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Virial theorem and stability of localized solutions of relativistic classical interacting fields*
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The properties of classical meson fields interacting with the Dirac field are considered in more detail
analytically. %'e obtain a virial relation between the kinetic and potential energy of the interacting Dirac
field. The stability of the classical solutions of the coupled fields constrained to the lowest particle solution of
the Dirac equation in three space dimensions is investigated. A criterion allowing the determination of
stability of Abelian meson fields in interaction with the Dirac field is given.

I. INTRODUCTION

A relation between the kinetic and potential en-
ergies for particles in external potentials that
follows from the equation of motion is referred to
as a virial theorem. ' A similar relation has been
found for classical, relativistically invariant, ,
scalar, sen-interacting fields. ' A simple proof
is given by Jackiw and Goldstone, ' who further
show that stable solutions in this case exist only
in one space dimension. This is a very relevant
result in the light of recent discussion of the role
of the classical field solutions in quantum theory. "

The instability of the solutions studied in Ref. 3
is apparently a consequence of the simplicity of
the scalar, self-interacting field. Therefore, in
this note I consider a wider class of theories as-
sociated with a charged spinor (Dirac) field in
interaction with neutral meson fields, as well as
the case of a self-interacting Dirac field. I find
that the physically interesting solutions in these
cases must be constrained to the sector of the
spectrum of the Dirac equation associated with
particle eigensolutions. The only stable solution
is built upon the Iaseest-energy particle solution of
the Dirac equation.

In order to characterize an eigenstate as a
pw'tickle solution we may simply require that for
vanishing strength of the coupling it becomes a
positive-f requency f r ee-particle solution. In the
particularly interesting case of the interaction
with a scalar-meson field this is equivalent to the
requirement that we consider the subset of posi-
tive-frequency eigensolutions. If vector mesons
are present, we must be more careful —even a
resonance in the negative-frequency continuum
may be a state we wish to consider. '

In the next section we will study in detail the
implications of the virial theorem that I derive.
In particular, I will obtain an expression for the
total energy of the interacting fields that depends
only on the meson field. Some interesting results
concerning the kinetic and potential energies of the

II. THE VIRIAL APPROACH

TO CLASSICAL FIELD EQUATIONS

A. Dirac field in an external potential

Basic in our considerations will be a relation
describing the kinetic energy of the fermion field

in some "external, " frozen potential V,„(x). Let
HD be the Dirac operator

HD = a 'p+ Prn+ V,„,
where p&, p) are the usual Dirac matrices, and m
is the mass of the fermion field. V,„ is a matrix
in the spinor space and can in principle consist
of all possible couplings (S, V, P,&, T). Then we
have

(2.l)

[x p, HD]=in p —ix ~ (VV,„). (2.2)

Taking the expectation value of Eq. (2.2) between

meson field will be derived here that point to the
unique character of three-dimensional space. In
particular, I show that in three space dimensions
the total energy can be seen as an. explicit function
of the meson fields only; no derivative of the
meson field enters the explicit expressions that
is strictly local. Furthermore, I find that any q4-
like self-interaction of the meson field is effec-
tively canceled by the contribution of the Dirac
field to the total energy. I also consider other
interactions of the Dirac field that may not be
readily expressed as coupling with other relati-
vistic fields, but can be conveniently described
by a two-body potential V(x —y). Particularly
interesting here is the case of the contact self-
interaction, that is V-5'(x —y) also considered in
Ref. 6.

I then turn to the discussion of the stability of
the solutions. I obtain the second variations of the
fields that should be positive for the stable solu-
tions of first-variation equations. These consider-
ations will provide us with a criterion to deter-
mine if a solution is stable, provided that the ana-
lytic solutions of the field equations are known.
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localized eigenfunctions P„of HD

&D&k = &k&'k ™~k~ m (2 3)

(2.7b)

and the equations of motion. for the fields are

we find

d'x Ptsn pg, = d'x (((t~ (VV,„)P,. (2.4)

&U
& s —+& s+ S~

=g s~a&s
S

[n p+P(m —g,y )]P,=e,P,.

