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The corrections to the Goldberger-Treiman relation are examined in a unified gauge-field model. The

strong interactions are governed by the local chiral SU(2) SU(2) gauge group, whereas the weak and

electromagnetic interactions are based on SU(2) U(1) gauge invariance. %'e find that the Goldberger-

Treiman formula is a zeroth-order relation, so that its corrections are finite. %e estimate the corrections in

the case that the pion is a pseudo-Goldstone- boson. The result, of which the gauge independence is explicitly

verified, is proportional to the weak and electromagnetic coupling constants.

I. INTRDDUCTIDN

In a previous publication (henceforth referred to
as I; equation numbers referring to this paper will
be prefixed with a I) we presented the calculation
of the corrections to several zeroth-order sym-
metry relations in a unified gauge-field model of
strong, weak, and electromagnetic interactions.
Zeroth-order relations have two important aspects,
as was pointed out in particular by %einberg. ' The
first aspect is a technical one. Corrections to
zeroth-order relations originate by definition from
closed-loop contributions, and in R renormalizable
theory these corrections must be free from ultra-
violet divergences. 4 But secondly, the existence
of zeroth-order symmetry relations may provide
explanations fox the various approximate sym-
xnetrles thRt Rre found ln nature.

The examples of zeroth-order relations that have
been discussed in the literature concern mainly
relations among masses or mass differences, ' and
the corrections calculated in I were to relations of
that type. In this paper we establish the existence
of a far-more-complicated zeroth-order relation,
namely, the Qoldberger-Treiman formula. ' As is
well known, this formula is R relation among
several different physical quantities: the proton
and neutron masses, the pion decay constant, the
pion-nucleon coupling constant, and the axial-vec-
tor-current coupling constant as measured, for
instance, in neutron p decay.

Both the pion mass Rnd the corrections to the
Qoldberger-Treiman formula are considered to be
a mea, sure of the amount of ehiral-symmetry
breaking in hadron physics. ' However, in the case
that the pion is a pseudo-Qoldstone boson that picks
up its mass from higher-order weak and/or elec-

tromagnetic corrections, as is the case in our
model, the effects of chiral-symmetry breaking
are expected to be of weak and electromagnetic
origin. In I we have calculated the mass of the
pseudo-Qoldstone pion, which indeed originated
from weak and electromagnetic corrections, and

we found the value of 37 MeV. Hence the correc-
tions from weak and electr omagnetic interactions
can give rise to considerable ehiral-symmetry-
breaking effects in the hadronie sector.

In this paper we analyze the effect of chiral-
symmetry breaking as it is measured by the de-
viations from the Qoldberger- Treiman relation.
This will be done by examining each of the quanti-
ties that are involved in this formula. Therefore
we will first express the Qoldberger- Treiman re-
lation directly in physical quantities, which should
be gauge independent according to the general
theory, and we will explicitly establish this gauge
independence in our calculation. BecauSe of the
complexity of our theory, and the variety of quan-
tities that are calculated here, the cancellations
among the gauge-dependent parts are highly non-
trivial, so that it is fair to consider this calcula-
tion as yet another confirmation of the general re-
sults of the quantum theory of gauge fields.

%e should mention hex'e thRt px'evious dlscu88ions
of the corrections to the Qoldberger-Treiman re-
lation have assumed a different approach to ours.
Sirlin' has determined the second-order electro-
magnetic corrections to the quantities occuring in
the Qoldberger-Treiman relation. He treated the
hadronic matrix elements in the corrections using
partial conservation of the axial-vectox' current and
operator-product expansion techniques and found
an 8% deviation frorg. an exact Qoldbex ger-Treiman
relation for neutron p decay. This conclusion is
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similar to that of Pagels. ' Several authors have
tried to explain this 8% deviation as a strong-inter-
action correction. Pagels' and Pagels and Zapeda'0
used dispexsion relations to calculate the correc-
tions while Domingues" used Veneziano-type form
factors, Strubbe" and Braathen" have used the re-
normalizable o' model as R basis for cRlculRtlng the
hadronic corrections. Generally these calculations
yield corrections of the order of magnitude of 1-2%.

