n/2 6 ' y(g') l2 '

E(g, ) =1+ 24, y, =
6 s(s —1),

from wheI'e

Q= —3+ —+ 1 ——(8 +8 +8 —3)12 4

+ —[s,(s, —1)+s,(s, —1)+s,(s, —1)],

which shows that the leading contribution at this
order comes from diagrams with s, =s2 =s3 =1.

III. SECOND-ORDER EVALUATION

In order to compute Q to second order in &, we
n(ust calclllate to tile sallle QI'del' r(gl)~ y(gl)i
and y, (g,) and indirectly P(g, ). Fortunately y, P,
g, and g, have been evaluated by Baker and Bronz-
an and Dash, and we have to compute y, . The re-
sult of these authors for y, P, r. , is (y« is the
Euler-Mascheroni constant)

P =--,'eg+
(

„[-,'+ c(P', +—, ln2+ —,
' lnv —~EM)]Bmj2 2

;. (2'+ 121~i),
j8mj

1 g2
y = ——+ -(-31n2 —in((+yEM)

2 4 EM (3(()2

,( ) 1
f((2', g, )

+p

g, is the infrared zero of P(g), and Q is given by

Q=-2+2(g, ) —(s, +s, +s, —4)+ ' (s, +s, +s,)

y, ,(g, ) y-,,(g, ) -y, ,(g,)-

+(- —,
' ln2+ —,

' ln3 ——,')
(8(( ' '

1 g—= —,——+ —(-3 ln2 —lnv+y )EM (8(/)2

4

+ (2 1112 + 12 ln3 —22) amj4 '

and the calculation of the zero of the equation

P(g, ) =0 to second order in e gives

(14)

3ueh a law in terms of inclusive cross section
in the triple-Regge region (f(/P/m, ' and 8/AP
large) reads (

'), ———+ —
[yEM —1n((+ 144(-281n2 —106 ln3 —23)],

dtdlnM M '
mo which substituted into (14) and (15) gives

y-3- Q ln ln y&(s& )g 1O -y(g ) = —+ —(—'"ln—' + —")
1 12 12 12 3 24

which shows that the cI'oss section shI'inks and
that the dominant contribution at high energy is
the one corresponding to the lowest value of Q.

The &-expansion computation of Q to first order
in E has been done in Ref. 12. One obtains (c =4
-D)

2(g ) =1 ——=1+ —+ —(—ln —+—).59 4 79
1 ~P 24 12 24 3 48

In order to compute the E2 contribution to y, we
must compute all the diagrams with s PomeI ons
coupled to the external particles up to order &'g2

and &"'g4. All the possible diagrams are illustrated
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(o)

FIG. 3. Diagramsoforderg4 among three Pomeron
lines.

(b)

FIG. 2. (a) Diagram of order g among hvo Pomeron
lines, (b) Diagrams of order g among hvo Pomeron
lines.

in Fig. 2 and Fig. 3. Diagrams like the one of Fig.
2(a) have been calculated to order & 'g' (Ref. 12),
and we must calculate it to order e'g', which
is done in a straightforward way. Diagrams
similar to those of Fig. 2(b) have been evaluated
before by Bronzan and Dash so that we have to
compute only those of Fig. 3.

'The sum of the contributions of the diagrams of
Fig. 2(b) to the coupling function A, is

f' 'N, , s(s —1) g,'
s (2 )(wD+1 &(i-1)j2 2 (6w)4

x —
2 + —(26 —20y«+ 20 lnw+ 40 ln2) + 0(eo)

20 1

(19)

The diagrams of Fig. 3 are in many cases quite
difficult to compute; the details of their evaluation
are given in the Appendix. Their contribution is
the following:

W, =X, , —+1-y, +I(s —3) 1 2

2 7l'

I'(a) 1+c ln(2w) 1 10 1 3 9
(2w)' (1 —~)(2 —e) 2e 3 4 4 4

I'(e) 1+c ln(2w) 1 65 25 59 11'= «p. ) O-.H2-. ) r. rs O'"" 8'"' 8'"')
I'(c) I+a ln(2w) 1 1 v 3 2 —v 3 M3 4+ v 3

(20)

(21)

(22)

(23)

I'(e } 1+e ln(2w) 1 1 1 1
(2w}' (1 —s)(2 —e) 4~ 6 2 12

(2w)'

a I'(&)
(2w)'

[I+ c In(2w)] —— —+ —ln2~«6 6 2 2WS'4 2 n
1+& ln(2w) 1 3 3

2 4
—+ —ln3+ —ln2+&3ln(2 —v 3) — ln(2+v 3)+v3 3+ ~5

2 )

1+c ln(2w} 1
1 —e 16

(25)