(2.8a)

(2.8b)

This is a very useful relation as we will see in a
moment. Beforehand I wouM like to caution the
reader to use Eq. (2.4) only when $s is an eigen-
function of H~. A superposition of eigenfunctions

For the time being, I consider only time-indepen-
dent scalar fields. Then Eq. (2.4) for the kinetic
energy of the Dirac field becomes, using Eq.
(2.8),

(2.5}

does not satisfy the virial equation (2.4}, since the
expectation value of the commutator is

d'x p, [x ~ p, HD]p, = pa*as(es+ e )
kWm

We record the useful relations

(2.9)

x d'x Pg pg, . (2.6)

B. Scalar, time-independent meson field

The Lagrangian of coupled Dirac-scalar-meson
fields is

&=T(((r p -m)4+ g,pP4+ .s„p,s"p. --

-[U(q, ) —U,], (2.7a)

We record that all of gk considered above are
localized discrete eigenstates in configuration
space. In general, the last term in Eq. (2.6) will
not vanish, since x 'p can induce transitions be-
tween the states m and k.

Equation (2.4) has been known for the case of an
electron in the external electromagnetic field."'

+ V ~ [(x ~ VC(s) ~ Vps ——,x(Vys)'],

(2.10a)

x ~ Vgs= -n(U —U, )+ V[x(U —U, )], (2.10b)
S

where U, is an (integration) constant to be fixed
by boundary conditions. Furthermore, we have
denoted by

n=V'x (2.11)

the dimensionality of the space. Normally n= 3,
but to facilitate contact with other work' and to
dramatize the uniqueness of the three-dimensional,
physical space, we use in the remainder of this
section the number of dimensions as a parameter.
We find using Eq. (2.10) for the kinetic energy of
the Dirac field

dxP n pP = d"x (Vp )'+n[U(p ) —U,] + /d"x V [Vp (x ~ Vp )--,x(Vp )'-x(U —U, )]. (2.12)

The second part of the integral (2.12) is a surface
te rm which will vanish wheneve r

~x
~

"[U U, —,'(Vp, )']-0, (2.13)

d 1 d(t("~ '
d'xx ——— +U —Uo .

(2.14)

Let us consider now the special case n = 1, so far
looked at in the literature. Here the situation is
simpler, since the vector products collapse in Eq.
(2.9) and we obtain directly

In the case of the cr model for which exact analyti-
cal solutions have been studied in Ref. 12, U —U,
is given by (Xs=m/g —ps):

U —U, = H(g fs'}', (2.15)

and the term in the large square brackets in Eq.
(2.14) vanishes for the solution

It s =f tanh[W2Hf (x -xo)]. (2.16)

That is consistent with the vanishing kinetic ener-
gy of the quasi-fermion field. We note that Eq.
(2.13) is also satisfied in the one-dimensional
example given above; thus the limit n- 1 in Eq.
(2.12) can be taken and it yields Eq. (2.14).
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C. The effective energy

Using the equation of motion (2.8a) we find for
the interaction term of the fields

d"xgsPsPsPs= — d"x (&Ps) + Ps

+ d"xV (PsVys). (2.17)

/xi"-'ysVys —0, ix/-
In the same manner we find

(2.18}

gs dx ~$~= dx — dxV' Vgs
BPs

(2.19)

Again, the second part in the above equation is a
surface term that will vanish whenever

Another notable feature is that any &s4 propor-
tional term in U cancels out in three space dimen-
sions (in general p ' cancels). This is an impor-
tant feature, since ps' is commonly held respon-
sible for the stability of a theory with spontane-
ously broken symmetry (see for example Refs.
10, 3, 4). In the case of a one-dimensional world
(n= 1) where ps' contribution vanishes, this is
obviously a necessary term to stabilize the theory.
It would therefore seem that a p' plays the role
of the p' term in three space dimensions, as com-
pared with one-dimensional models.

