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An eikonal representation for small-angle NN scattering is constructed in the strong-coupling limit of the

simplest SU(2) massive-vector-meson exchange model, One finds that multiple charged exchanges

corresponding to net isospin transfers different from zero tend to be washed out in this limit. The isotopic

triplet and singlet amplitudes have the form T~,';„(s,t) = (is/2m') Jd be'q. b[1 —exp(iso( ~

+ i(P., r, )y~~ ~)] exp[Q ~'l(b, jtt„q,s)], where go~ ~(b) is the typical eikonal function of isoscalar exchange,

yo '(b) is the same function with coupling and mass parameters of the isovector exchange, and

(7, 7,) = 2I(I + 1) —3. Very crude estimates, especially for the singlet case, suggest that
Q" —ln(1+]'), and Q~ l —(1/2)in[1+(4P)'], with $=(1/m)ln(p, b), 1 & q/+s p p, b, and

q/p, b(2m s )", 1 & p, b p q/~s. A qualitative discussion is given of the expected small effect of multiple

isovector-meson exchange on form-factor damping at large momentum transfers.

I. INTRODUCTION

One of the long-standing problems in high-energy
physics has been the construction of an eikonal re-
presentation for scattering and production ampli-
tudes when the many quanta exchanged between or
emitted from scattering particles can themselves
carry isospin, or other quantum numbers. Start-
ing from an underlying field theory, one has been
able to give recipes' for the construction of am-
plitudes, assuming that the objects exchanged form
the singlet representation of a relevant symmetry
group. The methods used cannot apply to the ex-
change of higher representations, because emis-
sion or absorption of such quanta wi. ll violate the
very fundamental combinatoric demand of a lack of
correlation between such quanta. Typically, the
only indirect correlations between such "soft"
quanta are those of energy-momentum conserva-
tion. An exception to this statement was given by
Weinberg, ' who constructed an eikonal representa-
tion for soft chiral pions by the special mechanism
of including a sufficient number of resonant nu-
clear states, in a manner chosen to preserve the
over- all chiral invariance of the problem. Another,
and considerably less ingenious variant, has been
the eikonalization of amplitudes constructed from
soft-pion-pair emission, ' where one effectively
maintains the idea of isosinglet exchange by per-
mitting the emission of pairs of soft pions, each
pair with a net charge zero. One can write phe-
nomenological, and unitary, eikonal amplitudes
which include the effects of isospin; but starting
from a given fieM theory, the general problem of
constx'ucting an eikonal x'epresentation for arbi-
trary isospin exchange has never been solved.

One need not belabor the importance of such re-
presentations; rathex', it may suffice to point to

just two examples of current interest. The first
concerns the recent suggestion of Cornwall and
Tiktopoulos' that infrared effects can be responsi-
ble for color-nonzero hadron confinement. The
noncompensating effects (between elastic and in-
clusive cross sections) described there very much

suggest that a certain measure of eikonal solubility
may be expected in a massless-gluon, SU(3) Yang-
Mills theory. In. view of the present virtual cer-
tainty that underlying quark fields exist, and the
high probability that their interactions may be de-
scribed within. an asymptotically free gauge theory,
it would be most useful to have a method of con-
struction of eikonal amplitudes in this and other
non-Abelian theories.

A second example is the more phenomenological
treatment of large-momentum-transfer processes
by the virtual exchange and real emission of mas-
sive, low-energy ("soft") vector mesons, soft
compared to the in.cident hadrons of the particular
reaction studied. Essentially all large-P, physics, 6

including same-side correlations in p-P induced
jets, ' can be qualitatively and simply described by
imagining that an increasing bremsstrahlung of
massive vector mesons {which immediately decay
into sprays of pions), from the scattering nucleons,
forms the important inelastic production process,
as relevant momentum transfers increase. ' This
picture of large-P, interactions may be thought of
as the other side of the coin of the basic, quark-
gluon effects, or interchanges, ' for it deals with
the multiple exchange of observed particles, and
resonances, rather than with the exchange of their
fundamental constituents. In a sensible world,
these descriptions should be equivalent; or at least
they should coincide below some very large ener-
gies, as indeed they seem to do.

The qualitative success of the massive, vector-
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meson bremsstrahlung model has, however, one
serious flaw: It has been formulated only for the
exchange of soft, neutral, vector mesons, for ex-
ample ~'s; for reasons alluded to above, it cannot
include exchange of the isotriplet p', p'. Because
the (d-nucleon coupling is, experimentally, some-
what larger than the corresponding p-nucleon cou-
pling, it may be a reasonable approximation to
neglect the p's; but as a matter of principle, the
argument is incomplete.

The present paper, motivated by the above re-
marks, provides a partial and very limited solution
to the problem of eikonal construction that includes
SU(2) isotopic exchanges. There may well be gen-
eralizations to the case of higher groups, with
complicated gluon self- interactions, but such ma-
terial is beyond the scope of the present work.
What is given here is a construction of an approxi-
mate eikonal scattering amplitude, supposedly val-
id for small momentum transfers in the large-cou-
pling limit of a massive gluon theory. It is ob-
tained by a sequence of approximations which are
probably reasonable in the limit of large couplings
and/or strong fields. The same construction is
then repeated for the soft, vector-meson exchanges
which may be expected to provide damping for form
factors at large momentum transfers; and by sim-
ple extension to the corresponding wide-angle scat-
tering amplitudes (basically simple Born approxi-
mations, multiplied by effective form-factor func-
tions in all s, t, u channels).

The results are interesting and reassuring. Al-
though one cannot claim that a precise evaluation
of the rather complicated integrals has been per-
formed, qualitative arguments suggest that the

present strong- coupling isovector exchange does
not significantly modify previous estimates in-
volving isoscalar exchange. The way in which this
comes about is quite different in the small-angle
and wide-angle cases. In fact, initial estimates in
the small-momentum-transfer situation, seem to
suggest a strong isovector damping effect; but a
more detailed examination, which questions the
typical approximations used in eikonal derivations,
argues that such damping is not actually present.
The reason is simply that there occur functions of
the possible lengths E ', ]L(, ', q ', b, which are quite
sensitive to small values of the momentum trans-
fer q; and one finds that the conventional q- 0
limit, taken almost everywhere in. the usual eiko-
nal derivations, must be postponed until the very
end. For form factors, and other processes at
large momentum transfers, the evaluation is some-
what different, yielding terms which tend to cancel
the isovector dependence between themselves, in

this strong-coupling model. More precise evalua-
tions would certainly be welcome; but the qualita-

tive arguments employed suggest that strongly
coupled isovector processes lead to eikonal re-
presentations not significantly different from those
given by multiple isoscalar exchange.

The arrangement of these remarks is such that
a very brief review of the basic eikonal formula-
tion, up to the conventional stumbling block of iso-
topic dependence, is presented in Sec. II. This is
followed, in Sec. III, by the approximate evaluation
of the relevant nucleon propagators, defined in the
presence of an external isotopic source, in the
strong-coupling limit. These forms are then. used,
in Sec. IV, in conjunction with an approximate
rendering of the necessary functional integration,
one that should be reasonable as a strong-field/
semiclassical approximation. In Sec. V, qualitative
evaluations of the resulting forms are given, for
both small- angle and wide- angle processes. Sec-
tion VI deals with isotopic projections and integra-
bility conditions, which appear when both isovector
and isoscalar exchanges are included; and is fol.—

lowed by a brief summary.

