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The leading real part of the inelastic two-body-to-three-body scattering amplitude is calculated in the high-

energy limit with fixed momentum transfer for vector mesons interacting through a Yang-Mills field. The
calculation is carried out to all orders of the coupling constant, and the resulting series is then summed to
give a Regge-pole term.

I. INTRODUCTION

'Ihe possibility that strong interactions are ac-
curately described by renormalizable non-Abelian
gauge field theories has led to a study of their
high-energy behavior. Of particular interest is the
question of the Reggeization of gauge vector me-
sons. In 1973, Grisaru, Schnitzer, and Tsao'
argued that in some models with spontaneously
broken vacuum symmetry the necessary criteria
for Reggeization are fulfilled. More recently,
McCoy and Wu, ' Lipatov, ' and Cheng and Lo' have
separately found that for a Yang-Mills theory with
SU(2) symmetry and an isospin=, ' Higgs boson, the
sum of the leading terms in the I= 1 channel (one
unit of isospin exchanged) of the elastic scattering
amplitude is of the Regge-pole form, correspond-
ing to the Reggeization of the vector meson. It is
therefore of interest to determine whether the in-
elastic amplitudes for this theory also Reggeize.
'Ihe purpose of this paper is to explicitly demon-
strate that, in the leading-logarithm approxima-
tion, the high-energy amplitude for two-body-to-
three-body scattering is predominantly real and
of the Regge-pole form.

The I= 1 channel of the elastic amplitude is pre-
dominantly real and comes from summing over the
ladder diagrams. Since the vector meson has spin
1, the asymptotic amplitude for a ladder diagram
with n loops is proportional to g's(g' 1ns}". Yet the
amplitude for isospin exchange should be much
smaller than s. These large terms are canceled
when they are summed over all perturbative or-
ders and the resulting amplitude is

2g's (s/X')
-)+A,

where a(t) &0 for t &0. These same features ar'o
also found in production processes: namely, the
amplitudes are mainly real, large individual
terms are canceled when summed, and the same
function a(t) appears as the power of the energy
in the Regge-pole terms.

To be specific, consider the scattering processes
V+V- V+V+A in a Yang-Mills SU(2} theory.
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FIG. 1. Schematic diagram of the inelastic scattering
process.

There are two incoming and two outgoing vector
mesons V of high energy and one created particle
A of much smaller energy. The created particle
is either another vector meson or an isospin-0
scalar. It is assumed that the incoming and out-
going high-energy particles are transversely po-
larized. To avoid the infrared problem, a com-
plex scalar doublet is introduced and the Higgs
mechanism' is invoked to give masses to all the
vector mesons. In this model, a scalar field with
0 isospin appears after symmetry breaking, and
the Higgs and Faddeev-Popov' ghosts do not con-
tribute to the leading order.

Let P, and P, be the four-momenta of the incom-
ing vector mesons, Pg Ai Pp Zkg be the momenta
of the outgoing vector mesons, and k=6,+62 be
the momentum of the created particle (see Fig. 1).
The kinematic region under consideration is

s»s„s,» fa,*/, fn, '[, x', kf',

g ln(s/X') -1,
g*«1,

where s=(p, +p,)', s, =(p, -a, +k)', ands, =(p,
-n, + k)' are the squares of the energies of various
pairs of particles in their center-of-mass sys-
tems; -b, , = L»' and -d, '= b,»' are the squares
of the momentum transfer between incoming and
outgoing high-energy particles in the center-of-
mass system, with the momenta of the incoming
particles pointing in the z direction, and where A.

is the vector-meson mass, M is the scalar mass,
and g is the coupling constant. It is this region
which gives the dominant contribution when calcu-
lating the imaginary part of the elastic scattering
ampl. itude by unitarity.
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The result of the calculation, which agrees with

that of Fadin, Kuraev, and I ipatov, ' is that the
amplitude can be written in the Begge-pole form

1 S & ~ai)

rI,

2~ 1
+( &) g ( s + ) (3 )3 ( 2 &2)[( )2

, (Z, '+ x')
8m'

where the vertex function

~i (&,i-&2i) —(P2. &) '. — ". +(&i'&)
Pg'Pg P2' k ' pg'P2

I'=
for vector-meson production with polarization vector c,

-A. for scalar production,

and where the isospin factor

A~~ +A,

P, k

(1.3a)

(1.3b)

i(5„e~~—5~e ~) =i(5„,e,~ —5„e,&~) for vector-meson production,
I=

5~5,„-5,~5~ for scalar production,

(1.4a)

(1.4b)

where a (= 1, 3, 3) and c (h and d) are the isospin
indices for the incoming (outgoing) high-energy
particles, and 8 is the isospin index for the created
vector meson. These isospin factors are repre-
sented diagrammatically in Fig. 2. Note that the
vertex function for vector-meson production (1.3a)
is gauge invariant, that is, I'(~)(, , = 0.

All lns, and lns, terms come from integrations
over the longitudinal momenta. Integrations over
transverse momenta may diverge for individual
Feynman diagrams, but when the contributions
from all diagrams of a given order are added to-
gether, the resulting integration is finite. This is
shown explicitly through the fifth order and is as-
sumed to be true for higher orders.

The infinite-momentum-space technique' is used
throughout. For an arbitrary four-vector P define

pp =po+p3. Then

(1.5a.)

and

with the momenta of the incoming particles in the
z direction,

A.

Pl, Pg+y yO y

p2=, p2, 0

where P „=P„-Ws. It further follows that

PJ+k~ 7

s2- p2 k+,

A„-k, ,

a, -k,

8 p = pdp+ctp 6 p~ ~ (1.5b) k, k =k+~'.
(The metric is such that P'=Po' —p .) If P
= (P+,P, p~) then in the center-of-mass system,

In the center-of-mass system the vertex function
I' for vector-meson production (1.3a) can be written

(a) (b)

+A,
+6 k+

J +

FIG. 2. Diagrams with the same isospin factors as
the final answer (1.4a) and (1.4b). (a) Vector-meson
production. e)) Scalar production.

The relevant Feynman rules' are (i) an overall
factor of i, (ii) a f-actor of ffor each v-ertex,
(iii) i5,~g„„/(0-—A. +ie) for the vector-meson
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/
g / g (gpogpv gpvgpo)

C

(

gpss

p g„-g p, „gp

SCALAR -VECTOR
VERTEX

-g»abg„.

FIG. 3. The Feynman rules for the vertices. The solid lines are vector mesons and the dashed line is the scalar.
For the four-vector vertex, the isospin factors are given diagrammatically, with each of the diagrams standing for the
isospin factor associated with it.

propagator (here a and b are the isospin indices
and g and v are the space-time indices), (iv)
i/( 'k- M' +is) for the scalar propagator, (v)
g(i~, )(d(k, —k,)pg„„+(k, —k,)„g,p + (k, —k,)„g+) for
a three-vector vertex, (vi)

a scalar-vector vertex. The vertex factors are
illustrated in Fig. 3. Note that the four-vector
vertex consists of three terms, corresponding to
the three ways it can be "unfused" to make two
three-vector vertices.