In the context of the above given derivation of

E,«one may ask the question how an effective
potential U,«would look like if the interaction
term would be added to U (in one space dimension,
where the scalar density vanishes, this is identi-
cal to U). Thus, defining

with the most severe restriction in order for the
surface term to vanish:

(2.20)

The Hamiltonian associated with the Lagrangian
(2.7) is, with a time-independent ps,

sr&
= (&s) -g& s&a'4)

we find from the equations of motion

aU~.„=U(w.)-w. (-~~. , s
that is,

(2.23)

(2.24)

H = d x $~ Q 'p+ ply (p —gasps $~$~+ 2

gU 1
d"xU,«= d"x U ys -Ps Vy, '

8&s

+ U(ps} —Uo]. (2.21} + d"x V ~ +sV~s (2.25)

We may use Eqs. (2.12), (2.15), (2.19) to obtain an
expression for the Hamiltonian, provided that Eq.
(2.20) is satisfied:

(&W,)'+ (n+ 1)lU(W, ) - U J

It would appear following the conventional argu-
ments that the solutions which minimize the Hamil-
tonian are those for which p s is a solution of (ne-
glecting the inhomogeneity of the fields ps)

m &U' g, ~s ap, (2.22)

d -
eU a2U

U(V s) —V', , (2.26}

As is well known, the above equation, Eq. (2.22),
cannot be used as a basis of a variational principle.
For known ps that minimize Eq. (2.21) it gives
the proper value of H . Therefore we may view
E,«as an expression defining the total energy; it
gives the proper description of the energy of the
fields, but is not the basis of a variational princi-
ple.

The first striking feature of Eq. (2.22) is the
fact that for n(3 (n is the number of space dimen-
sions) the effective kinetic energy of the scalar
field becomes negative definite. It just vanishes
for n = 3. Thus the energy content of E,« in nor-
mal number of space dimensions is independent of
the derivatives of the field ps. The negative-def-
inite kinetic energy for n& 3 signals a possible
instability of the Hamiltonian; the energy of the
solution could be reduced by a small variation of

ps that involve large gradiants of ps.

Xs=m/gs —ps (2.27)

that is introduced, instead of ps. The advantage
is that there is no explicit mass term of the fer-
mion field in the Hamiltonian. Our result may be
easily adapted and we find for the Hamiltonian

H = d x P a P~+ZsX s~~+ V X s)+ 2 VX s~

(2.28)

That this is not the case is shown by Eq. (2.12);
the kinetic energy of the Dirac field is a signifi-
cant contribution and it influences strongly the
total energy. However, the above argument is very
instructive, since it Proves the dominance of the
interaction term over the potential U; it is not the
solution of BU/&y s = 0 that would drive the solution
in absence of the Dirac kinetic energy term but
rather it is the condition (2.26).

Very often it is the field
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fl 2 9V
(&X&)'+(n+1)V(X&)-X~s ~Xs-

(2.29)

V(x, ) = U(4, ) —U.. (2.30)

The field Xs may be considered the effective mass
of the Dirac field P. The mass of the free Dirac
field is now

The interaction term I is a combination of all
possible interactions as demonstrated in Eq.
(2.34d). s(i) denotes the character of the field,
e.g. , it is+1 for scalar fields and -1 for the
longitudinal component of the vector fields. In
general, a similar sign factor will be implicitly
built into the potential U. Variation of 2 with re-
spect to the different, dynamically independent
fields pj leads to

i"+g PI' $=0-
i

sl =ggx g(x ~), (2.31) then the analog of Eq. (2.9) may be written

that is dependent on the specific form of V(X z).
Further we note that since the integrability of the
Hamiltonian H requires U(p ~

= 0) = U, we find
V (rn /g q) = Uo.

In the case of the o model the function V is con-
sidered to be

l

ing
d"x &~to. pP„=- d"x g (x Vy, ) ", (2.36)

i i-

then we find using Eq. (2.34b) the analog of Eq.
(2.12)

v=H(x g'-f')'.
We find in one space dimension

E ~f= 4C —VXs +20

(2.32)

(2.33a)

d"x P s(i) (Vp, )'+n(U —U,),. n —2

2

(2.37)

while in three space dimensions we obtain

EOI 3 d3x 4+f 2(f 2
X 2) (2.33b)

and for the interaction Lagrangian, Eq. (2.34), we
find in a similar way as for Eq. (2.1V)

Only if Xz is allowed to vary between+ f and f-
is the last expression explicitly positive definite.
Thus again the form of the solution is essential
for the determination of a lower bound on E,«.
However, an upper limit for E,«may be obtained
setting X z'=0 in Eq. (2.33) and taking the volume
of the solution for the integral:

E;, (4,/3)ft'4fff'.

d"x g s(i)(vy, )'+ p, (2.38)
BU

j a

The scalar density is given as by Eq. (2.19). Then
for the Hamiltonian (with time-independent fields)