IL BASIC FORMULATION

in the form"

16 1 5 15
p =X 'exp i

i 5q 'i 5j~ 'i 5q

xexp i, gS,q+— (2)

where S, and ~,~„„=6„,5 8~, represent the free-
nucleon and massive- vector-meson propagators,
respectively. It will be useful to rewrite (2) in the
somewhat more convenient form

p = exp — j,&,j„exp

xexp i qG, [A[q)N
' xp[l[A)),

where A (x) = 1 A, (x y)j, (y), G, (x, y ~A) repre-
sents the nucleon propagator in the presence of an

One begins with the simplest theory, defined by
the SU(2)-invariant interaction Lagra, ngian

2']7[[,A, 5]=iggy, A;r [)[,

where massive meson fields A, interact with nu-

cleon fields g, vt; the 7 represent the three Pauli
matrices. All other interactions are neglected.
It is convenient to write the formal. solution for the
generating functional

b (j, q, q] = (0
~ (exp [if (j,A, + qq+ [[:q),),

~
0)
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effective external source field A, (z), and K[A] de-
notes the closed-nucleon-loop function that pro-
vides, among other things, all radiative correc-
tions to the meson propagator &,(x y), L[A]
=+ Tr ln(G, [A)S, '). The constant X denotes the
vacuum-to-vacuum amplitude constructed by func-
tional operations upon L[A]; the familiar approxi-
mation of the neglect of all. Closed-nucleon loops
will be made here, N 'exp(L[A]) —I, in order to
facilitate the comparison between these isotopic
forms and the simplest, most familiar case of
pur e 1sos calar exch Rnge.

Following many previous analyses x' fhe elasti
scattering amplitude for a pair of distinguishable
nucleons (an approximation used only at small
angles) is given in configuration space by

i
G (y x iA)ca

&& G„(y„x,~A) (4)
i A~0

Upon mass-shel. l amputation, it yields the scatter-
ing amplitude corresponding to the exchange of all
possible mesons between the two nucleons. It also
contains self- linkage terms, corresponding to
radiafive corrections defined along either nucleon
line; and these, also, will be dropped

M~ s exp

x G„(y„x,~A,)G„(y„x,~A, )

The construction of this simplest of eikonal representations is made somewhat easier by considering not

M, but SM/Sg', which is given by

&M
, =-i(2z) ' d'z, d'z, b,,(z, —z, ) exp ib., -

x P G„(y„z,~A, )y,"'T"'G„(„zx~A,)G„(y„z,~A, )y',z'r"'G„(z„x,jA,)
Qy ft Ag 2

Subsequent mass- shell amputation upon (6), and
the appropriate projection of initial and final iso-
topic states, will be necessary in order to ex-
tract the actual scattering amplitude T,«(s, f); the
normalization used is such that, suppressing iso-
tOPiC indiCeS,

(I f ~T~PP)=(2v)-'m'(Z Z E E')-'"

with initial (P, ,) and final (p») particle momenta.
In the absence of isotopics (all A'„r combina-

tions replaced by A, ), derivation of the conven-

tional eikonal amplitude follows rapidly upon the
replacement of each mass- shell amputated G, [A]
by its appropriate Bloch-Nordsieck (BN), or no-

recoil form. Each Gs"[A] is given as the expon-

ential of a linear functional of A„,so that the
functional operations of (6) may be performed
immediately to yield an expression for sT,«/sg2;
and this quantity may then be trivially integrated,
with respect to g', to obtain the customary ex-
pression. (The reason for considering 8T„,/Sg'
rather than. T„.

„

itself, is that the method permits
mass-shell amputation to be performed in a sim-
ple and direct manner, with no "averaging" re-
quired over initial and final momenta; and it leads
directly to the integrability conditions of Sec. VI.)

The heart of the problem, then, is the search
for an appropriate representation of Gs"[A] when

isotopics are included. Performing all steps of
the convention construction, but before isotopic
projections to initial and fina1. states are taken„
one is left with the expression

P [ ( '-Pl) '." ("'P)][ ("' P') "' (" f )] ( )
2

whel e g = p~ —p~ = p2 —p2 „8= z~ —z2, Rnd the z~ 2

dependence inside the 7's is suppressed. The
quantity F($;p) is that solution of the differential
equation

= ig—"r A" (z —$P/m) f (t;P),

with the boundary condition F(0;p) = I. For sim
plicity of notation, in the following (8) sha, ll be
written as

=i r ~ v($)P($), F(0) = I,
explicitly emphasizing the isotopic coordinates
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involved.
The solution of (9), of course, may be repre-

sented in terms of an ordered exponential (ordered
in the dummy variables g'),

{10)

but, for practical computations (10) is worthless.
In the absence of isospin, the ordered exponential
of (10) becomes an ordinary exponential, and the
functional operations of (7) can be trivially ob-
tained; with isotopics, however, one has not been
able to progress past this point.

III. 6» [A] IN THE STRONG-COUPLING LIMIT

The unitarity property of the formal solut:ion
(10), F~= F ', suggests a convenient representation
for 5 in. the form

V([)=exp[fG, (()+fr C,(()],
with real functions G($) and Go(() that obey G(0)
= 0, Go(0) = 0. Substitution into (9), with the aid of
the relation

dc)q(g) d~ )), q(g) (z-x)q(!)
d$ 0 d(

immediately shows that G, (&) = 0 and that &(5) must
satisfy

1
~ w($) = dke'

d(

fact, defined the eikonal by a perturbation expan-
sion ln g.

The strong-coupling limit of (12) follows from
the assumption G» 1,

dQ ~ dG ~ - dQx —xG =G G—
d( d(

from which one immediately obtains the solution

G(h)=~(h) G(k)= d5'v(f') (14)

The difference in these two cases is that, effec-
tively, in (14) the direction of the vector w has
been decoupled from its magnitude, as given by
the weak-coupling solution (13). Presumably, the
exact solution to (12) corresponds to an intermedi-
ate situation.

Because v- tg~, (14) may be considered as a
strong-coupling limit. As such, there is no ques'-
tion of the validity of perturbation expansions here,
if only the necessary functional operations of (7)
can be performed upon the functions constructed
with (14). [There is, of course, no justification—
other than simplicity —for the neglect of closed-
nucleon loop structure, which approximation. was
used in reaching (7).] In fact, the functional oper-
ations of (7) will themselves requtl e an approxi-
mation, but one that is at least intuitively reason-
able for strongly coupled fields.

This strong-field solution has the form

(((()= G x——[1—cos(2G)]
dQ dG 1

d$ d$ 2G

where G=6/G and G =+ {G')'~'. This exact differ-
ential equation is of course most difficult to solve;
but it has a weak- and a strong-field limit which
are cur iously similar.