3-1 3-2 3-3 3-5

[(dodeca) (&&cad)( gpogpv gpv gpo)

+ (i~ada)(i~abc)(gppgvo gpvgpo)

+ (ieeaa)(i&ada)(g ogppvgppgvo)l

for a four-vector vertex, and (vii) -grab, agp„ for

II. THE THIRD-ORDER CALCULATION

Five diagrams contribute to the third-order am-
plitude for vector-meson production when the high-
momentum particles are transversely polarized.
They are shown in Fig. 4. Each amplitude 3R can
be written as the product of isospin factors I
(id, a, for each three-vector vertex; t%„ for each
scalar-vector vertex) and nonisospin or space-
time factors M, 3R =M ~ I. The space-time ampli-
tude for diagram 3-1 (shown in Fig. 5) equals

(o)

PI

b, p

p-h,
I I

3-6

(b)

FIG. 4. The third-order Feynman diagrams which
contribute in the high-energy limit to (a) vector-meson
production (five diagrams) and (b) scalar production
(one diagram).

e,cr

k = Q I+Q2

C, au cj, 8
2

P2 2 P2 ~2

FIG. 5. Feynman diagram 3-1.
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Ml =(-I) g elpel've2~e2'eea111212(3) 1+3+2 3

x (6,2 —X2+ ie } '(b.2
—A. + ie) (2.1)

1 {2P1 +1)pgpll { pl +1)pgPp

( P 1 a 1)llgpp

T2 (P2+ +2)egldl' + (P2 2i22)(Ogive

+ {-2P.+ &2).ge

(2 2)

(2.3)

1', = {2n,+ n„)„g„+(-n„—2a,)pg„
+ (&2 &1—)APr ~' (2 4)

The high-energy amplitude must be proportional
to s -2P, P,. Since e, and ~,. are transverse,

FIG. 6. The three possible polarizations of a line in
a Feynman diagram.

their components are of order unity; hence the
only P y dependence in the amplitude comes from
'the vertex T 1. Slllce e 1 'pl= 61' ' (pl —61}= 0,
follows tlla't E lp (-pl+ 261)p = 261' 61 alld

e, ,(-p, -s,)„=-2e,. ~ n. , and so these terms are
independent of p, . Therefore the (-p, +26,)p and
(-p, —a,)„ terms in I', do not contribute and will
be dropped. Likewise the (p, + n, 2)e and (p, -2a2)
terms are dropped from I', . Then the numerator
of (2.1) is proportional to

(2P, -z,), (-2P, +a,),l,e.= (-2P, + n, ,) ~ (2~,+ a,)e ~ (2P, -~,)+ (2P, -a,) ~ (-a, -2s,)e ~ (-2P, + a,)

+ e ~ (n„—s,)(2P, —a,) ~ (-2P, + n„)
1 1-2P,+P2 e &++2P,+P, &+& —2P,+P2 (2F+II -2e &+ —eI'(&2l. —&11))

1=-2p„p, {(n,„—a, ) ~ e --, e, k +-,2 0, ) . (2.5)

Since 4j 6g+Ay Ay~ Ay and likewise 6,'- -6, ' and since e»~, „g„„= &y 6y etc. , the ampli-
tude is

(3) 1
Ml 2g ( 8&e~ l6 i&l)( e&2'6 iJ2) 2 2 2 2 ('El (i'll b2J) 2E+k +2E ky}(a„+Z)Q„, +2. )

(2 5)

In the high-energy limit it is simpler to calculate
this and all other diagrams using the {+,—,&) nota-
tion throughout. In the product P&q& the sum over
the four space-time indices can be replaced by the
sum of the three terms on the right-hand side of
(1.5a). This is represented diagrammatically by
notating each line of a Feynman diagram with one
of the pa.irs (+, -), (-,+), or (J., i), with one sign
near each of the two end points of the line, as
shown in Fig. 6. Each line can have any of these
three polarizations, and all possibilities for all
internal lines are summed over. Each three-point
vertex then has three signs associated with it, one
corresponding to each line. Since a+ component
always multiplies a —component and a i component
always multiplies a & component,

so that the product of two longitudinal components
will reproduce the factor of —,

'
in (1.5a) and the pro-

duct of two transverse components will reproduce
the factor of -1 in (1.5a). The advantage of this
technique is that all lines emerging from high-mo-
mentum lines' are longitudinally polarized; fur-
ther, if the line emerges from a large+ (-) mo-
mentum line, then the sign on the emerging line
associated with that vertex is+ (-). This is equiv-
alent to the approximation of dropping all those
terms in a vertex on a large momentum line which
do not give a contribution proportional to that large
momentum. This was illustrated above in dropping
the {-p,+,26,)p and (-p, —a,)„ terms from 1'l.
Using this method, (2.2) and (2.3) become, respec-
tively,

8++ =g-- =fi+ =g+~ =gi- =g-~ = O ~ (2.V)

With the convention that a longitudinal (i.e., + or
-) component is always multiplied by an extra
factor of 1/W2,

g+-=g-+ = & and g~~= -&
y (2.8)
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p+&

(a)

Pl

Pg

P-6-6 p-6
+

k=Q, ++~

C d

FIG. 8. The Jacobi identity expressed diagrammatically.
Each diagram stands for the isospin factor associated
with it.

FIG. 7. ta) Feynman diagram 3-2. (b) Feynman dia-
gram 3-3.

X [(p 3+ n, 3) g + 3f]

1-2g'P l+P2 - 2k b2~ +A,
(2.10)

[Since the polarization factors (f „~e, ,)(f2l ~ e, J)
are common to all the amplitudes calculated in this
paper, they will henceforth be suppressed. ]

Feynman diagram 3-3 is shown in Fig. 7(b). The
only difference between its amplitude and that of
diagram 3-2 is that the propagator (p, -a, -b2)'

i+ereplaces (p, +n, )'-2X'+ie. Since (p, -n,
-n2)2 —a'+ie - -p„k, the space-time amplitude
M,' - -M,'). The diagrams do not cancel, how-
ever, because they have different isospin factors.
This will be discussed below.

Diagram 3-4 (3-5) is obtained from diagram 3-2
(3-3) by reflecting through a horizontal plane mir-
ror, under which

so that I',I', - -2s.
Feynman diagram 3-2 is shown in Fig. 7(a). The

space-time amplitude is

M(3) ( i)1+3+2 3 Pl+ P2
(k

2 g2+le) 12p
2 2*

-2 3 1
2g Pl+P2 k g 2 ) 2ll + (2.12)

Likewise

1
M 3

—-2g p, 4p3 k, b, ,~ +A,
(2.13)

The Jacobi identity for isospin, "
(3f444)(3f433) —(3f43 )(3f33 ) =(3f443)(lf4g ), (2.14)

is expressed diagrammatically in Fig. 8. If I is
the isospin factor for a given diagram, it implies
that

I(3) g (3) —y(3)
2 3

and (2.15)

Under this reversal, each vector-meson vertex,
which was previously calculated from the Feynman
rules by tracing the incoming momentum in a
clockwise fashion, is now traced counterclockwise;
this introduces a factor of (-1) to revert to the
correct, clockwise, ordering. Thus

M4 (p„,p2, k4, k, n, l, n3l, e„e,el)(3)

-(-1)'M'3"(p2 ipi+i i +i 2li i.i i .i l)

Pl P2&

~l-&2 ~

+~~ ~

(2.11)

1(3) 1(3) 1(3)

Therefore, the total space-time amplitude for the
third order is

M() =M()+M()+M()
1 2 4

1 1 &2i'+ + A.

g & 2 2» 3 2& f J. (nlJ. n2i) + - 2 2 -k+ ~ i- 2 2 (2.16)

and the isospin is that of the diagram in Fig. 2(a).
For scalar production, only diagram 3-6, shown in Fig. 4(b), contributes. A simple calculation shows

that its amplitude is

M(') --2 '~s 1
3 g (n 2 g2)( 2 y2) i (2.17)

with isospin of the diagram in Fig. 2(b).
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III. THE FIFTHAROER CALCULATION

Thirty six fifth-ordex Feynman diagrams for vector-meson production ax'e shown in Fig. 9. No other
diagrams contribute to the high-energy limit. Diagram 5-1, shown in Fig. 10, has the space-time ampli-
tude

(3 l)

~,f,-—(-, (~„+g,)(-2h +q )-,~ (Z„-~„-2~,)(-h +2q )+-,' „(-n +2

-e (Z,~+j,) (j,+2Z»+Z»)+-,'e (-q, )(-k +2q )+ e (-k +2q )(k, —q, )) (3.2)

D, =((P, +q)'-&'+fe)((q+~, )'-X'+fe)((~, -q)'-Z'+i~)(q'-X'+)&)

-((p„+q,)q —j '-x'+i~)((q, +a„)q -(j +i„)'-x'+k)

&& ((q - a, )q, -(Z„-q,)' X'+-ie)(q, q g, '-X'+-i~) . (3.3)

Aft thi a proximation of D the q integral is evaluated by contour integration. The zeros of (3.3) oc-
cur at

q+ = pi++ -()li +& &&) ) (3.4a)

5-l
q, = -b,„+—((j,+ Z„)'+z' - i~ ), (3.4b)

q, = ((Z„-q„)'+x'-f~),

q, = —(j, +x -fe) .a (3.4d)

If q «0, then all these poles of the integrand are
in the upper half of the complex q+ plane, and
the contoux' may be closed in the lower half-plane
to give zero. Similax'ly, if q &6, , all the poles
are in the lowlier half-plane and the integration is
again zero. Thus the only nonzero contribution

5-27'

5- 3I

5-35

FIG. 9. Fifth-order Finnan diagrams fox' vector-
meson production.