(26)

(27)
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where

)S- I
K=—( 2Q ) Es s(s 1)(s 2)x0 4V0 (28)

In conclusion, the contributions to A, of order E'g' and e 'g' are
&S-I

OgS
0 (ss 3(D 1)4(6-2 ) I 2

27T)

2

x](- ( -1) ', 2 '(2)"' ' -+l-y, „+10)

+2,' ( —1)( —2)(2)' ' —,,——~ 1 —y „+1, —+ —1 2 ——1 3 ——1 5)
s —3 2 ' I'(e) 1+& 1n(2m) 5 535 33 29 9

2 7t' 6 ™
I'(t) 1+e ln(2v) 5 7 43 19 2w 5M3 2 —0 3

(2)]) 4 2e 2 8 4 0(3 6

v3, 4+v3 vS, 3-WS MS,

W3 ~ I'(E) 1+E In(2v) 1
8 (2 )' 1 — 16

+ 6', 3
—,+ —(26 —20y +201 +401 2) ).g0' s(s —1) 20 1

(29)

From here we have the following expression for Z, 3

Zss' —-1+ — —+C, + ——,+ —, (30)

where

C, = -2s(s —1), Cz = —s(s —1)[1—ysM+ In(2v) j,

A = 4s(s —1)(s —2)(s —3)/2+ 10s(s —1),
(»)

0=s(s —1)I(s —2) 4 ]1 —y „+1 (2 )]~ + 1 2 —161 3 —91 5 — 1 42W31 (2 —03)s —3 553 175 10' 3 2- M3

2 EM 3 2+~3

v 3 4+&3——ln + &Sin — — ln(2 + )( 3 ) + 13 —10yEM+ 10 ln((+ 20 ln2
3-v5 8v W3

4- W3 2 v3 2

and from (2) we can compute y„which turns out to be

+ & Cp + g + (32)

From the power expansion of the bare coupling constant g, in terms of the renormalized one

ZO g
(8v)'

w = —3+ e (—~8 ——', ln2 ——21n)T+ -',ys M),

we have finally

1 g g41 C~
'Y = ——(C +&C )+ — —A ——' —wC +B —C C —24)Cs 2 8g ~ 2 87T

(34)

Now we insert in this expression the value g2 given in Eq. (16) to obtain y, to second order in e (note the
cancellation of the Euler constant and In7():
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4 4 (s —2}(s—3) 2
y, = —s(s —1} -2+ -+ — —-s(s —1)12 3 3 2 3

445 31V 53 s —2 s —3 121 29 106 503 8~~3 187
12 ( -1)

432 1081.2-2161"3' 3
4

2 144'3612-14413 ~
9

—
3

~
2

12-7613

+ 51n5 — ln(2 —v 3)+ In(2+&3) — ln 4- W3

s(s —1)[-2+-, + ~3 (6- 4s)]+ —s(s —1)(1,4.66 —6.32 s).
3

(36)

Introducing now our value of y, and the values (1V) and (18) of -y and z in (9) we have the scaling exponent
to second order in E,

5& 1@=-2+ 1 ——+ —0.85 (s +s +s —4)--(s +s +s } —+ —5.40 —y —y —y2 3 2 1 2 3 12 1 2
' ' sy s2 s3&

and for e =2 we find

Q =-4.42+0.45(s, +s, +s,) —y, , -y,, —y,,

First of all we can see in formula (35) that the
first-order value of y, is modified when one in-
cludes the g~ diagrams. Nevertheless the value
of y, when s =2 at first order is the same as the
one obtaained by Abarbanel. The differen. ce comes
from the inclusion of diagrams of Fig. 3 which have
interactions among thx"ee Pomeron lines, interac-
tions which cannot exist at order g2. In this way
our result for y, is cox rect for s ~ 3, but for s &3
it will be modified (at order c and &') when higher-
order interactions among more than three Pomeron
lines will be taken into account.

In Table I we present our results for y, and Q at
first and second order in &. %e notice that the
first-order results are largely modified by the
second-order contribution even at s =2 where only
the diagrams of Fig. 2(b), which have been compu-
ted by other authors, have a nonzero contribu-
tion

%'hat is more important is that at second order
in & it is not longer true that the diagram with one
Pomeron attached to each particle line will be
asymptotically dominant. %'e can see in Table I
that the diagram with two Pomerons attached to
each external line is slightly dominant (and this
result will not be modified by inclusion of diagrams
with more than three interacting Pomeron lines).
The &2 Q value when any s is larger than 1 is very
different from the corresponding & value, which

TABLE I. Our results for ys and Q at first and second
order in 6'

~

ys (order e} (order c~}

0
-0.66
-4.66

-14.66
-33.33

0
-0.68

-13.26
-47.14
146.0

Q (order c} Q (order c2}

1 1 1
2 1 1
2 2 1
2 2 2
3 1 1
3 2 1

-2.83-l.67
—0.51
+ 0.66
+ 2.83
+ 3.99

-3.07
-3.30
-3.53
-3.76

+ 11.09
+ 10.86

indicates that in this case we would have to go at
higher & order to obtain any reliable estimation.
Qn the contrary the &' estimation of the Q value,
for s, =1, s2=1, @3=1, does not appreciably dif-
fer from the c' evaluation, indicating a reliable
e stlmat ion .