The weak-field limit, G «1, must satisfy the
equation

f =dG/dg,

with solution

It can be considered a weak-coupling solution in
the sense that w is proportional to ~g~, which will
then enter "weakly" into all expressions built out
of (13). The awkwardness of such a model lies
here, for one is never sure of how much signifi-
cance may be attached to the retention of all pow-
ers of g' in subsequent quantities, when one in

and one must now decide what value to assign to
the quantity

v($) = J A(~ $P/»()([P A(-~ —(P/~)]"f"'
as $- ~, for this is the form needed in (7). A
suggestion for an answer follows from the corre-
lation between the limit (-~ in the different
f(~;+p), and the asymptotic procedure of specify-
ing the mass-shell properties of a particular
particle. Imagine, in (7), that the incoming parti-
cle p, represents a proton. The limit &- in

F(g;P, ) may be looked upon as the statement that,
in principle, there was an inifinite amount of time
available to measure the 4-momentum p, with per-
fect accuracy. But if that incident particle is pre-
pared as a proton, its Qr een's function during
that time of preparation can only emit or absorb
neutral mesons; otherwise, it would be able to
change its charge, and no longer be a certified
proton. That is, any measurement of that initial
state by an external electromagnetic field during
the course of its preparation, must yield a charge
+1; and hence during that time, as (-~, only
neutral-meson emission or absorption should be
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permitted. This property is guaranteed if w(~) is
chosen to point in the +e, direction. (In other
words, the preparation and measurement of initial
and final states, respectively, breaks the isotopic
symmetry. ) A similar argument suggests that the

corresponding m(~) for a neutron should be we3,

for this double choice will then satisfy charge in-

dependence (of the forces generated by the ex-
change of neutral mesons between either proton or
neutron and an external nucleonic "testing field" )

during those long asymptotic times of preparation.
In fact, as is easily seen upon taking subsequent
isotopic projections into states of I= 0, 1, the re-
striction &~(~) = —w„(~)guarantees the necessary
degeneracy of the triplet state.

If, for definiteness, one chooses 77~(~) = —77„(~)
= -e„upon appropriate projection of n or p states

in (7), one will always find similar (negative)
phase factors for both asymptotic proton and neu-
tron Green's functions, simply because the nucleon
projection operators have the property —,'(1+ r, )
x E{+r,]= z(1 + r,)F/+I). The complete phase fac-
tors for each nucleon may then be written as
exp[-i f d'uv(u)f(u)], where

f(u) =
hagi

dt'[5(u —z+ gp)+ 5(u —z —t'p')],

f, ,(u) = ~g~ d)5(u —z»+ )P, ,),

neglecting, as is usual in small-angle eikonal
models, the q dependence of all factors other than
the phase explicitly exhibited in (7). One then obtains

8 d4ze"'~, (z) (N, N, p, r, ~N,N, )exp i -&, exp -i f,v, if,v, -
~0

1g 2

(17)

with

~(u) = g (P, A„(u))'
— e=l

—1/2

G(P) =i dg exp[-it(m'+P'+ (v))]

= (m'+ p'+ (v) —E') ',
and corresponds to the propagation of a nucleon

As obvious notation has been used for the isotopic
matrix elements, which here have the form ex-
pected in a Born approximation. They shall be
suppressed until the isotopic integrability discus-
sion of Sec. VI.

An additional. argument can be used to restrict
the choice of sign available for it~(~) =-v„(~).The
explicit negative phase in the source terms of (17)
reflects the correct sign of phase with which to re-
present a particle of positive energy moving in an
effective, positive, external field. For example,
if w[A] is considered as constant, or weakly de-
pendent upon its argument, so that f, d$'v $(w),
the momentum-space propagator for such a (spin-
less) nucleon would be given by

with averaged potential energy (v), a positive num-

ber for arbitrary field strengths. In the ordinary
isoscalar theory, the choice of sign of the corre-
sponding phase is irrelevant; here, however, it
should be specified in order to give a description
of the scattering of nucleons, rather than. that of
antinue leons.

IV. APPROXMATE FUNCTIONAL EVALUATION

The question one must now face is the evaluation
of the functional operations of (17), a decidedly
nontrivial matter because of the appearance of the
magnitudes, rather than the components, of the
isotopic fields A„. Another complication is that
it is not clear, using the form (17), just how one
may comply with the instructions A-0, at the end
of the computation, since this approximation has
been defined for large field strengths, or large
couplings.

However, there exists an alternative and formal-
ly equivalent procedure, defined by a functlonal-
integration representation for the differential
operator of (17),

-g -T. i.~=C 'e ~r~ d[y] d[pjexp -i p y„Kg,+ q, +
5A,

„

"5A,
„

(18)
where Kn, = 1, and C = (2v)" is a typical functional-integration constant for N degrees of freedom (as N- ~),
whichwill cancel out of the final result. Here, f d[cp]= II, , f dp„where p, (k,) is the 1th Fourier mode of

y(x), with isotopic and 4-momentum coordinates suppressed.
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With the representation (18), one may write in place of (IV),

eT 88Ut g4&@kq+ g C g Tr lII&&

Bg 2tPl

"[~l J'(I(']'~ (-' I f ('((t): ' -f;,l~l Jf*'.](-']),
CC2 Q

(19)

where ]z, ,[](']=(Z [p", zy„"(u)]']' ', and one may now look for alternative methods of evaluation which main
tain large values of ]zz[q&] and ]zz[g]. The method that comes to mind immediately, in this strong-field ap-
proximation, is that of stationary phase. Here, one imagines that the coupling is so strong, and the fields
in question so large, that virtual processes must contain very large numbers of quanta; and that a simpler
way of picturing the effects of so many quanta is obtained by replacing them by a "semiclassical" field,
here defined in some self-consistent, nonlinear way. It is understood that, by the imposition of such an
"averaging" approximation, some of the fine details of the theory may be lost; but the intuitive hope re-
mains that the important qualitative features of the strong-field limit will be preserved.

The stationary-phase approximation now adopted to evaluate (19) treats the q) and [)) coordinates as inde-
pendent variables; that is, one considers the functional integral

dy dg exp

and expands f[q, [1)] about nonzero (and large) y„[[),values, which are determined by the simultaneous con-
ditions 5f/5y, = 5f/6$, = 0. One retains in f [y, P] only quadratic dependence in the variables y —y, and
[))- g„sothat (20) is replaced by

In the variables (p = (]2- y„7()= i{)- [))„(21)now

corresponds to a pair of Gaussian functional inte-
grals, and can be immediately evaluated in terms
of the functions po, $0, or more properly yo„,P,„.
For notational ease, the subscript 0 is henceforth
omitted.

The Euler equations for y„,P„obtained in this
way are

&g(u) = -f,(u)P,
„z z)(

t')2f

~( )8~( )[- -z5 ~25~„5(u—v)K (28)

with Kg= p,

To look for solutions it is simplest to extract all
p, 2 dependence by making the ansatz (physically,
the most important, although not the most general)

y,'(u)=pz„y'(u), p„(u)=p,„g(u), so that this pair
of Euler equations becomes

q)O
&& =f. ~ ziz &0'=fz -2)z&2(~) '

(v )

K(p (u) = f(u)p-"
vz[&]

while the necessary quadratic derivatives are
given by

=-zf, 5(u-v) '"
~S„(u)[)V.'(v) '

v, [q]
((,.c")(), ("))

v, 8o]

5[i)', (u) 5g(v)

(P. .4 )(P. 8)
)z22 [[))]

(23)

S' (u) = &,(u —v)f.(v)P. (v),

P'(u) = 4,(u —v)f, (v)k (v),

(27)

(28)

but the general solution of this pair of equations

The overall sign change, compared to (22) and (23),
occurs because (p, - pz) = mz s/2 is negative. The
unit vectors p—= [C/(P)'~2 and Pc

—= p/(q&')'~' are, in

general, position- dependent. Thus, the sources
of these "averaged*' meson fields associated with
each nucleon line are given by the kinematics of
the other nucleon and the isotopic direction of its
meson fieM. Qne may write this dependence in
terms of integral equations, involving causal prop-
agation,
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is not immediately obvious.
However, there is at least one solution which

can be readily obtained in the (absurd) limit of
very large p, ', that is, K= IL(,