H= d x j, 0 'p+pPR $j, — gjpjpg+j$g

D. Other interactions

The I.agrangian of the generalized system of in-
teracting fieMs involving different mesons we find

+ g s(f)2('7&&)2+ U —Uo (2.39)

Z = S~+ 2„+Zy~

may be taken to be

(2.34)
1

E„,= dx si &p, '+ n+1 U —U,
2

(2.34a)Z„=g(y p —m)g,

~.= g, (s.~,)(s"V')-fU(~, )-U(0)l, (2.40}

f =&o(&H's-&v&'++A'&5 J+ ' ''}

(2.34b)

(2.34c}

(2.34d)

(2.34e)

U = Q s(i)U((y(), (2.41)

then we have

Whenever there is no explicit coupling between
the different meson fields, that is when U is a sum
of the contributions from the different fields
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E,f, = Q s(i) d "x (&y, ) + (n+ 1}(U( Uq, )
L

8U
(2.42)

g (p

where we have included the fermion mass in the
scalar field, in the manner discussed in Eqs.
(2.27)-(2.33). Naturally, U need not be a sum of
the individual meson contributions. Then we will
find the more general Eq. (2.40) very useful.

In addition to the comments made previously,
we note that E,«may be negative definite for some
interactions. Since the virial approach assumes
existence of a valid solution to the Dirac equation,
that may not exist in each case, care must be
exercised when such result is obtained. We con-
sider such a case now.

E. Vector-type interaction

We specialize our general results to the particu-
lar case of a Lorentz vector field A„of mass p.~
in interaction with the Dirac field. The Lagran-
gian takes the form

Z~= —ge A.'9"A +~ p,~2A A"

which is positive definite, constrained to the longi-
tudinal part of A.„, provided that the scalar inte-
gral Jd"x t/r„P~& 0. The above-described change in
sign accomplishes at the same time a change in
the polarity of the vector interaction; the longi-
tudinal part is now attractive in the particle-par-
ticle channel, while the particle-antiparticle chan-
nel becomes repulsive. The quantum field theory,
if based on Eq. (2.45) would suffer from the well-
known difficulties associated with the possible
need for negative metric particles (ghosts) to
guarantee a bounded below spectrum. Therefore,
such modifications are usually not considered
seriously. Such an example considered in the
frame of classical field theory may, however,
serve as an educational example in order to gain
experience with "attractive" vector-type fields
encountered in non-Abelian meson theories. Re-
turning for a moment to Eq. (2.44) we wish to men-
tion again that it is in principle possible to find a
solution in which the space vector part of A„dom-
inates thus allowing a stable solution, even with the
conventional choice for the sign of the vector-field
action.

gv&. A'-0+4(y p -~)4,
and we find

(2.43) F. Absence of an explicit meson field

We consider the Hamiltonian

H = d"xP~(n p+Pm)g

+ rn d"x gP, (2.44) —Z~G d"xd"y p;a(x)&(x y)p;, (y)-
which is negative definite, considering longitu-
dinal component A, only. This is in agreement
with the generally known facts that the longitudinal
part of the vector-type interaction is repulsive in
the particle-particle channel and attractive only
in the particle-antiparticle channel.

The situation changes when the sign in the part
of the Lagrangian corresponding to the free vector
field is changed, that is when we consider

Z~, -~8 A 8„A„—~ p~ A

with

(2.47)

~ a=&a~ ~a.

V(x) = p G,.1,r,. d"y[f~(x y)P, ,(p] (2.48)

'The equation of motion for the Dirac field is
similar to that given in Eq. (2.8b). With the poten
tial

av&.A "0+4-(7 P -~)P.
Then we find

E"„,= d"x (VA„)'+ (n —17,
'

p, v'A'

(2.45)

(Z.p+Pm+ V)g, =e,g, . (2.49)

(2.46)
Application of Eq. (2.4) leads in a straightforward
manner to

dxg', ~ pp, = —gG; &y&x[p,„(x)2(x-y) &„~(x-y)p;,(V)], (2.50}

where we have made use of the relation



VIRIAL THFOREM AND STABILITY OF LOCALIZED. . . 1895

d"» d"y[E(x, y)x ~ V+(x —y)] = d"» d"y{E(»,y)[ y-' V,K(x —y)]],

Z, (» -y)= ix -yi ' (2.51)

For some l this ansatz is equivalent to our previ-
ous discussion. However, in most cases it is
quite difficult to find a theory based on interacting
meson-fermion fields to describe some of the
choices for K.