Pg

FIG. 10. Feynman diagram 5-1. The cross (& ) indi-
cates the pole in the complex q, plane about which the
contour is closed.
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comes from the region"

(3.5)

[Actually, in approximating (p, +q)' by (p„+q, )q —q, ' in (3.3), it was tacitly assumed that q»p,
=X'/p„. ] In this region, the contour is closed about the only pole in the upper half-plane, namely (3.4c).
This is indicated in Fig. 10 by a cross (x} on the line carrying momentum n,, -q.

Therefore

I 2 ~
~
~

~
~
~~I

~ ~
~

~

~

~
~~ ~ ~ ~~

~~
~
~

~ ~
~
~ ~

~

~ ~ ~
~~ ~

~
~~ ~ ~~ ~ ~I

1 ~2- 0- PX+0'-

((Z„-q,)' +x')-q, ' x'-+i~ (3.6}

where the q, terms appearing in I,I', are xeplaced
by (3.4c). The only region in this integration which
contributes to In(s, /X'} is

A.

Pa+
Keg (3.'I)

FF, 26 '(A +q ) f+(A 6 —2q )+ 6 }i + ( (jh. +q )'(q +26 +6 )

—((Z„-q, )'+ x') ——,
' (k~'+ x'))

Fi (3Z„—Z„)+-2e,k + = (--2(k, '+X')+2(Z„'+X') —(Z„'+X')1J. 2 + y 2

—(q ~'+ x') —((Z„+q, )'+ x')+ x') (3.9)

where the c component has been expressed in terms of the two denominator factors q~'+A. ' and

(6~~+@~} +A. and b~~ +X, Z2~ +X, k~ +X .
Using the approximations (3.8), the only q dependence in M['i is from D„so the q integration becomes

—-ln "- -ln ~

( s & d Qz
(2s)' (q, '+x') [(q,+ Z„)'+x']

x & ' 36 —6 + —e A' + ———k +A, +26 +A. —6 +~ +A

dg~ 1
Z» +A.' ~ (2&) q~ +&

(3.11)

where the origin of the logarithmically divergent integral has been shifted. Thus the integration over the
transverse momentum j~ does not converge. This divergence will cancel out exactly when contributions
from all diagrams are added together.

Feynman diagx'am 5-2 is shown in Fig. 11. It differs from diagram 5-1 by the replacement of the props
gator (p, +q)' —g'+ jg by (p, -q —n, ) —X +it. Since
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P( p-h
I I

FIG. 12. The diagrammatic expression of the isospin
identity (i~~)(ie~}(i~«~) =i&,.

FIG. 11. Feynman diagram 5-2.

(P 2+q} —A. + 2e P2+q

(P x
-q —~2) —& + 2& -P i+q

(3.12a)

(3.12b}

Jacobi identity for isospin [see (2.14) and Fig. 8]
and the use of (ie„,)(is~~,)(iraq„) =i&„2 (illustrated in
Fig. 12), shows that I(') -I(') =I('), as seen in
Fig. 13. Thus,

it follows that M, ' --M~1' . An application of the 3(t{') +3/(') =M ')I(') +M ' I ' -M ' I(' . (3.13)

The space-time amplitude of Feynman diagram 5-3 (shown in Fig. 14}differs from that of diagram 5-1
in two respects: First, the vector-meson propagator i/[(-I) 2q)'-X'+ie] is replaced by the scalar prop-
agator i/[(h, -q)' -M'+ ie], and so (3.4c) is replaced by q, = [-1/(n, -q )]((5„-(l,)'-M'+is}, and sec-
ond, I',1",is replaced by (-)).)'e /~. Thus

s 1 e dq.
+), u (2~)' ((l '+)(')[((1,+ ~»)'+)('] '

By (3.12), M(,') --M(') . Since I(') =I(') and I(' =I(' using (2.15),

3g(2) +3g(2) M(2)i(2) pM(2) i(2) -M(2) I(2)
3 4 3 3 4 4 3 1

Feynman diagram 5-5 is shown in Fig. 15. Its space-time amplitude is

(.)

(3.14)

(3.15)

(3.18)

2 Pl+q (q+q- QJ X +2 6)( q+( 2 q-) (622 Qj.) X +26) (3.1V)

The q, integration is zero unless (3.5) holds and in this case the contour is closed in the upper half-plane
about the pole at

(&„-j,)'+)(' ie—
(3.18)

So

2q 2q

) „t) ()' -q ){-q {(2.,-i).)' x*l/ta -q )-j,*-z* (a) ' (3.19)

and the dominant contribution to this integral again comes from the region (3.7}, where it is approximately

FIG. 13. Diagrammatic calculation of the isospin
associated with the combined amplitude of Feynman dia-
grams 5-1 and 5-2. FIG. 14. Feynman diagram 5-3.
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p) p) +q p -6 P l P~ ~l &g p, -b,
,
-q p -6

E
= b, , +hq

Pp

FIG. 15. Feynman diagram 5-5. FIG. 16. Feynman diagram 5-6.

1 1 ~- dq . 1 1 s
2gg ~ 2 2 --2wi —,, ln ~

PZ+ qz +& ),2g g P„g +&
(3.20)

Therefore,

~s 1 e d'q~ 1
'+A. ' k (2w)'

(3.21)

which is divergent in the transverse-momentum integration.
Feynman diagram 5-6, shown in Fig. 16, differs from Feynman diagram 5-5 by the replacement of p]+

by p, —6, —n,„ the replacement of p, +q by p, —q —h„and in the ordering of the internal vertex (the one
off the large momentum lines). Since

[(p, + 6,)' —X'+ ie][(p, + q)' —X'+ ie]- [(p, —n, —6,)' —X'+is][(p, —q —n, ,)' —X'+i@]-p„'q k (3.22)

the replacement of the propagators makes no change in the asymptotic form of the amplitude. However, in
diagram 5-5, the clockwise ordering of the momenta into the internal vertex is (6„—q, q —n, ,), whereas
the ordering for diagram 5-6 is (h, , q —B„—q). According to the Feynman rules for a three-vector vertex
(Fig. 3), this introduces a difference of a minus sign, so that M',"--M', ". Using the isospin identity of
Fig. 12, f5'~ =f~'& and I',"=f3", so from (2.15)

ag('& + m(, ') =m('&I", ) . (3.23)

Feynman diagram 5-7 is shown with two different internal momentum flows in Figs. 17(a) and 17(b). By
a now familiar analysis, the two diagrams differ only in two propagators on the large + momentum line and
in the ordering of the internal vertex. Each of these three differences causes a change of a minus sign; so

M~, '~ - (-1)'M~'~ - 0

to leading order. Thus this diagram does not contribute. "
The space-time amplitude for Feynman diagram 5-8, drawn in Fig. 18(a}, is

(3.24)

—,'(2q —k }e
"p„q ( q„(&, -q ) —(Z-„-q,)' —~'+i )(e( , q+)k-q(q, n.„+)' x'+xe)-

P, p, +q p, +q-4;4,

4,+4,

P, p, +4;q p, -q-&, p, -4,

4,+4,

p(++I
+ +

4~- q

P( +q p -4
+

4,+42
E

+ + +
q+4 42-q

p -4

4,+4,

(b)

P2

(a) (b)

FIG. 17. A diagrammatic argument that Feynman dia-
gram 5-7 does not contribute to leading order.