' —8 -
IL(, , for these

equations then become a,lgebraic. For bounded
functions f, , (not the case here), one has il'cp
=f,p and [l'p[a=f, k, so that (y')'~'=f, ![l' and
([[r')'~'=f, /il'. Thus f, rp =f,[P, and since f, and

f, are positive, )t= p. The e (ftcp„g,]) factor of
(21) then becomes +f(p, p, ) Jf, [l 'f„which has
the same form as the '*limit*' of an isoscalar eiko-
nal term, expIi(P, .P,) ffllrr, faj. Of course, this
particular solution is not to be taken seriously,
but is only written to exhibit: an example of a solu-
tion in which 2 = p. Since the analysis here has
been algebraic, there is no specification as to
whether these unit vectors are constants. If they
mere constants, the total isospin carried by this
total "averaged" meson-field (T J [Px ga x SBT[r„,

Q; =p,„y+p„t/r ) would vanish locally; and it
would be a reasonable feature to build into any

such fieMs which must lead to an overall isotopie-
spin conservation. Incidentally, solutions of the
homogeneous differental equations added to (27)
and (28), which would correspond to (mass-shell)
meson dependence i~dependent of the "other nu-
cleon." source, would suggest spontaneous viola-
tions of isospin invariance, and are not considered.

In order to solve (27) and (28) in an explicit way,
it is now assumed that physically reasonable solu-
tions ean be obtained with constant unit vectors,
so that solutions to these equations now become

(29)

(3o)

where the isotopic magnitudes cp and [['[ are (in the
q —0 limit) real and positive functions. Hence,
from the definition of p and k, 0= p. The isospin
in these averaged meson fields is then zero, by
tllis simplest construction; and (21) then becomes

exp i(k p)(P, P, ) (31)

and

garB Plrr Plrr fl{ )
(5 )

(P, P, ) @(~)
(32)

In a one-dimensional isospace, that is, with iso-
scalar exchange only, (32) and (33) vanish, and the
entire functional integral [including the normaliza-
tion factors of (18)I reduces to the coefficient
multiplying the integrals of (31), which is just the
familiar isoscalar result. This coefficient may
be thought of, in this "averaged" isovector model,
as equiva, lent to the contribution of I, = 0 isovector
exchanges only, and will subsequently be referred
to as "equivalent isoscalar exchange. " It mill be
seen, in Sec. VI, that this solution is possible only
for the isotriplet amplitude. There, independent
and equivalent constructions will be performed for
both triplet and singlet amplitudes.

The Gaussian functional integrals of (31) now
generate for (19) the quantity

Q = —B Tr in(1 —SA, T4,) .

The physica, l interpretation of Q, in this station-
ary-phase approximation, is that. it takes into ac-
count —in. terms of the averaged isotopic fields
q, P—the possibility of virtual emission of multi-
ple pairs of zero-net-charge fields, mithin a

)
strong-coupling framework. Together with the
effectively isoscalar term, it corresponds to the
sum of all possible "averaged" isovector ex-
changes.

The trace of (35) includes isotopic, 4-momen-
tum, and configuration- space coordinates. In
particular, the factor (5 B

—7[ [iB) acts as an iso-
topic projection. operator, and effectively factors
through every term of the expansion of (35) to
multiply the over-all expression by a factor
tr{5

B
—[i .)tB) =+2. The effect of tracing all 4 mo-

mentum coordinates in every iterate of (35) is,
even more simply, the removal of all (P, P,) de-
pendence. In this way, (35) may be replaced by

Q = —Tr ln(1 —8'4,T'4,),
8T 8eik daBe[a all (B)
Bg 2m C

I

X eXp 'L(pl 'itrB) ~i~cf2+ @

{34)

where S'(u) =f, (u)/4[(u), 7"(u)=f, (u)/i[[(u), and the
trace operation runs over spatial (or momentum)
coordinates only. Finally, since 8' and T' are in-
dependent of g, (34) may be integrated to generate
the desired modification of the old Levy-Sucher
result, "
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2 I

T„„(s,t)=-, d'be'~ b 1 —exp -i—K, (gb)

In obtaining (31), it has been assumed that s/I
»1; and that in this asymptotic region Q will de-
pend only upon. s and b = z ~, but n.ot upon q or z "'.
In fact, this is not exactly the case, for the q de-
pendence of Q will subsequently play an. importa, nt
role.

It has also been assumed that T,«must vanish
if g' is set equal to zero, even though the deriva-
tion has been performed assuming that the fields
are large; this point is discussed more fully in
Sec. VII. As a result, e@ multiplies both terms in
the bracket of (31); Q is not just added on to the
eikonal function i}(,=-i(g'!2v)K, (pb), as one might
expect, in a general isoscalar theory, or weak-
coupling approximation. Because Q is independent
of g, it factors out of any expression which de-
pends upon the counting of coupling-constant inser-
tions; this property is a legacy of the stationary-
phase approximation used above, and is quite com-
patible with the idea of strong coupling (one may
imagine that a summation over all powers of g has
been performed to obtain the p and P denominators
of S' and T', respectively). It may also be noted
that Q is independent of any overt spin dependence
of the exchanged mesons [all (P„P,) factors have
cancelled]; the same set of approximations in a
theory of 4=0, I=1 boson exchanges will yield
just the Q of (36), although the y, function would
then decrease as s '.

ent q = 0 limit, and the difficulty and impropriety
of this limit is made clear. This is followed by a
second calculation (b) for large momentum trans-
fers; and the forms found there are used to sug-
gest an alternative calculation (c) of the small-
momentum-transfer region, in which the integrals
are properly behaved if the limit q/Ws-0 in Q is
postponed until the end of the calculation.

A. Srna11-angle scattering (first attempt)

All the complexity of the problem now resides in

Q, which may be writ;ten. in the form

dX Tr[S'4,T'4, (I —XS'A, T'4, ) '], (38)

and it is natural to expand the integrand in powers
of X, and so compute aH the iterates of (38). In
fact, were it not for the denominator factors of p
and P, in the definition of S' and T', (38) would
correspond to the sum of virtual pairs of soft
charged (or neutral} mesons; that is, to the small-
angle counterpart of the wide-angle damping fac-
tor previously discussed in pseudoscalar-pion!
nucleon theory. Those denominator factors of q
and g, and the corresponding absence of depen-
dence on the coupling, suggest that these strong-
coupling isovector forms may be thought of as
virtual-meson pair emission modified by a non-
perturbative normalization of each such meson
propagator. Integration over these factors will
require care.