In the example (2.51) we find

that holds for functions E satisfying E(», y)
=E(y,»).

As a particular example for the interaction func-
tion K we consider

H~= d"x g~~ n p+Png P~ —— ~P„' . 2.60

Numerical solutions associated with the Eq. (2.60)
have been obtained previously, ' we only remark
here that in view of the equations of motion

(~ p+&(m -~4,4,)]P,=e,P, (2.61)

the virial relation reads

d"xg~n pg = d"x x' V'

(2.62)

d"xP n 'pP =l'V

where V is

~ = 2 —,
' f d"*d"5fi;,(nl*-vl'~; riH.

(2.52) Upon partial integration of the right-hand side, we

obtain, up to a vanishing surface term,

(2.63)

(2.53) d"»
2 (4,4,)'.
G—

(2.64)

Therefore we find in that case

8,'f ~
= (I + 1)V, + mS. (2.54)

The energy for the self-interacting Dirac field can
be written now as

We note that for I = -1 (Coulomb-type interaction)
we find

(2.55)

E,'„,= (n I}(-V,)+ mS, . —

8 is the scalar integral

(2.65)

while for E= j. and m=0 the kinetic and potential
energies contribute equally to the energy of the
solution. We find for the Hamiltonian with a
scalar-type coupling

+ — d"x d"y P~ x Q~ z x —y P~ y P~ y

(2.56}

S~= d"x P~P~ . (2.66)

This result, Eq. (2.65), corrects a superficial
impression that H is unbound, following from Eq.
(2.60) in which the self-interaction is attractive.
We find that the kinetic energy of the Dirac field
more than offsets the attractive self-interaction.
Since -V is always positive, we find that for all
dimensions the positivity of the solution depends on
the sign of the scalar integral. Further we note
that since the eigenfrequency can be written as

the effective energy to be c,= (n —2)(-V,)+ mS„ (2.67)

egg= d gPp$p x x —y (2.57}
a solution with finite, positive 6, may be found for
n —2.

= 2 d"xP~n pP. (2.58)

&~(x —y}= 6'(x —y). (2.59)

Then H assumes the form, for scalar-type self-
inte raction

We note that the energy, Eq. (2.57), rises linearly
with the size of the solutions.

We now consider the special case of the self-
interacting Dirac field

III. STABILITY OF THE CLASSICAL SOLUTIONS

A. Dirac field in an external potential

We have so far used a relation derived from the
equations of motion in order to obtain several
properties of the interacting fields. We have not

yet considered the stability of the eventually exist-
ing solutions. In principle, the solutions of the
coupled nonlinear equations of motion need not be
actual stable minima of the action; they let vanish
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the first variation of the action but no information
is available about the second variations. Let us
consider here as an example the case of an exter-
nally prescribed potential V „. Then the Hamll-
tonlan 1s

[& ' p+ P (» Zg-&P g)) 4(( = «(((I((( ~ (3.6)

The above equation must be always solved exactly
to obtain the Dirac eigenvalue &„ as a functional
depending on p~. Using the obvious relation

H= d'x n. p+Pm —V (3.1) (~) 8as 4-(,(x )Pg(x ) (3.7)

and the equation of motion follows from equating
to zero the first variation of (H —«N) with respect
to p. Here N is the norm of the field p while & is
the I agrange multiplier that ensures the normal-
izability of the solution. We find, as usual, the
eigenvalue equation

(n p+P» —V,„)g,=«~I((,. (3.2)

As is well known, the set of eigensolutions [P,] is
complete. Suppose we take a trial function

(3.3)

in an attempt to minimize the Hamiltonian, Eq.
(3.1). Using the expansion (3.3) into the complete
basis set Q,j generated by Eq. (3.2) we find

(3.4)

BcPr 5IPg(x)
(3.3)

The question which we now will address our-
selves to is: Are the solutions, constrained to the
lowest. positive-frequency (particle) sohltlons of
the Dirac field, stable'P To wit, let us continue
for a moment with the above example; writing

(3.9)

we find

(3.10)

&.=~(p.(+/p~(-'(&p. )+(((w.) —UJ, (3.(()

we recover the conventional equation of motion for
the field y~(x) that we now write in the form

The spectrum of the Dirac equation is unbounded
below and therefore the expression (3.4) does not
reflect in any way on the extrema described by
solutions of Eq. (3.2).