FIG. 18. (a) Feynman diagrams 5-8. (b) Feynman dia-
gram 5-9.
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8+Q P~ Q ~i Pi Q ~i+~z Pi ~i P( Pi+ Q Pi

+ +

Q+~i" 5 +6

P, -Q-~, P, -~,

Pz

(a) (b)

P2 P2

(a)
P2 ~i Pe ~Z

(b)

Pi+Q Pi+I ~] ~a P[

Qn

P( P)-Q+62

Q 2

0 Q

Pi Pi Q ~i Pi

il Q
tt),+62

(c)

Pe

Pi P+Q P

P Pz+Q ~z
FIG. 20. Feynman diagrams (a) 5-13, (b) 5-14, (c)

5-15, and (d) 5-16.

Pp

P, +Q

(e)

«+b, 2

Pz P2

Pi Pi-Q'&2 P~-Q-«Pt-« 'The only nonzero contribution comes from the
region (3.5), and then the contour is closed in the
upper half-plane about the pole at (3.4c). Once
again, the dominant contribution from the q
integration comes from the region (3.7), and so

FIG. 19. Diagrammatic argument that Feynman dia-
grams 5-10 (a, b), 5-11 (c,d}, and 5-12 (e, f) do not
contribute to leading order.

(5) 5 $'~ 1 p d q~ 1

Z, ~ +X k (2m)' q, +X'

(3.26)

where the origin has been translated in the logarithmically divergent integral.
Feynman diagram 5-9 is shown in Fig. 18(b). By comparison with diagram 5-8 in Fig. 18(a),

V") - -V(5)

From the isospin identity of Fig. 12, I,"= l.'„'"' and I,' =I,', so from (2.15),

m& "&
~ Sg") -v("I")

(3.27)

(3.28)

Figure 19 shows Feynman diagrams 5-10, 5-11, and 5-12, each drawn with two different internal momen-
tum flows; comparison of the propagators and internal vertices of these pairs shows that none of them con-
tributes to leading order.

Feynman diagrams 5-13 through 5-16 are drawn in Fig. 20:

U ( g ) g (3.29}

where

D~~ [(p, —q )(p2~ —q „)—q~ —X +RE] (q+q —q~ —X + ze)[(p g~ + q~)q —q~ —X + te]

&& [(q, + a„}q —(q, + &„)'-x'+ie] . (3.30)

The integration is negligible unless

P&=
C P2 (3.31}

half-plane about the pole at

q~ +A. —ie 1
q =P — =0

P, -q P2
(3.32)

in which case the contour is closed in the upper Then the q integral is approximately

-1
(q +Z, )+X (3.33)
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P(

Q i

P( +Q p -d
+

d,+d2

P, p(+q pi

+d(

di+d~

FIG. 21. Diagrammatic calculation of the isospin
associated with the combined amplitudes of Feynman
diagrams 5-13 through 5-16.

Pq p, -d2 P2 Pi Q-da p&-d&

(b)

Thus, in effect, the q k,. —(q~+ Z, ,)' —X' term in
the denominator acts as a cutoff; there is no con-
tribution to the leading order unless q k, =&1, in
which case the integral becomes

Pi

q+

Pi

= d,+dI

pi

q+d, i

q-d&0

pi p -d

d,+d,

(3.34)
(q3. + +23.) +& z2/2

which gives the same answer as before. It follows
that

P2

(c)

P2 d2 Pp P.+q-d.

FIG. 22. Feynmandiagrams (a)' 5-33, (b) 5-34, (c)
5-35, and (d) 5-36.

M(') --2g'sin ~
13 X2 k,

J (2v)' (q, 2+ X')[(q~+ i„)'+X']

(3.35)

-M") —-M") - M ') -M ')
14 15 16 13 (3.36)

From Fig. 20, by comparing propagators on the
high-momentum lines,

A diagrammatic calculation of the isospin, using
the identities of Figs. 8 and 12, is given in Fig. 21
and shows that

1(5) I(5) I(5) 1(5) —1(3)
13 14 15 16 1 7

so that

(3.37)

m&3~+3i(&',&+3}(P&+3}d;~—,@&3,I II'& . (3.38)

Therefore, from (3.11), (3.13), (3.14), (3.15},
(3.21), (3.23), (3.26), (3.28), (3.35), and (3.38),

8 g2 d 2 y2 (2v}3 (
2 g2)[( g )2 ) 2]

~„+&'
&& e, (3h, —A, ) + e+ k ——2 -",

+ ={--'2(k,2+X')+ 2(i„2+X') —(Z2~'+ X'})
k

(3.39)

Note that the transverse momentum integration in (3.39) is convergent
Feynman diagrams 5-17 through 5-32 are obtained by reflecting diagrams 5-1 through 5-16 respectively

through a horizontal plane mirror, which is equivalent to the transformation (2.11) with a minus sign
added. Thus

32 2s, 1 dq~ 1
g g2 g 2 72 (2 )3 (

2 g2)[(~ g )2 g2]

2 2

x e~ (3A, ~ —62~)+e k, ——2 -', , + —'(-—2'(k2'+A. ')+2(A2~'+A') —(Z, ~'+A. ')) . (3.40)

Feynman diagram 5-33 is shown in Fig. 22(a). Its space-time amplitude is

where

2 2 2 d2-

W) W ) (2)'J
r'

D33
(3 41)

and

r --e, (i„—i„—2q, }——2'e, (k +q )+ —,'e (k, —q, ) (3.42)
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D33 Pl+I [(P -I )(P2. -V. )- q.'-~'+ fe] (e+q -q.'-~'+fe)

&&[(q, + k, )q —(q, +A„)'-X'+fe][(q —n, )q, —(q, —Z„)'-X'+i e] .
There are two regions where the q, integration is nonzero: region A, where

&P2

and region B, where

0&q

(3.43)

(3.44)

(3.45)

In region A, the contour is closed in the upper half-plane about the pole given in (3.32). In order for the

q integration to give a contribution proportional to In(s, /A. ), I' in (3.42) must be proportional to q; then
the dominant contribution comes from

«p 2 (3.46)

r I

P~~P2 k~q' q~ + A. ) q~ —Z2~ + A,

7Z

p„p, k„x' (q, '+ x') [(q, —Z„)'+z']

Thus the contribution to M,', from region A is

(3.47)

-g's ln —'
(2v)' (q, '+ a') [(q, —Z„)'+ X'] ' (3.48)

In region B, the contour is again closed in the upper half-plane, but now there are two poles, that of
(3.32) and

(a„-q, )'+ x' —ie (3.49)

For the pole given in (3.32),

r 2~g r' D„p„p, q (q, '+ Z') [(q, +Z„)'+X'] [(q, —Z„)'+X'] {3.50)

since the dominant contribution comes from the interval given in (3.7). For the pole given in (3.49), again
using (3.7),

I' -2m' I'
q' D„a p„q p, ([(Z„-q,)'+~'] ja }(q,'+~')[(q, +Z„)'+~'] (3.51)

Therefore, (3.50) and (3.51) cancel except for the term in I' proportional to q, . For the pole of (3.32) this
contribution is too small, but for the pole given by (3.49),

r - — „[(Z„-q, )'+ x']

so that the contribution to iM,', from region B is

SI 6 Q q~ 1
(2w)' (q, '+ x') [(q, + n.„)'+x']

Adding (3.48) a.nd (3.53) gives
2~ 1

27t (q, +A. q +4„+A.