With

V. APPROXIMATE INTEGRAL EVALUATIONS

In this section the evaluation of the integrals
representing Q is (a) first carried out in the pres-

and using the representations of (16) and (36), the
nth iterate of (38) may be written as

d'u d' d'v d4v ' ' &( —v) ' ' A(v —u) ' ' . ' " &(v —u)'n
n 1 5 1 tl p(u )

c .1 1 q(v )
c I 2 (p(u ) g(v ) c tl 1

1
Q =

n
dg 0 ~ ~

1
&, (z- &,p, +n, p, )~, (z- h, p, +n, p, ) ~ ~, ( Ez,,p, +q„p,)"$,(z, $p, )n, (z+ thp, }~,(z ]2p ) ~ ~(z+ q p )

(39)

F. and P, is not appropriate. With that approxima-
tion, there would result

&,(Q) = 3,Z If.(V&)6(Q"),
1

Evaluation of the X), , is simple; but one im-
mediately sees that the typical high-energy limit,
wherein one neglects the mass difference between

and the presence of the 5(Q"') functions in the
denominators of (41) would be troublesome. How
ever, (40) and (41) may be evaluated exactly, and
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give (in the c.m. frame)

u, (Q) = —[(mb)'+ R,'E'7'~'1

x exp ——[( t] R', '8']'~'),

p
R, =Q +Qo— (42)

and

S,(Q) = —[(mb)'+R, 'E'] '~'

Ra=Q3- Qo E
p

(43)

where p denotes the longitudinal component of p, .
Now one may take the high-energy limit, so that

R,-z"—2)E, R, -z' '+2&E. Further, every
numerator propagator is a function of the square
of its argument, as written in (39); that is, the
functional dependence here is on quantities of form
(z —$ p, + q p, )', In the high-energy limit, these
become simply b' (z" 2)E) (z' '+2qE), and in-
volve just the Ry g variables found in S, , Hence
a redefinition of every $, , q, of (39), in terms of
the new variables $, = $, —z "/2E, ]I, = q,.+ z ' '/2E,
removes all dependence on z "', as expected. This
replacement of (z —t'p, + qp, )' by its asymptotic
form, which neglects quadratic (, g dependence,
is justified as long as each of the $, g intergra-
tion variables subsequently cuts off at values «I/
m', such as I/mWs or b/v s.

Although the denominator factors are now prop-
erly free of singular parts, the integrals of (39)
are still not without ambiguity. This is because
there exists a denominator factor n, or&, for each
$ and g integration, and for large values of $ and

g it is not clear that the integrals converge: if
each 4, HP'(p[b'+-sue]'~')- exp[ ip(]I $s)'~—'], in
the region where $ and g have the same sign, this
will not be sufficient to produce convergence be-
cause of the

and g correspond to small values of the virtual mo
menta exchanged in all the relevant Feynman
graphs; one is familiar with the need to avoid di-
vergences at small $, g,

' but never before, in a
massive theory, at the infrared end of the spec-
trum.

This difficulty arises, clearly, because of the
special nature of the previous approximations,
wherein integrals over propagators appear in the
denominator. One might try to avoid these troubles
by imagining that all Feynman integrations are
calculated before the infinite summations over
graphs (which yield the denominator factors) have
been performed. Perhaps the simplest way of ar-
ranging this would be to suppose that each B, , '(Q)
is replaced by (I/e) in[1+ e/S»(Q)], and the limit
& —0 is taken after the $, q integrations are per-
formed; here, e maybe thought of as I/g', in a
version of a strong-coupling limit. Convergence of
every integral of (39), for large $, q values now

follows, in this example, because of the Bessel
functions of the numerator propagators. However,
it is not at all clear that the results of such an &-

limiting procedure have anything to do with this
strong- coupling approximation. Rather, this & pro-
cedure acts to define what is meant by the ~]
factors; and the real difficulty is that the results,
while quite finite, must be rejected on physical
grounds.

To see this, imagine that such an interchange of
limits supplies effective cutoffs into every $, g
integral of r,„.Then, as a simple estimate, one
may replace each f f'„"dydee by f f'„"~ d$dq,
and accordingly approximate all $, q dependence in
the remainder of the integrands. If s

~
$ r] ~&b',

each 4,-

exp(iver,

„vs) or e " ' " ~, a,nd we ex-
pect r -I/pu s. (Incidentally, this supposes
that sx,„'&b'or that pb &1, which will be the
important region of impact parameter in all of
these estimates. ) To simplify the evaluation, we
replace the numerator 4, by their massless forms,
but cut off all the $, ]I integrals at + I/pWs. It
follows that the different $, q integrands decouple
from each other, with integration over each pair
generating an amount

exp +—
arising from the appropriate f), '(Q), and a factor
of

exp + ——q

coming from the corresponding S, '(Q). When $
and g have opposite signs, and the Hanke]. func-
tions of &, are replaced by K, - exp[- p(s

~
$q ~)'~'],

one will not obtain convergence. Large values of (

It 2m ~~ / PffftS

vs
(45)

which quantity is to be raised to the nth power, and
divided by n, to compute Q„. One obtains

(44)

The most importa. nt contributions to (44) will come
from large values of the variable, and yield, ap-
pr oximately,
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B. Form factors at 1arge momentum transfer

All the formal results obta, ined in the previous
sections are directly applicable to form factors,
or vertex functions, with q'-dependent damping
of a simple large-q' vertex expected to arise from
the exchange of soft vector mesons. The quantity

fey, exp [Q (t) —Q(0) ]

may be interpreted as one part of the normalized
vertex function of a nucleon, where Q(t) is again
given by (38) with the replacements: p, -P, p,
--P', z-0, and all (, g integrals ranging over the
semiinfinite limits 0 to ~; here, t = —(p, —p')'.
The "effectively isoscalar" term of (34),

exp t(P P') f,&,f,
will, after renormalization, again generate damp-
ing that can lead to form-factor falloff with in-
creasing It I; and one now asks what effects will
result from Q(t), when It I

ss large.
The denominator integral f, dg'&, ($'p g+p') may

be evaluated (neglecting rn'/ t
I

effects) approxima
tely as

i I. 2 2—
(3 )2 q(t (

~
=f(InIP+c, )u~ (49)

where a factor e ' ' ha.s been. inserted into the mo-
mentum-space integrals to limit the magnitude of
the 4-momentum included in this soft approxima-
tion, with the replacement n -—i p,,' subsequently
performed; this simplest cutoff method has been
used several times previously. " (One can always
return to the more conventional, but more compli-
cated, representations of the soft form- factor
integrals by choosing the cutoff p, - It I' t', for
large It l. ) The important thing to notice is the
factor I/q of (49), which then enters as a factor
g in the numerator of the Q„integrands. This, to-
gether with similar factors of g arlslng fron de-
nominator integrals of form f, dq'&, ($P, +'g'P, ),
corresponds to polynomial enhancement of the

2m
e Q 1 + e~g/2rff

vWs

which damps the entire scattering amplitude al.-
most completely, effectively multiplying a factor
(v's/4m')e ' ~ into the over- all impact-param-
eter representation. This evaluation is crude, but
reasonable. The only trouble is that the results
are physically wrong; e.g. , such damping would be
independent of all other (heretofore neglected)
isoscalar processes. Thus this &-limiting proce-
dure must be rejected on physical grounds; and
the same difficulty will haunt any similar ad hoc
definition of Q, , '.

numerator integrals, rather than to the exponential
enhancement previously found in the small-angle
case.

One ean readily see that such q
' dependence of

(49) would be removed were the dummy $' integra
tion that produced (49) to cover values from -~
to + ~, for then one would obtain a result propor-
tional to 5(q), similar to that noted in Sec. IIA.
Thus, the extra coherence of small-angle process-
es (-J'"d$') compared to those of wide angles
(- J, dg') is the physical reason for the previous
difficulties.

Using this method of the p,, cutoff, the integrals
correspondint to Q, can be evaluated without too
much difficultiy, and generate for large It

I
the

dependence

Q, (t)-a, ln

exp —,I ln —,Bw', m', ,
' (51)

where g denotes the appropriate meson-nucleon
coupling.