From this example we recognize the need to
constrain the number of allowed degrees of free-
dom of the Dirac field. We must exclude from
our considerations the possibility of a transition
that a classical Dirac particle can undergo into a
(classically) unoccupied state of arbitrary large
negative frequency that in quantum fieM theory
corresponds to antiparticle state of positive ener-
gy.

H, = d'x ~ —&go+ — 5y x,
(3.12)

H = dxd y-5@x

BUx 5 p$3(~ y)~v(~)~v(y),

+ dx g ~5@ +pm'„ (

3~(y)

We have included the conjugate momentum of the
meson field

B. 1'he scalar coupling

The solutions under investigation here thus must
be obtained by a method that allows a pmori re-
jection of all unwanted modes of the Dirac equa-
tion. In a paxticular application this means that
the Dirac equation must always be solved exactly
for some prescribed potential, and an eigenstate
P~ obtained.

In the case of the interacting Dirac-scalar fields,
we do actually minimize the action constrained by
this consideration, that is given by

into our considerations under the assumption that
it is of the same order as the variation 5p.

The first term H, is the term studied previously;
H~ vanishes ln consequence of the equations of mo-
tion [provided that po is actually a solution of Eq.
(3.3)l while H, is the correction quadratic in the
small variations. Our aim is to show that this
term is positive definite for arbitrarily chosen
5q.

Let us denote by

H'= «,[V]+ ~'zI~ (&V,)+ U(V, ) —U, l (3.5) (3.15)

where &~ follows from then varying H2 with respect to the 5y we find
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Q2U
5y 4Qcp+, 5+= — d'y T x, y 5p y,

Bc/

(3.16)

where &~ is an eigensolution of the equation

[(K ' p + P(m -f)]$~ = 6 )(I() ) (3.23)

with

Now, taking the usual form of the time dependence
of a neutral field ~o + ~&@&&. (3.24)

6y=}t(x)v 2cos&uf,

we find the nonlocal eigenvalue equation

$2U-~)(x)) . )(x)) J ))')()'())()()l(,
9t O(3f )

(3.17} The conjugate momenta are

w, = -s(i}p&.

We record the relation

(3 25)

= (oQ(x). (3.18)

Inserting this equation of motion into H, we find
(for spatially localized X)

s (I() g(x
'- = -ZP(x)1'&l(x).

Let us write

(I(), (x) = y', (x) + 5p, (x),

(3.26)

(3.27)
H = d3xu)' Xx (3.19)

%'e first study the case (d=0. It is well known
that such solutions correspond to spurious cen-
ter-of-mass motion. This is easily recognized
to be the case here. Differentiation of the Eq.
(3.8) leads to

H=Ho+H, +H2 (3.28)

where 5p, must transfer under Lorentz transfor-
mations in the same manner as the field y, . We
can carry the expansion of Eq. (3.22) out in the
same way as previously,

&'U ~ 5&0-&(&v,)+ . (&c.) = -&
) 50(x)

(3.20a)

and

H, =a[q ', ] (3.29)

Q(px y 5+x 5p y

Thus we find the classic result

X,(x, u& = 0)= V,y„ f = 1,2, 3.

(3.20b)

(3.21)

C. Other interactions

Taking the Hamiltonian (2.39) constrained to the
particular solution of the Dirac field

&= e),[p(]+ Q 2
[&,'+(&y, ')] + U(y, ) —U(),

i

(3.22)

When studying the eigenvalue spectrum of Eq.
(3.18) we have to allow both positive and negative
values of co'. The eventual stability of the solu-
tions p, is then a consequence of the absence of
negative ~' modes. In the absence of an analytical
expression for e[p] the simplest numerical method
to test the stability of the solutions involves a pro-
cedure that has been described in the paragraph
preceding Eq. (3.5); find for each given y~ the
Dirac eigenvalue e~[p~], compute H~, Eq. (3.5),
and find the minimum of H~ as a function of «ff) ~.
I have carried out such calculations and have
found that the numerical solutions given previ-
ously""" are stable.