(3.52)

(3.53)

d'q~ 1
(2v)' (q '+ x') [(q, + Z„)'+x'] '

A comparison of the propagators on the large momentum lines in the diagrams of Fig. 22 shows that

N 35 36 33

A calculation of the diagrams' isospin, carried out diagrammatically in Fig. 23, shows that

{3.55)
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I 33 I34 35 36 1
(5) (~) (5) (5) (3)

so that

).(-

gg(5) + yg(5) + gg(~) + gg(5) ~(5) y(&)
33 34 35 36 33 3 (3.57)

Adding together the contributions from all the
diagrams, using (3.39), (3.40), (3.54), and (3.57),

FIG. 23. Diagrammatic calculation of the isospin
associated with the combined amplitudes of Feynman
diagrams 5-33 through 5-36.

36

M"~=g MP&-g'sin —',"
A. Yl, 2~ + A.

2 (2m)' (q '+ x') [(j,+ i„)'+A']

2 2 2 2 I

(3a„—a„)+s,A; ~ —2» +e k, --, +2» —(1-2,+--).
+ J +

(3.58)

By gauge invariance
1 10=& &=&e,k +-, e k, —e~ ~ (L„+n ~),

so adding zero to (3.58) in the form

S ]. d2@ 1g'sin ~ (e 0) -(1—2, +—-)7„'+~' (») (0;+&')[(i,+ &,i)'+ ~']

gives

2' 2 2 2 2

&i ' (&pi —&2i) - &+ — z 2, +&- +

(3.60)

x -n(b, ») ln, ' —a(Z, ~)ln 2 I~,'~, (3.61)

where o(Z) was defined in (1.2). This result is identical with the fifth-order part of (1.1).
For scalar production in the fifth order, only four diagrams contribute; these are given in Fig. 24. A

simple calculation shows that together they give the amplitude

(3.62)

with the isospin that of the diagram in Fig. 2(b). This also agrees with (1.1) in the fifth order.

IV. THE SEVENTH-ORDER DIAGRAMS

Since the seventh-order calculation is very simi-
lar to that of arbitrary orders, it will not be done
separately. However, it is important to know
which diagrams contribute, at least to the conver-
gent part of the amplitude, " so that one may infer
which diagrams contribute in higher orders. All
such diagrams are given in Fig. 25. In this, and
in all higher orders, it is assumed that the trans-

FIG. 24. The four fifth-order Feynman diagrams
which contribute to scalar production.

verse-momentum integral s converge, so divergent
parts are discarded.

V. ARBITRARY ORDERS

Diagrams which give convergent contributions to
arbitrary orders are of the form of those of sev-
enth and lower ordexs, with extra horizontal lines
added to make more closed loops. The general
types are shown in Fig. 26; all diagrams formed
by twisting the top or bottom horizontal lines, by
reflecting through a horizontal plane mirror, or
by a combination of these processes also contri-
bute.

In order to streamline the calculation, all 9', in-
tegrations will be implicit. They will be done by
contour integration, with momentum-flow dia-
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(a)

FIG. 25. Feynman diagrams which contribute to the
convergent part of the seventh-order amplitude for (a)
vector-meson production and (b) scalar production. All
diagx ams formed by twisting the upper or lower horizon-
tal lines or by reflection through a horizontal plane
mirror also contribute.

FIG. 26. The general types of diagrams which contx'i-
bute to the convergent part of the amplitude to arbitxary
orders. All diagrams formed by twisting the top or
bottom horizontal lines, by reflecting through a horizon-
tal plane mirx'or, or by a combination of these processes
also contribute. Solid and dashed double lines stand for
either a vector (solid) or scalar (dashed} particle.

grams" used to indicate which poles in the complex
q, plane are enclosed by the contour. Momentum-
flow diagrams are similax to Feynman diagrams,
except that the arrow associated with the momen-
tum of each line has a special meaning. For a line
carrying four-momentum g, the arxow points in
the direction of positive g . There may be sever-
al momentum-flow diagrams corresponding to
each Feynman diagram. For any closed loop, if
all the arrows point in the same direction of flow,
whether clockwise or counterclockwise, the g,
integration is zero. If axrows of a given loop point
in both directions, then specify one direction; con-
tributions from all the poles corresponding to

lines with arrows pointing in that direction must
be added together. The two choices of direction
correspond to closing the contour in the upper or
the lowex half of the q+ plane. If there is only one
pole, the line corresponding to it in the flow dia-
gram will be marked by a cross (x). If there are
two or more poles, the corresponding lines will
be marked by double slashes(//). Each integration
over a pole of the form I/(Aq, +&+fe) introduces
a factor of -2si/ jA(.

Momentum-flow diagram Ia is shown in Fig. 27
(a}. It is the only possible (nonzero) flow diagram
associated with the corx'esponding Feynman dia-
gram. It has n closed loops and 2m+3 vertices.

The space-time amplitude is
~ n tl

( f)1+(2++8)+(3&42) 2&+3 Pl+ )2- 1 e, i II dg;,
v2 v2 Pa &+ v2 -2 )=g (2&)'

Here N represents the vertex factors and will be determined below,

(5.2)

(12'-%~} +~
&y+ =P2+

p
(5.3a)

where

Qs =Qgg+A. y
$=1y. . . y

6. 2 2

(5.4b)
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(5.4c)

The region of integration is read directly off of the
flow diagram since each arrow points in the
direction of positive momentum:

0&q„&q„, ~ ~ ~ &q, &,P (5.5)

The region which gives the dominant contribution is

qn

q I i&

pj+q„

qn-( qr
b„ 1' q„~h i

qn„)+ 6j

b2 ji qo+i-ii E
k

q( I5j
SW

Va+~i &a-~z

A2 « q„« q„« ~ - « q && p
1+

(5.8)

q

qn-(

pj+q„-~j

qn-j qn u qn

"qn-j

c.
q]+

I ]
& =2) ~ ~ ~ ) +) (5.Vb)

Pa

i,
qa-~i j/ g, -lh, ,

p -h-b,2 I 2

q

(5.8)

FIG. 27. Momentum-flow diagrams Ia and Ib. The
circled letter next to a line with momentum q stands for
q~2 + g2

~

Suppose that q;„«0 «q; for some i. The integration over the —momenta is then proportional to

q, (k,q; -b;)
dq,.„

2/n&+ qi+i- ( ~i+ i)

(5.9)

This is divergent in the transverse-momentum in-
tegration if N is proportional to any of q, through

q, , and is too small otherwise (i.e., it produces
less than n logarithms). So the only convergent
contribution comes when &» q, . The —momen-
tum integration is then like

1 dq "-&- dq1-
TT ~ y &2/&y+ qx - &~/p
AL +i
&= j. i=1

(5.10)

It is now crucial to determine which polariza-
tions of the internal lines give the largest contri-
butions. Since q;, » q~, and q; && q& if i& j, it
seems reasonable that along each vertical line of
Fig. 27 (i.e., those with momenta q; or q; + A, )
the polarization should be + at the top and —at
the bottom, as indicated in Fig. 2V(a). This is in

fact correct. A proof is given in the Appendix.

qj+I ij ~
I

Oj

bjr li q (+Q(

)r q + h,

FIG. 28. A section fI om. a typical diagram. The hori-
zontal line is either a vector meson (a) or a scalar (b).