Suppose now that the strong-coupling analysis
presented here is relevant for coupling strengths
of p to nucleon, sayg'/4v-3, to pick a rough,
average', experimenta, l value. Assume also that
soft ~ exchanges occur. Since I. is not sensitive
to the p-t& mass difference, one would require the
relation

(5~)
2m 4m' 4n.

which corresponds to the It I
"falloff of the pro-

ton's electromagnetic form factor. To satisfy
(52), using the rough values g, '/4w- 3 and g„'/4v
-10, one should adopt the reasonable value I. ~1.
Thus the isovector contributions tend to cancel,
assuming that Z „a„doesnot greatly exceed a»
leaving the most important terms, as before, com-
ing from virtual isoscalar exchange. Thus, as long
as this strong-coupling model is relevant to p ex-

with a, = I —I/I. '. Similar evaluation of all the
remaining Q„suggests that each of them is also
proportional to a single factor of ln lt I, Q„(t)

n lt/~'I, a„~0;but the calculations become.
exceedingly tedious for n & 1, and hence the present
discussion will center only on a, . [In view of the
basic logarithmic nature of the expansion for Q,
one might conjecture that a„-—In(1 —a,)- I/L. ]
Equations (50) and (4V) correspond to a coupltng-
independent enhancement of the form factor, which
acts to counterbalance the damping of the effective
isoscalar term of (48). Using the same p, cutoff
method, the latter was long ago shown to given
form-factor damping contributions of form
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change, the phenomenological picture of multiple
vector-meson exchange generating form-factor
damping can be retained. In a similar fashion,
all the other multiple soft-vector-meson descrip-
tions of large-P, processes remain essentially un-
changed by the inclusion of isovector p exchange.

size O(bqp'/qp, )-O(bg); and, when by&1, it may
be neglected, and the $ integral performed im-
media, tely,

da is& ~~~

16m' a"' -iq~0

C. Sma)1-ang)e scattering (second attempt)

Having seen how the wide-angle analysis pro-
duces polynomial $, q dependence in every Q„
integrand, and thus automatically generates finite
integrals, it is natural to ask if a similar effect
can occur if the q-0 limit is postponed in the

~, , ' terms. If this is the case, then. one will also
have to imagine that: the z "' integrations, leading
to the conventional eikonal forms, must be post-
poned until the last stages of the calculation. Since
q
"'-sg'/2E, each z '" may be thought of as of

order 4 s/q', and the way in which they enter the
remaining (, q integrals could conceivably be of
importance.

"Undoing" the q =P, —P,'-0 limit used in the pre-
vious evaluation of X)„oneconsiders in place of
(41)

«[~.(z- tf, +of,)+n. (z+ (P, +~f,)].

x exp -'LQp,

I 2
n

+ —fp'-2Eqz '—
4a q

(55)

I@Is&I, (56)

the the linear q term in the phase of (55) may be
neglected in comparison with the quadratic q de-
pendence there. Suppose that this is true; and
that we are interested only in those large values
of ITi I

for which

Nom consider the contribution of va.rious terms
in the phase coefficient of i/4a, in (55). We are
i~t~~~~t~d in l~~g~

I & I
~al~~s and in the way such

quantities enter into the numerator Q„integrals.
As mentioned above, assume that Iz

'
I

may be
considered to be of order E/q'. If the important
large Iq I

values are such that

1
16m'

00

0
—e "" exp + —(5' —2Er)z")

4a

+ 00 i $'q'
4a 4d$ exp—

(53)

A distinction should also be made for the gP, vari-
ables, using p, when q&0 and p,'=P, + q when q&0;
but this last qualification merely complicates the
arithmetic and is therefore omitted, so that (53)
mill be used for either sign of q. The previous p.,
cutoff will also not be needed.

In the high-energy limit, s» m', (53) may be
written in the form

(5 t)

Then the phase of (55) will have a definite nega-
tive sign, and the resulting integral has a guaran-
teed phase dependence

1 e-i I f7' sv /q

2m stqf (58)

dq[a, (z [p, +qp, )+ n, (z ]p, qp, )],

Exactly the same arguments may be applied to the
g), denominator function, "undoing" the q = p,'
—P, —0 limit by using

—
I ( l(b ~ q)+sq(

Because of the
I $ I

phase terms, the $ integral of
(54) is a.n incomplete Gaussian, whose value may
be estimated easily in the region 5 p, & 1. Hence,
the subsequent analysis is restricted to small im-
pact parameter; for by, &1, the final b integration.
is cut off and effectively removed by the y, func-
tion, in the standard may.

%hen the effective ( cutoff is given by the quad-
ratic $ dependence of the phase terms of (54),

I-1/qp (since the variable a scales with
I/p'). Hence the awkward

I g I
dependence is of

to yield
c [(I sp jg

1 2~ s j()
Note that the sign of the phase of each of these
forms for 5), and &, is the same, and hence there
is no possibility of multiplicative cancellations.
These forms may be considered as appropriate re-
placements for the 5(sg) and 5(sq) obtained earlier,
a,fter ta,king the q= 0 limit.

When the phase factors of (58) and (60) enter the

@.nume»t»s as fa«»s -"
I &~ I exp[+~(l~l+ I & I)

x s p/q], they must be considered in comparison to
the existing numerator Bessel-function depen-
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mz'z' '

S2

(61)

dence, H,"'(p[b'+ s
( $q (

]' ') or K,( p(s ( gq )
—b'}' ');

these latter forms are correct if s/m'»1, so
that the correct high-energy argument of these
functions,

m2(z (+) m2qz (-)
P, b'+ s]0 2E 2E I)I lg I q'

[b&] & 2v &b&s
min 7TP, s (67)

a form free of the previous overdamped behavior
of Sec. VA.

For somewhat larger values of pb, 1& ij.b &q/vs,
the 6, denominators (b'y sg ir)

' should be replaced
by (b') ', and one obtains

may be approximated by

p(b + st'q) (62)

and
2

eo= I+», I &pb &q/vs .
2p p2b2s (68)

This replacement also assumes that the remaining
linear $ and q dependence of (61) can be neglected,
which will be verified later.

Were the denominator terms to bring simple
polynomial dependence into the numerators, as
in. the case of the wide-angle analysis, the $, q
cutoffs would again be given by r,„-1/pv s .
Here, however, the denominator phases cut off
the integrals at far lower values,

r,„-q/sp. (63)

and, in general,

-1}" 1 2KQ„—In(p, b)
K 'tT

(65)

Of course, only the largest
~

t'~, ~q ~

contributions
have been considered here; but it is interesting to
see that the result is finite and is independent of
explicit q dependence, which suggests the possi-
bility that the restriction q & ]L(, is not essential.
One thus obtains

In order to satisfy (56), it follows that this analysis
requires the kinematical restriction q& p. (This
is compatible with b p,& 1 in the sense that for q
& p. only the specification of small-b dependence
is necessary. ) Similarly, the replacement of (61)
by (62) requires q'& m'p, , again compatible with a
fixed q' and large s.

In order to evaluate the Q„,we shall again per-
form the simplest possible estimation, and treat
each numerator 4, as a massless propagator,
while restricting the integration over the largest

'

$ ~, ~ q ~

values which do not exceed r,„.The
minimum~ value of these variables included here

is such that (57) holds; and similarly for a simi-
lar relation bounding the ( dependence; that is,
r „-bq/s Thus, . for the case sr, „&b',corres-
ponding to 1 & q/v s & pb, one may roughly esti-
mate

2

"min

(64)

Clearly the difference of (68} from unity vanishes
in the limit q/vs -0. Further, in this limit, (66)
is appropriate only for vanishing impact param-
eter, and in effect gives no contribution to the in-
tegral over fd'b Th.us, according to these crude
estimates, Q may be thought of as small, real,
and negative.