(3.30)H, = d'x 5p,

H, vanishes in view of the equations of motion.
For H, we find

5H
H2= d~xd yg

5()()g x 5pg y yo

, ~ s(i)
+ dx+ (3.31)

Denoting by

T,~(x, y)=, , ', , = T~, (y, x), (3.32)

we have explicitly

H2= de m&r~+ V'5+& V'Qp~

+ dXdgg 5+)X g])Xyy Qp~ y

The equation of motion that follows under variation
of H, with respect to 5p, is

.(N()i, ~ ).()J)~') E~„(., )()),())

+ g 5y, =0. (3.34)
8+g~pg „0
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H2= dX s E (d ~ (3.36)

However, this ansatz for the field 5q,. becomes
compatible with the equations of motion only if all
; are equal. Even in that particular case we find
that the stability of the field solutions depends on
the balance between the different interaction in-
volved. Thus we obtain the result that, for exam-
ple under the simultaneous presence of the attrac-
tive scalar interaction and the repulsive vector
fields, there will be a region of the coupling
strengths for which no stable solutions will be
found. I have found in explicit calculations that at
such a point the numerical algorithms fail to give
a solution of equations of motion.

D. Linear elongations

The method, introduced into the study of classi-
cal field theories in Ref. 3 employs the linear
transformation

Then, for localized eigenfunctions p,- we find, re-
inserting into the Eq. (3.33),

H, = d. 'x m p'' —0@,.0@, 3.35

With the ansatz

by,. = X, icos(~, t)

we find

and takes the form

d'&pter py= — d'xgPx VV x (3.41)

in agreement with Eq. (2.4) (note that in this com-
parison V,„=—V).

However, the calculation of H" does not help us
further. Should we obtain a negative value for H",
it may only indicate that a number of negative-
frequency modes have been included into the trial
wave function. We now consider this point in some
more detail. Since the solutions P„of the Dirac
equation for a fixed "potential" V form a complete
set, we may write

))),(ax) = Q b»(a)V)»(x). (3.42)

That leads in a straightforward manner to the ex-
pression, using Eq. (3.40),

H [ax]=a'g b»(a) I'e»[p(ax)]+E, (ax) (3.43)

for the energy of the Hamiltonian (2.21), where E„
is the energy content of the scalar field. The par-
ticular term that destroys the conventional line of
arguments in the cases that involve the Dirac
field is

O»H~[ax] ~ &b»(a= 1)
~„(g(x))+ ~ ~ ~

x =ax.

The virial theorem is then obtain from

B[H(ax)/N(ax)]
Ba

(3.37)

(3.38)

(3.44)

Since the spectrum is not positive definite, there
is no way to determine the sign of the expression
(3.44). We note in passing that in view of Eq.
(3.42) we have

while the stability of the solutions should be tested
by ).) ) = I zl(.)z.(~)d'*, (3.45)

S'[H(xa)/N(ax)]
Ba' (3.39) and theref ore,

where N is the norm of the Dirac field. This ap-
proach, in view of our constrain to exact solutions
of the Dirac equation is, in Principle inapplicable
to our pavticulm' case. Nonetheless, we find that
Eq. (3.38) works since in the case of the Dirac
equation at a= 1 the exact solution must be a local
extremum of the Hamiltonian. Thus the virial
theorem follows in a straightforward manner when
norm is conserved from the variation of

fd'x a'gz[(1/a)n p+ P(nz —V(ax))]P

1d'x a')t)')t)

(3.40)

Bb~ t 3P»'(x)x ~ v))),(x)d'x.
C=g

(3.46)

The angular momentum selection rules allow cou-
pling of the lowest positive-frequency S state P,
in Eq. (3.46) to other S states only. The nonvan-
ishing of the expression (3.46) for negative fre-
quencies e» is easily documented [see also Eq.
(2.6)].