In order to calculate N, consider a typical hori-
zontal line or "rung" as shown in Fig. 28(a).
With notation given in the figure, the product of
the two vertex factors is

q -qi -(ilii+qi+ii) (q«+ qi+ii +2 &ii)

--a, —(i;„-5; —i,„i2(+Z,~'+A.') + A'

~ 2(Z, ~'+A') +)P,

where the three possible internal polarizations
have been summed over and where the arrow (~ )
indicates that divergent terms have been dropped.
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If a scalar particle replaces the vector meson, as
in tig. 28(b), (5.11) is replaced by -(-X},where
the minus sign comes from the sign difference be-
tween the vector and scalar propagators. It will
be shown below that the overall isospin factor is
independent of whether the horizontal line is a vec-
tor or scalar, so that their space-time amplitudes
may be added together to give 2(4»'+&'). Since
there are n-1 such rungs,

Z-[2(Z»'+ a*)]"-' (5.12)

Because

In"(s,/X*)
~ ~ ~ q„nt

(5.12)

M ( I}"2gw+ss ' —+(b, *+A)" iE'ln"(s /i*)
I n)

(5.14)

&i'qn

q +Q
e 1s a % a

n-I " q +P

qR, i ii q&++i

qi /i i f Ii q, +4l
$%

c.

FIG. 30. Momentum-Qow diagram IIa.

whether the horizontal lines are vector or scalar
particles, and so

I 9RI +Jgg +5RI +SKI (5.19)

Momentum-flow diagram IIa is shown in Fig. 30.
It is the only flow diagram associated with the cor
responding Feynman diagram. Its space-time
amplitude is

where

d~qi L 1
(2w}~ ~+JP ( + )N+JP '

(5.15)

Mo ( i)gl+ e Rll+ 3 1+2p
II

v2

A similar analysis of momentum-flow diagram
Ib shows that

Since the region which gives the dominant

contrib-

utionn is

MI --MI . (5.16)

This can also be seen by comparing propagators
and vertices on the corresponding Feynman dia-
grams. Let the diagrams formed from diagram
Ia (Ib} by twisting the top horizontal line be called
Ic (Id). Clearly,

-MI -MI -MI. (5.1'i}

The isospin calculation carried out in Fig. 29(a)
shows that

JP
4Cq. « ~ ~ e« q

1+

and since
CO

1+

C»
22 ~ ~ y 2 n

q»,

Dp+k q» a

(5.21)

(5.22K)

(5.22b)

(5.22)
II -iI II +II =I i

4I 0 C 4 (g)

L

(5.18)
where

c =(b,,i-q») +x, (5.24}

Ec )/ /f'i$ = lr- 3

and a„b„ciare given by (5.4). Again the polari-
zation of all the vertical lines is + at the top, -
at the bottom (see the Appendix). Therefore, sum-
ming over all polarizations of the horizontal lines,

(0)

x g~ ~ 3&2i —&,~ +~ &+k

(b}

FIG. 29. The iso8pin calculation for diagrams (a) I
and e}) G.

+ [-2(k i*+)P)
k

+2(Z»'+X*) -(Z, i2+A')], (5.25)
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where the divergent terms have been dx"opped and where the contributions froxn the scalar and vector
horizontal lines have been added together, since their isospin factors are effectively ~uzi {seebeiew).
Then

5f4
( I)II+ lgs+3s ( 1/ I (n 8+ gI)ll le II

II nf a '+x'

(5.26}

Since & ~ k = 0 by gauge invax iance,

I}g~g ln(s/X)(Agg+X)
eI h, +X

can be added to (5.26) to give

ln"(s,/X*) (a„*+a')"-'
&3~ +A,

IC~ c~ ~ (h~~ -h~~) -$e~k

(5.28)

'Ihe sets of diagrams formed by reflecting diagrams I and II through a horizontal ylane mirror have the
respective amplitudes [see (2.11)]

I)s+'12++ s .
'L Rl I { 2 gQ)ll l~ Ill($)
el (5.29)

Diagram IIb is formed by twisting the top horizontal line of diagram Ha, , so that M&~&- -MI'I. From 'Fig.
29(b), I'„-Is= I',"whether the horizontal lines are vectors or scalars, so that

8gg —3gj(+ 8gg ™
M(g I g ~

(n, „-n,„)+I~ k, - ——' (k,*+a'-2(n, »*+a')+n„*+a')
2

(5.$0)

where IC, =K(Z,~) [see (5.15)].
Momentum-flow diagrams XU through VH are sho~ in Fig. 31. These are the only momentum-Qo~ dia-

grams representing the corresponding Feynman diagrams which contribute to the leading oxder. Each
space-time amplitude is of the form

(5.$1)

fox some appxopxiate N and D.
Using the notation cf Fig. $1(a) and assuming thatit 1 th,e dominant contribution 'to diagram ID comes

from the region

A.
~ &&g& MP &&g& && - &cg +&p

1+
(5.$2)

so that

(5.$$a}

(2) g).

(5.$5)

(5.$6}
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q it Qp

q i 0 I

+
q~

pi+qn

qn'~)
t t+ n-)

qj.~+~i

q;+EL
I

h~- q;

q. +Q)

qi+ ~t =k

qi-) &~ 0,.

q~

q( It 0(

~i-i
0

c) d(

qt-a,

p -6

+

q
+

Pg

qi q~

p~

+

it qp-~g
+

qi -6p

pz-~a

+

+
qn

q;+I jl

+
q,

qo

+
q, „

p(+ qn

qn-I

+" qn+~~

+
q +Q

„q„~+Z,
I

'" q;+6)
+ k

i' q. -h,

,
-~z

q~ —Q~

"
q, -h~

+
qn

+
qn-i "

+
ql

+
q„+Q,

+
qn l qn ~'

q n-t

lt q;, )+~)

qtqt+(y~ q, g

+

Pa ~a

qn-i

+
q , ~i 't; q

~g ii

+
'q

)
ji

+
qn+6l

qn l qn '
q +Qn-I

q-q -k +
)+I

(+i O~ I' q;-6~
e kf

0
'LI

qa
~ q~-~z

Pa-~~

FIG. 31. Momentum-flow diagrams (a) III, (b) IV, (e) V, (d) VI, and (e) VII.

Let N, and D, (N, and D,) be the numerator and denominator corresponding to the first (second) alternative
for q;, . Then

P z+Pz &p - &a &I, (5.37)

(5.38)

so that to leading oxder D - -D„and thus the numerator terms not proportional to q;, cancel out.1 2p
2It will be seen below that N, contains "large" terms which are O(q„q, „-q, , /k ) or O(q,. q, , /k ).

These terms by themselves give a contribution much larger than n powers of logarithms of s, and s„how™
ever, they are exactly canceled by texms from flow diagx'am IV. Therefore, for the approximation scheme
to be consistent (i.e;, for q, «p, to be the dominant region of integration), it is necessary to add togeth-
er the contributions from diagrams III and IV, and likewise the contributions from diagrams V, VI, and
VII, befox e perfox'ming the —momentum integrations. In diagram III, care must be taken to keep nonlead-
ing terms which are down by a factor of l/q;+q;, . In particular, this means that the polarization of the
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line carrying momentum ~, —q, is arbitrary, although the polarization of all other vertical lines is still +
at the top, —at the bottom.