It is also clear that diagrams with thxee or more
lines will be negligible (at second order in &} at
asymptotic energies.
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&oje adde~ in proof. The modification of the
c' order evaluation when computing the higher-
order terms is due to the fact that the vacuum expec-
tation value of more than three Pomeron fields
at the same point needs some additive renormal-
ization [E. Brezin et a/. , in Phase Transitions and

Critical Phenomena, Vol. 6, edited by C. Bomb and

M. S. Green (Academic, New York, 1976)]. If we
make only the above multiplicative renormaliza-
tion some infinities appear in the theory if s+ 3

which must be removed by subtractions. [In our

paper use of dimensional regularization is the
method responsible for the existence of the A/e'

term in formula (30) which in turn is responsible
for the modification of the e' term when making
the e expansion. ] Such kinds of behavior appear
when the external particles are introduced in Reg-
geon field theory connected to more than three
Pomerons, and at this moment it is not clear to
us how it modifies the results of. our paper I,

'for
s & 3) and of other papers which analyze the as-
ymptotic behavior of the two-body cross section.
%e are grateful to J. Cardy and M. Moshe for
pointing out to us this point and for many discus-
sions about it.

APPENDIX

The calculation of the contribution to A, coming from the diagrams shown in Fig. 3 are computed in a
straightforward way using the Feynman rules given in Refs. 11 and 12,

After the integration over the energies of the internal lines by means of the Cauchy theorem and the intro-
duction of the Feynman parameters, one can integrate over the momenta of the internal lines in D dimen-
sions, using the formula

(4eb —c') ~~'
d qd q'(aq'+ . bq" + cqq'+d) "=(2v)vdv "I'(n —D) r(n)

(A1)

One is left then with the integration on the Feynman parameters.
The diagram 3(a) can be calculated easily obtaining the result given in expression (20), with K given in

formula (28) of the ma. in text.
The amplitude of diagram 3(b) is

-1 1

A~ =K 4 [1+@ In(2x)] dx dy dz(3 —2x —y —z) ' [-2(2x+2y —2) —(1 —x —y)']'~' '-.
(2s)' (A2)

The integrals over x, y, and z can be done quite laboriously using the formulas (A27) given in the Appendix
of Ref. 5 and we obtain formula (21).

Diagram 3(c) can be computed by an analogous calculation and one finds formula (22).
The contribution of diagram 3(d} can be calculated very easily when one realizes that the integral over

the Feynman parameters is not singular at e =0. Thenonefinds formula (23). After a relatively easy com-
putation one finds expression (24) for diagram 3(e).

Diagram 3(f) is more difficult to compute. After integration over the energies and momentum one is left
with

1+a In(2v) dz((2x+y+ 1) '[4(x+y+ z) —(x+y+ 2z)']«'-'

+ (—I —x) '[4(1 —x —y)z —(x+y —2z)']'~'-']. (A3)

The first integration can be done after introduction of the variables (x, y, z) -(v, y, z) with v =x+y+2z, in-
tegrating over y, and using the following general formula [which will be used also for the computation of
diagram 3(g}]

D

du(nu+y)' '(6+Pu)' ' '= (o.C+y)' '(i5+tIC)' ' ' —(o.D+y)' '(6+PD}' ' '
P(1 —e /2)

+ ((nD+y) '[-1+ (5+ PD)' '] —(nC+y) '[-1+(6+PC)' ']I2n(1 —e)
eP

(A4)

In the second integral we change from (x, y, z) to (x,u=x+y, z), and integrate over x. The integration
over z of the function (4z —4z' —u')'~' ' can be done using the general formula for increasing the exponent
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twice, and the remaining integral over (4z —4z' —u'-')'~' has no pole at c =0. Finally the integrations over
u can be done in a straightforward way. In conclusion, the contribution of diagram 3(f) is given by expres
sion (25).

The contribution of diagram (3g) can be calculated using the general formula (A9} and one gets the value
given in (26}. Finally, diagram 3(h) turns out to be given by expression (27).

*Work supported by the Instituto de Estudios Nucleares,
Madrid, Spain.
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