The sign and reality property of Q is not sur-
prising, in view of the possibility of inelastic pro-
cesses, in which pairs of charged mesons are
emitted by the two nucleons acting coherently,
and which must tend to damp out the elastic am-
plitude; rather, what is surprising is that the ef-
fect is so small. One can express this in another
way by writing a conventional eikonal parametriza-
tion of the scattering amplitude, in terms of a
complex eikonal function X',

I e~" = (1 e'")eo

where, for small Q, iX'=iy+Q(1- e'"). Thus, for
X and Q real,

Re(iy') -Q(1- coax),

and is always negative.

VI. ISOTOPIC PROJECTIONS AND INTEGRABILITY

The final step of this analysis is the necessary
projection and construction of isotopic I = 1, 0
amplitudes. It will be seen that the form given
in (37) is appropriate only for the triplet ampli-
tude; and a somewhat different construction will
be used in order to obtain both singlet and triplet
proj ections.

Suppose that there exist both isotopic scalar and
vector exchanges, in terms of the propagators

' and 4,(~), and the coupling constants g~ and

gs. This follows from the addition to (1) of the
term 2"= ig~gy„A„g,where for simplicity the
restriction to vector mesons is maintained. All
of the above analysis has then, in effect, been
carried through for the case g~ = 0. For g~ c 0,
however, the only difference would be that the 6:(()
of (10) is multiplied by the familiar

1 2 -1
eo = 1+ —ln(pb), 1»—gb,r vs

(66) sgs d~' —"A„z
0 m m
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factor. But the scalar functional linkages proceed
independently, with no regard for the complexities
of the isovector interactions. Thus (19) is multi-
plied by a factor

where f ', ,' contains the factor gs, rather than the

~gv ~

of (16}; this dependence on coupling is made
explicit by the second form of (69), involving

for s»m'. (In all of this section, the conventional

q =0 limit is assumed. ) Thus, the result of per-
forming all functional operations is to replace (34)
by

' ' '~»exp(fgvxflv+'g's Ds) (70)

where

Xg»~» ~R V (Pl f 2) dgd»1&,' '(z $p, + gp—,)

8+ ' ' ' Qs exp(fgs Ds+ 1gv D») .
~Is

(72)

Equations (70) and (72} are compatible, in the
sense that they satisfy the integrability condition
S'T/Sgs'Sg»'= S'T/sg»'sgs' But a glan.ce at the
original isotopic factors of (17) shows that this is
only true for the triplet amplitude, where (», ~ r, )
has the eigenvalue + 1; that is, a factor of + 1
multiplying (70} corresponds to the projection of
this operator in the triplet state. The pair of
Eqs. (70) and (72) may be integrated immediately
and yield (now supplying all factors)

d hei' Xb eo(1 efXO +cXO }

(73)
as the correct eikonal representation of the triplet
amplitude.

Qn the other hand, suppose that the same analy-
sis is performed for the singlet amplitude. Here,
(7, .~, ) has the eigenvalue —3; and one would ob-
tain (72), still valid in the singlet state, together
with

(71)

and all irrelevant multiplicative factors and inte-
grations have been implicitly indicated by the sym-
bols f

Were the identical operations to be performed
for the scalar interaction, one would find

gz (o)
= (—3) ' ' ' & exp(ig '0 +ig '0 ). (74)

~A'v

Equations (72} and (74) are not compatible; the
integrability condition is not satisfied, and one
cannot construct T,",.„'in this way. Incidentally,
the J ~ ~ symbols can differ in the singlet and
triplet cases, owing to their dependence on e~,
which factors are independent of coupling.

The power of the present method, which calcu-
lated dT/&g" rathe-r than T, can now be seen, for
in this strong-coupling limit it generates precise
integrability conditions. For example, it is clear
that the isosinglet ampl. itude will necessarily have
an exponential dependence of form exp(-3ig»'0»
+igs'Qs) Th.is does not at all specify the corre-
sponding isosinglet Q term; and one must search
for solutions to the Euler equations, other than
those of (29)-(31), which will generate for the
isosinglet f [yo, (oj of (21) the quantity 3iq»—'0»

For the previous choice of constant, numerical
unit vectors, it is not difficult to see that self-
consistency requires the condition (& p)' = 1; and

hence that the possible values of 2 ~ p are restrict-
ed to +l. What is needed for the x ~ p term of (31)
is the possibility of having the value -3, when

computing the singlet amplitude. This conclusion
is unchanged if the fields and unit vectors are al-
lowed to become complex, a property recently
noted" as useful when constructing phenomeno-
logical representations of complete, coherent
isotopic pion states. The use of variable unit
vectors is always a possibility, but one that is
t pl tedt bet an p t.

The possibility of a successful construction is
suggested by the physical observation that, in the
previous pair of equations

Ifpo f qo (q2)l I 2 —f P

(76)

the f, , terms, representing classical nucleon
currents, act as the sources of these averaged
fields. Previously, the unit vectors (now called
q and p ) were taken as arbitrary constants; but
there is no reason to exclude the possibility that
the nucleon isotopic coordinates could not be used
to represent the isotopic direction of these
sources, Qne is then l.ed to consider the possi-
bility that the fields y, g are themselves ma-
trices in the isospace of the two nucleons; and

accordingly, one may set p =a7', +b7, , q
= e~, + dw, , where the subscripts 1, 2 refer to the
distinguished nucleons, and the parameters
a, b, c, d are numerical constants.

In terms of such a representation, y, (P)'1',
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1 1
f =q —(q f) and q =P (f 'q). —(77)

The explicit solutions are

q p 4 '78

&fa, 4 =—P ~ q

g, (tjt2)'~', q, p all become matrices, satisfying
(75} and (76). The manipulations which lead to
these equations, as well as their matrix solutions,
should be quite independent of the particular iso-
topic projections to follow; and it should be possi-
ble to build in the requirements of the integrability
condition while retaining the independence of the
matrix solutions to the subsequent triplet and sing-
let projections. (One can approach the problem
differently, by looking for different solutions for
the two amplitudes. ) Such independence is the
only measure of uniqueness in this problem; and
it is the only reason for believing in the relevance
of the singlet solution given be1ow.

There is one qualification to this procedure,
however, which demands critical attention. One
must now allow for the possibility of one essential
change, in comparison with the previous situation
of constant numerical matrices, for the quantity
Z (y')', constructed from the sum of the squares
of the matrix y need not be equal to the square
of the quantity (P'P~', here, the sum-over-squares
relation between rp' and (y'}'~' may no longer act
as a constraint on the possible matrix solutions of
y if the integrability conditions are to be satis-
fied, for q' will have two eigenvalues, of which
only one is unity. (A constant numerical vector
has not been included inthe definition of q, since
q' would then have nondiagonal terms in both
singlet and triplet states )Sim. ilar remarks hold

(p')'~' and p . The only value of this
constx'uction is that it proceeds from a single var-
iational principle, and builds in the integrability
condition in a way which permits the solutions

y» g, to be written for arbitrary isospin. In the
triplet state, one finds just the results of the pre-
vious sections; and one is thus led to associate the
singlet projection of these forms as the appro-
priate f[y»g, ] and Q. Of course, from the inte-
grability condition one knows exactly what must
be the proper form for the singlet f[y„g,]; and
the entire construction is essentially to discover
the singlet Q.

With this choice of constant matrix forms for
p and q, one can see from (75) and (76) that
there is still a measure of self-consistency which
must be respected by these solutions,

so that the f[y» g, ] of (21) then becomes

1 1
f(P, f,) —1+ —.+-v (q P)ff,&.f . (80)

(81)

are sufficient to produce the desired form for (80),

(82)

in which the (~, ~ ~,} factor may be assigned its
isotopic projection value of +1 or -3. 'The solu-
tions to (81) exist only for complex a, b,

a' = —,'(1 + i&5/6),

but may be used for both singlet and triplet eases.
Thus y and p have been constructed independent-
ly of the isotopic states, although their a, 5 values
are determined by the integrability condition.