The vertices which contribute terms proportional to q„are shown in Fig. 32. The vertex factor from
Fig. 32(a) is

1——,e ~ (4q, ~+3b„~ —L,~)q, ,k —c, ~ (n» -Z, —2q„)if„ifi i E k p ji ifi +
2 k

+—ifi, k

1+-.~ ei. [(3qi.+&-) (q;. +2&»+&»)+(q;-|.+qi'). («-i.+«. -2&»)1
--,'e q, , 'k +—,e (k, —q„)(2q;,q, , + q, ,k ),

where terms not proportional to q„have been dropped. Its contribution to N„using (5.35), is

(5.39)

di -ci i e~ ' (&~~ —&» — 2q~i) +re~(k + il; ) -2e k++
k —qq k —q;

1 1 d.+ci, ei (&,~-&ii. —2q, )+~a, k -~e k, +
k -q;

1 e 2, d.
+2m, ~ (4q„+3m»- n»)d, +&a, k d; —

4 k
d; --e k, d;

1e
di(( qi. +&a.) (q. +2&,.+ &a,)+(qi „+qi,) (qi „+qi, -»2, )) (5 40)

The dominant contribution of momentum-flow diagram IV [Fig. 31(b)] again comes from the region (5.32)
where (5.33) and (5.35) hold, and the denominator is

q, ,
D2 dj cj 1 ~

k —q)
(5.41)

Using the Feynman rules given in Fig. 3, the four-vector vertex is the sum of two parts, one (called IVa)
with the isospin of diagram III and the other with isospin similar to that of diagram III, but with the bottom
horizontal line twisted. Each is proportional to

1 1 d-ci ~ (&,~-&,i —2q, ~) -ge, (k +(i, )+-c k, +
k -q] (5.42)

Using (5.41), these terms precisely cancel the "large" terms from (5.40), as claimed above.
Using (5.34), the contribution of (5.39) to N, is

W' 1 1
~ J. (+» +il. 2qi. ici -,+-".k ci 12~ k-+ci i -~ (5.43)

Since D, - -D„each of the terms in (5.43) cancels with a corresponding term in (5.40); so the sum of the
contributions from (5.40), (5.42), and (5.43) is

—,'e, (4q„+ 3Z„-Z„)d, +&c.k d, ——=d, [c, ,+d, +2(k,'+X')+ (3q„+Z„) (q„+2Z„+Z„)

+ (q „+q„)'(q,.„+q„-2Z„)], (5.44)

where the denominator is D, . The term in brackets equals

3a, +a, ,+ 3b, +d, ,+ 2 (k,'+ X') —4 (Z„'+ X ) —3&' ~ a (k,'+ &') —4(d,„'+A.') —3X',

where the divergent terms have been dropped.
The vertex contribution from Fig. 32 (b) is [using (5.35)]

(5.45)

q. ii
I

+
q, q, i-q;

(o)

ii q;+~)

=k
2 q I

+

(b) (c)

FIG. 32. Sections of
momentum-flow diagram
III.
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-(-~)'(e /2k )d,

and the contribution from Fig. 32 (c) is

-2(-~}'(e /2k )d„

(5.46)

(5.47)

s ((n,„'+X')IC, in(s, /~2))"-"

(~ ' x'}(~ '+z') (n —i+1)'
ee

t

x —,'&, (Z„-Z„)+-.'e, k +—-(--,'(k,'+x')+2(Z„'+x')) . (5.46)

where the extra factor of 2 comes from the isospin amplitude, as mill be shown below. Each of the upper
n —i rungs in flow diagrams III and IV contributes a factor of 2(Z„,'+ X') and each of the lower i —2 rungs
contributes a factor of 2(Z2,2+X2). Therefore, from (5.31}, (5.38), and (5.44) through (5.4l),

' ' ((~„'+~')Z, In(s, /X'))'-'
(i -I)!

The isospin is that of diagram III.
If i=1, it is simple to show that

( 1)n+1 Bn+Ss ( 1' ) ~ n(Z 2+ y2)n-1
n! (5.49)

Diagram IV does not contIibute ln this case.
As stated above, it is necessary to add the contributions from diagrams V, VI, and VII together in order

to cancel out "large" terms. Using the notation of Fig. 31(c), and assuming thati en, the dominant con-
vergent contribution to flo%' diagram V comes from the I'eglon

—ggq (g e ' e ggq %Cjoy CCq 4(' ~' CCq «CP
1+

(5.50)

with the + momentum poles chosen to satisfy (5.33) and (5.34). Thus, using (5.31), the numerator and de-
nominator are

D3-PI, P2 q& k, q —b& a& d 5&

X - [2(Z, '+ ~')]"-'-'[2(Z,'+ X'}]'-'F7 (5.52)

where N, is the sum of the factoxs from the veI tices shown in Fig. 33. Since the large terms in X, are
O(k,'q, '), it is necessary to keep the next-to-leading terms of O(k, q, ), so that the polarization along the
line carrying momentum q, + g is arbitrary. The polarization of all other vertical lines is + at the top,
—at the bottom. Summing over the polarizations, the contribution from Fig. 33(a) is

2 q( k E'q'(4gp —36~~+ b, ) —ge k q)

+ 2egqj-[~%2. ll. 2i) (31&i, Qg)+ (gp, +Q~~gg) (tl qg+'tlg~yg+ 2+J]+ 4'E~(2q( k~ —2q( q(~g~+qq k k )

1 wgll a 1= p qg k~6~'(4gp —3+g+ 42g) 4f k~ q ~
+ pe~ qg (qq k~ 5 ()

+ae, q, (3a;+s„,+b, +,+3d, +2(ki +X ) —4(Z2i +X )-3X ). (5.53)

The contributions from Figs. 33(b) and 33(c) are

-(-x)'(--,'e.q,. ) {5.54)

-2(-X)'(--,'&.q, ), (5.55)

respectively, where the extra factor of 2 in (5.55) is due to the isospjn and wtII be justified below
fore, from (5.53), (5.54), and (5.55), dropping divergent terms,

&3 ~q&-~. &~' 4q«-3%i+~. ~ —2& ~ + —q, & -&, + —' r k,'+&' -4 ~'+&'
+ +

(5.56)
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(a)

1~ g +Q(

g +5(

=k
"q;-52

(o)

'(q, + q, +( )

-(/2 E'

(b)

I

I

I E
+

FIG. 34. Numerator and isospin factors from momen-
tum-flow diagram VI. The isospin is represented dia-grammaticallyy.

(c)

FIG. 33. Sections of momentum-flow diagram V.

For momentum-flow diagram VI in Fig. 31(d),
(5.31), (5.33), (5.34), and (5.50) still hold, with
numerator and denominator

cg
b)

q

where

C'=i@&,-q;,»-&„-&2, +~ ~

The corresponding denominators are

(s.61)

(5.62)

and

D4-D2(k, q1 —b() 1

N = [2 (& '+ &')]" ' '[2 (Z '+ &')]' 'N

(s.s7)

(5.58)

Da pj+ P2- q ) Qp 5l

&& (-q, k, +c, —c', + k,'+ A.') (5.63)

N4 consists of several terms, illustrated diagram-
matically in Fig. 34. In Fig. 34(a) each of the two
terms has the isospin of diagram V (this will be
seen below), and in Fig. 34(b) one term has the
isospin of diagram VII and the other has the iso-
spin of diagram V. This last cancels with the large
term in (5.56).

Figure 31(e) shows momentum-flow diagram VII.
The other flow diagrams corresponding to this
Feynman diagram give no net contribution. The
region of integration is still (5.50} with

and

D2 P1+P2 q, "' q; 1 (q;

x gn ~r d kq; +c, —c,

Since

(5.64)

(q, -k )(k, q, +c',. -c,.)
q, (k, q,. +c',. —c, —(k2+X2)), (5 65)

-Cg g
q&,

-
qfmjm

and either

j =1, . . . , i, i+2, . . . ,n

(S.S9a)

(5.59b)

(s.66)

D, - -D, to leading and next-to-leading powers of
k /q, Because of this and since the numerator
contains large terms of O(k. 'q, '), numerator
terms not proportional to q„„cancel out:

N[2(~ '+X')]" ' '[2(Z '+ X )]' N

or

-c,
(a) q,.„- (s.60)

and likewise for N„where N, and N, are deter-
mined from the three vertices on the horizontal
line in the middle of Fig. 31(e). Each is of the
form

P 2-e, (2q&, -2q(11— 11 —621)q1 q. 1 —4 q1 (q„, +q, , k )+~ q, q, , (q. ).
Since

(5.67}

(5.68)

one can make the replacements q„»--2Z„and q„- 2Z» in (5.67}; thus there is no net e, component.
The a component also drops out and

N -a q]c), (s.69}
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so that

e-, q, Qr, q, +c', —c, —(k,'+~')) —e,q, c, , (5.70)

N N~ -& q]

Therefore, from (5.31), (5.50), (5.51), (5.52),
(5.56), (5.57), (5.58), (5.66), and (5.71),

((Z» + X2)K, In(s, /A. )) ' ((Z» +' )K2 ln(sm/X')) ~

(n-z)( it
1 th+1 f7+3 1

MV+MVI+~MVI1Z ( 1) ' s-2 ~ 2 2Z»+x) +~+A.