An explicit example of this inconclusiveness of
the elongation method ii given by the self-inter-
acting Dirac fields considered previously. Begin-
ning with the Hamiltonian, Eq. (2.60), we find
using Eq. (3.40)

t 1 1
H(ax)/N(ax)= d'x g' —n p+Pm 4 —,(T)))t))'

a 2a
d'x Ptg, (3.47)
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wherefrom we obtain again the relation (2.63) using
Eq. (3.38}. However, we find for the second deri-
vative

s '[H(ax) /N(ax) ] 6G
d'x(0P)',

a=1
(3.48)

a result that is explicitly negative definite. This
would make us worry about the stability of the
self-interacting field had we not convinced our-
selves with the help of Eq. (3.44} that such a re-
sult can arise as a consequence of the indefinite
character of the Dirac equation spectrum and has
nothing to do with the stability of the solutions.

IV. CONCLUSIONS

We have shown that a consistent classical field
theory in three space dimensions involving the
Dirac field is possible. Considering both the gen-
eral case and some particularly interesting exam-
ples involving Abelian meson fields we have found
that stable solutions to the field equations may
arise. We have been able to derive several useful
relations between the integrals of the fields, such
that significant physical insights into the nature
and structure of the solutions have been revealed.

In particular, relations that we derive for the
self-interacting Dirac field are very useful in the
understanding of the basic mechanisms involved.
Let us, for example, return to the case of the sca-
lar self-interaction of the massless fermions with
linearly rising potential [see Eq. (2.56)]. In this
case the interaction energy between the fermions
rises linearly with the distance between the parti-
cles. We then find that half of the energy of the
interacting particles resides in their kinetic ener-
gy, while the other half is absorbed in the inter-
action term.

In the self-consistent bag approximation of quark
confinement" the solutions of the Dirac field
studied here are associated with the quark wave
functions in the quarkic bag that is described by

the self-consistent meson fields. In the case of
the linearly rising fermion-fermion interaction
we thus find that half of the energy (in the rest
frame of the bag) would reside in the "free" quark
fields, while the other half would be associated
with the bag.

We have also considered other types of inter-
actions than the scalar electrodynamics, and have
found that qualitative features found in the simplest
case persist. Some additional complications arise
from the possible instabilities associated with the
repulsive character of some of the other inter-
actions. The detailed consideration of the stability
of the solutions leads us to a universal condition,
which in the absence of an exact solution to the
complicated problem of the interacting Dirac-
meson fields has not been at present used in actual
calculations. However, a related numerical ap-
proach is described that has been used to establish
the stability of the numerical solutions available
in the literature. ' '""

Aside from the many useful and practical rela-
tions that have been derived in this paper we have
been able to obtain interesting qualitative results
concerning the nature of the solutions of the cou-
pled fields. We have shown that in the case of
three space dimensions it is the interaction term
between the Dirac and meson fields that determines
largely the form of the solution. This is opposite
to the case of one space dimension; there the self-
interaction term of the meson field is the most
essential part of the Lagrangian. We further find
that the use of p4 self-interaction in three space
dimensions is not as essential as in the case of
one space dimension, also in view of the cancel-
lation of its immediate contribution to the total
energy of the solution.

ACKNOWLEDGMENTS

Helpful comments from A. Kerman are appre-
ciated.

*Work performed under the auspices of USERDA, Divi-
sion of Physical Research.

See for example R. M. Schectman and R. H. Good, Am.
J. Phys. 25, 219 (1956).

M. Creutz, Phys. Rev. D 12, 3126 (1975).
J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486
(1975).

Instead of giving a long list of references we refer the
reader to the proceedings of the conference on extend-
ed systems in field theory in Phys. Rep. 23C, 237
(1976), where most of the relevant work can be found.
J. Rafelski and B. Mueller, Phys. Rev. D 14, 3532

(1976).
6J. Rafelski, Phys. Lett. 66B, 262 (1977).
~V. Fock, Z. Phys. 63, 855 (1930).
M. E. Rose, Relativistic Flectron Theory (Wiley, New

York, 1961), Sec. 4.23 and references therein.
J. L. Friar and J. W. Negele, Phys. Rev. C 13, 1338
(1976).
W. A. Bardeen, M. S. Chanowitz, S. D. Drell, M. Wein-
stein, and T.-M. Yan, Phys. Rev. D 11, 1094 (1975).
'J. Rafelski, Phys. Rev. D 14, 2358 (1976).

' J. Rafelski, Lett. Nuovo Cimento 17, 575 (1976).