With such matrix solutions, the Gaussian func-
tional integration of (31) goes through as before„
except that now the S~~, T"z tensors contain nu-
cleon isotopic matrices as well. For the triplet
case, where q' has the expectation value +1, it
is easy to see that the isospin operators effec-
tively reproduce the net factor of +2, previously
used to convert (35) to (36); and hence the ampli-
tude as written in (3V) is again found to be the
triplet solution. For the singlet case, the Q„
iterates are slightly more involved; but one can
see that every iterate is multiplied by a factor:
2+ (1-q')'". Thus, for the singlet solution with
q'= 5, the crude estimates of the previous section
suggest that so= [1+(4Q)'] '~', where P=(l/v)
In(pb), 1&q/vs & pb, and &=q/pb(2vs)'~', 1& gb
&q/vs.

Having found this matrix solution to (75) and (V6),
and taken its projections in the different isospin
states, one might observe that, really, one is
interested in any solution of these equations,
whether self-consistent in the sense of Z y '
= [(q ')' ']' or not; for any such solution will per-
mit the evaluation of the functional integrals by
the stationary-phase approximation. Hence, it
was not really necessary to use matrix repxe-
sentations fox' q and p, for, in the z .p solutions
of the previous section, one could have merely
chosen (~ ~ ~}2= Pc

' = p' = 1 for the triplet amplitude

This will provide the desired results if the con-
stants a, b, e, d are chosen to satisfy

1
(7, ~,)= —,+~-I (q I),

p

along with the restrictions of (77). The latter can
most simply be satisfied by the symmetric choice
a=c, b=d, so that p =q . Since, then, q ~ p=q'
=p', the requirements



(as was done), and (x ~ p)'= x'= p'= 5 for the sing-
let. The latter's ~, p vectors are now no longer of
unit magnitude; but one still has a solution of (75)
and (76) if only (P')'~' is defined in terms of y
and p . A "justification" for that procedure is
suggested by the present method, which uses the
same va, riational principle and matrix solutions
for both states, while allowing the integrability
condition to dominate the normalization require-
ments (which are not requirements for stationary
phase). Of course, it is not known if the results
of this construction are unique. But it is rea.ssur-
ing that the triplet projection does agree with its
form previously found; and it is hoped that the
singlet projection is the correct one. (It would
be a pleasure to be able to discard the latter, in
favor of a self-consistent singlet solution. ) Prac-
tically speaking, both Q terms are probably small,
and may be neglected at sufficiently high energies;
while the coupling-dependent eikonal functions are
unambiguously determined by the integrability
conditions.

VII. SUMMARY

Putting all terms together, the result of these
sections is an eikonal representation for NX scat-
tering by the exchange of multiple, massive SU(2)
vector mesons, in the form

T"'(s I) = . d-'be"'
2ni'

(~s P y q(s8)(I)

where X,
' ' is the typical eikonal function of iso-

scalar exchange, y,'
' is the sQp'p2e function with

coupling and mass parameters of the isovector
exchange, and (7, ~ r, ) = 2I(I + 1) —3. Crude esti-
mates suggest that Q"'=-In{i+ Q'), Q"'
=--,' In[i+ (4P}'], where P=(1/v)ln(pb), 1&q/vs
& pb, and &f&=q/pb(2vs)'~', l&pb&q/vs. One
may expect better estimates of the Q to show some
fine details missed by the qualitative arguments
above.

In all of the above, the requirement T(g~=0,
gs = 0) = 0 has been made, thereby eliminating an
arbitrary function of impact parameter indepen-
dent of either coupling constant; and this point
deserves special attention. Although derived
under the assumption that G —

~g~ ~

x 0 (field mag-
nitudes) & 1, one may ask if the limit of the strong-
field solution (15) for 5:($), as g~-0, is not sim-
ply unity. The answer is not necessarily, because
the field magnitudes could conceivably become
infinite as the coupling vanishes. But in this cal-

culation, as in any calculation (e.g. , of T rather
than sT/sgr') which uses stationary pha. se, the
field magnitudes are bounded in the sense that
they are replaced by "average" values, propor-
tional to ~gv ~, to which are added fluctuations
that are themselves damped by Gaussian weight
factors independent of A;~. In effect, the field
magnitudes in any stationary-phase calculation
of T are going to be bounded, as g~'-0; and
hence the limit ~gv ~-0 in the strong-coupling
5:(E) produces F(()- I, and therefore Gs"-S„,
the free-particle propagator. That is, the scat-
tering amplitude must vanish in this limit, even
though the entire derivation has been carried
through assuming strong coupling or strong fields.
The first few terms in the g~' expansion of (83)
or (37) need have nothing to do with the proper
small-coupling expansion of T; but the amplitude
should vanish when gs, g ~-0. (Example: suppose
the exact form of w(() in (10) were given by gdA($)/
d$+g'dB($)/d, ", a form which, while absurd, illus-
trates the point. The exact solution for 5($}would
then be exp[gA{$)+ q'B(~~)], with strong-coupling
limit e~~[g'B($)]; and the latter-1 when g'-0,
even though its weak-coupling expansion is incor-
rect. ) The result (83) is consistent with this idea,
for it is the Q") that generate the difference be-
tween this strong-coupling form and the simple
Born approximation, in the small-coupling limit.

For wide-angle processes, the evaluations here
are clearly incomplete; but their indications are
that, in part because of relative cancellations,
and in part because p's couple less strongly to
nucleons than do a' s, form-fa, ctor damping due
to p', p' exchange, as well as the contributions to
large-p, scattering and production amplitudes,
may be neglected as a first approximation in the
construction of massive-gluon bremsstrahlung
models. Qne assumes, of course, that the strong-
coupling limits and approximations used are act-
ua.lly applicable to p exchange.

Finally, there are some interesting speculations
that follow from this analysis:

(i) It would be interesting to calculate the effects
of isospin on the "tov er-graph" contributions to
the eikonal neglected in all of the above. %ould a
phenomenological procedure similar to that used
to generate Pomerons from isoscalar ladder
graphs be sufficient to produce unitarized and
Heggeized p excha, nge 7

(ii) As p. decreases, at fixed q and s, the damp-
ing of the e~ factor can become appreciable. In
the limit a.s p. -0, one must consider suitably in-
clusive cross sections, combining scattering with
soft-meson emission; and because of existing
theorems, " one expects that all logarithmic mass
dependence in every order of perturbation theory
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will cancel. In the present case of strongly cou-
pled fields, where the limit of large coupling is
taken before p, vanishes, it would be interesting
to see if one can have an SU(2) version of the
Yang-Mills behavior suggested in Ref. 5. The
graphical origins of that effect, if it exists, would
be quite different in each case; but it would be in-
teresting to find an explicit case of damping by
logarithmic mass dependence in a strongly cou-
pled, non-Abelian theory.

(iii) If the strong-coupling analysis of Sec. III
could be extended to SU(3), and the self-interac-
tions of Yang-Mills gluons included along with
gluon exchange in a generalization of the station-

ary-phase procedure of Sec. IV, one would have
a rough model for quark-quark scattering. It
would then be most interesting to see if the Corn-
wall-Tiktopoulos damping occurs, as p -0.
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