~2&, (b„—~„)--,'e I,+ —'(4(k,'+X') —2(a,'+x'))J 1J &- y y J

(5.71)

(5.72)

where the isospin is that of diagram V.
If i =n, only diagram V contributes, and

( I)ngn+3s (~2~ )Kn(~ 2+~2)n-1 + (5 73)n!

The Feynman diagrams formed from diagrams
IV through VII by twisting the top horizontal line,
by twisting the bottom horizontal line, or by twist-
ing both the top and bottom horizontal lines also
contribute to the scattering amplitude. For each of
diagrams IV and VII this procedure produces only
one, instead of three, new distinct Feynman dia-
grams. To compensate for this, the amplitude of
diagram VII is multiplied by 2 [as in (5.72)]; then
each of the four diagrams must be considered. In
the case of diagram IV, it was shown above that in
the high-energy limit, the amplitude is the sum of
two terms with different isospin factors, one being
obtained from the other by twisting the bottom hor-
izontal line. So in this sense there are three new
"diagrams" formed by applying the above procedure
to that part of Feynman diagram III used in com-
puting (5.48).

Comparing propagators on the high-momentum
lines shows that the sum of the space-time ampli-

,tudes of the Feynman diagrams formed by twisting
the bottom (top) horizontal lines equals minus the
sum of the space-time amplitudes of the original
Feynman diagrams [i.e., (5.48) plus (5.72)], and,
similarly, twisting both lines reproduces the origi-
nal amplitude. This is true because (5.48) and
(5.72) contain no net contribution from large terms,
so that q& «p, is a valid approximation, and equa-
tions such as (3.12) hold. Note that this is not
true for individual Feynman diagrams; for exam-
ple, the space-time amplitudes corresponding to
the two different isospin factors of diagram III are
equal, not negatives of each other.

The combined isospin of all these diagrams is
calculated in Fig. 35 and equals I,"'. Use is made
of Figs. 8 and 12 and the identity (fz„~)(ie„,) =26„,
illustrated diagrammatically in Fig. 35(c). Figure

35(b) justifies the extra factor of 2 in (5.47) and
(5.55). Consequently, from (5.48), (5.49), (5.72),
and (5.73), the amplitude of diagrams III through
VII is

(a)

I
I

I I

L

I I

(c)

FIG. 35. (a), (b) The isospin calculation for diagrams
III through VII. (c) The isospin identity (i&~g)(i&~&) = 2&I, .
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( 1)g~g~g+3 'L g/ I ff n(n 2 y2)n-1 - ( 2& I g n(A 2 y2)n-I + I(3!

2s - 1 Z~ +A. 1 &„+A.+(-1)"g'"" - ~ a - ~ . &. '(~x. -W.)-&.&- ——-: 2 +&-&. -- -"2 2(a„+x )(g, +x') k, +x 2 k, +&

a„'+X"Z, ln~, '+X' Z, ln —,' ri"'. (5.v4)

From (5.14), (5.19), (5.27), (5.28), (5.29), (5.30),
and (5.74), the total amplitude for n loops is

28
g ~ 2 2 ~ 2 2 'Kg (Bye 42g) E k g + e(a„+x )(g, +x )

(5.v5)

which is the (n+1)st term in the power-series expansion of (1.1).
4 similar analysis showers that the amplitude for scalar production comes from momentum-flow& diagrams

analogous to flour diagrams II through 7, where the created vector particle is xeplaeed by a scalar. 'The
space-time amplitudes of diagrams II, III plus I7, and V are respectively

( 1}n ws (5.vv)

((g„'+y')If, In(s, /X') )"-' ((Z„'+X')K, in (s,/A. ') )'
(

(Z +x)(Z, +x) (5.vs)

The diagram formed by reflecting the scalar
production version of diagram II through a horizon-
tal plane mirror also contributes and its amplitude is
obtained from (5.76) by the transformation (2.11).
The combined isospin of these diagrams and those
formed by bvisting the top and bottom horizontal
lines is twice that of the diagram in Fig. 2(b). The
sum of the amplitudes then reproduces the (n+ 1)st
term in the power-series expansion of (1.1).

This result of Reggeization in a Yang-Mills
theory contrasts vrith those in quantum electrody-
namics (@ED) and in Q' theory In .both QED and
Q' the lowest-order terms (from the Born diagram
for elastic scattering and the tree diagrams fox in-
elastic scattering) are predominantly real, where-
as the sum of the ladder and the crossed-ladder
diagrams and the sum of the corresponding dia-
grams for pxoduction processes are predominantly
imaginary. These diagrams do not add together as
they do in Yang-Mills theory, vrhere the leading
amplitudes are real. Thus the Regge-pole form ln

the elastic channel of (t)' theory, for example,
comes from summing over the ladder and crossed-
ladder diagrams only, and the analogous situation
holds for the inelastic channels. " Further, for
toro-body-to-three-body processes in q' theory, if

s
S,S2 k +A.

vrhere k is the transverse momentum of the pro-
duced particle, then the scattering amplitude has
a branch point in the complex q plane; in Yang-
Mills theory, the amplitude is an entire function of

The xesult of this paper also lends support to the
calculation of Fadin, Kuraev, and Lipatov' of the
elastic amplitude in Yang-Mills theory. Their
conclusion eras that in the leading-logarithm ap-
proximation, the Froissart bound" is violated. "
In ox'der to calculate the elastic amplitude via
their unitarity approach, it is necessary to know
the inelastic amplitudes for two particles going
into n particles, 2-n. Based on the Heggeized
form of the vector meson for the 2-2 amplitude,
those authors used a multi-Regge-pole form for
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all the inelastic processes. The present paper
explicitly verifies that this form is correct for
2-3 scattering. It would be interesting to deter-
mine whether the amplitude for 2-4, or indeed
for 2-n, is also of the Regge-pole form. If so,
this means that the cross section for production
of n particles decreases rapidly with increasing
energy, so that the violation of the Froissart bound
is due to the increasing number of open channels.
It would further be interesting to determine
whether, in the leading-logarithm approximation,
the inelastic amplitudes also violate unitarity.
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APPENDIX

Here it is demonstrated that the polarization
along all vertical lines of Feynman diagram I is +
at the top and —at the bottom. Associate a number
with each vertex I' as follows: Make the assign-
ment

and define N(I'} to be the sum of the numbers cor-
responding to the three polarizations associated
with I'. From the Feynman rule for a three-vector
vertex, given in Fig. 3, each vertex is proportional
to a four-vector with +, &, or —polarization if and
only if N(I'} is+ I, 0, or -I, respectively. Let the
vertices be numbered so that I', and I', are on the
top horizontal "rung, " just below the large + mo-
mentum line, I', and I', are on the next lower rung,
and so on down to I', , and I', on the mth and
lowest rung. Then, since the polarization of the
lines emerging from the high-momentum line is +
at the top, —at the bottom, and since the sum of
the two numbers assigned to the polarizations on
either end of any line is zero, it follows that

,N(I';) ~ 0 for all j ~ m, and that Z»=, N(I, )
=0. From (5.6) and (5.7) q, »q& if f&j, and
q„=O(l/q», ), so the largest value of the numer-
ator factor I', ~ ~ ~ I', is obtained if N(I'„,)
+N(I'„) = 0 for all i This. is only possible if the
polarization of all the vertical lines is + at the
top, —at the bottom. This argument can be mod-
ified to deal with other Feynman diagrams.
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