Kith the advent of renormalizable gauge-field
models of the strong, weak, and electromagnetic
interactions it is possible to discuss both the elec-
tromagnetic and weak coxrections to the Goldber-
ger-Tx'eiman relation in a more fundamental way.
As was indicated above, it is crucial in this ap-
proach that the Goldbex'gex'-Treiman x'elation is a
natural one. Ayart from establishing this fact for
the model discussed in this paper, we check by
explicit calculation that the final answer is indeed
free of ultraviolet divexgences. %'e are then able
to discuss some numerical aspects of our xesult.
%'e find that there are no purely hadronic correc-
tions so that the answex' is proportional to the
weak and electromagnetic coupling constants. The
Rctual magQltude could be enhRnced by the px'eseQce
of terms involving the large vector-boson mass
andlor the small (or vanishing)masses of the pion
and the photon. A detailed investigation shows that
there is no such enhancement in the limit of infi-
nite vector-boson mass. Hence we are left with
terms which have the typical magnitude of electro-
magnetic corrections and are numerically small.
The final answer, however, still depends on the
photon and pion mass parameters in an infrared
divergent fashion. These effects are not substanti-
ally different from those discussed in previous
work on the subject, so we have refrained from
making any specific estimate of their magnitude.

This paper is organized as follows. In Sec. D we
introduce the model and dex'ive the Goldberger-
Treiman relation. The next section (III) contains
an intx'oduction to the calculation. Then in Sec. IV
we calculate the cox'rections to the pion-nucleon
coupling constant and the pion-decay constant and
show them to be gauge-independent. The next step
is to discuss the gauge-dependent corrections to
the axial-vector coupling constant, which is done
in Sec. 7. Section ~ contains an analysis of the
gauge-independent result for the corrections to the
Goldbel gex -Treiman x elRtlon. FlQRlly, Sec. VII
contains our conclusions. %e have given some de-
tails of our calculations in various Appendixes.

II. A GAUGE-FIELD MODEL

AND THE GOLDSERGER-TREIMAN FORMULA

IQ this section we will first bx'iefly introduce the
model that we will be dealing with in this paper.

This model is a unified gauge-field model of the
strong, weak, and electromagnetic interactions. "
It was previously used in I in a calculation of the
yion mass, as well as of several other corxections
to zeroth-order symmetx'y relations. Subsequently
we will discuss the Goldberger-Treiman formula
and the expected corrections to this formula.

The gauge symmetry that governs the strong in-
teractions in our model is the chiral SU(2) SSU(2)
group„" and we have corxesponding gauge fields
denoted by U„' and V„' (a= I, 2, 3). The underlying
grouy of the weak and electromagnetic interactions
ls 'the SU(2) SU(l) gauge group, and the Ieptontc
interactions of the corresponding gauge fields, g„
and A„, coincide with those of the %einberg-Salam
model. " The heavy gauge fields W mediate the
weak interactions and the massless photon field
A„mediates the electromagnetic interactions.

The model contains four comylex doublet fields,
K~, E~, E~, and%~, of which the fix'st three are
hadronic, and the last one is the Higgs-KibMe
field of the %einberg-Salam model. All these
fields have components that acquire vacuum ex-
pectation values such that all but one of the gauge
fields are massive. As in I we decompose the
splQless fields Rccordlng to

Kx =
g (2&2g 'M p+ v~+ c~+ 2i g~+ 2i g„),

Kr= g (2v 2g Mg+ 0'c —0'p+ 2ilf)~ —2ipy),

Kc = ,' v 2 ( 2 g 'eM—„+on + 2i yc),

Ks =-, ~2{2g~ 'M~+ a~+ 2ig~),

where we use the notation g-=-,' g'&, . The parame-
ters, 'If~, M~, and q are introduced to give vacuum
expectation values to o~, o~, Rnd o~ in the txee
approximation. The Lagrangian contains terms which
are linear in o~, o~, o~, and o~, sol~, M~, and

q are determined by the requirement that the terms
linear ln o'py o'gq RQd 0'g vanish. A complete dis-
cussion of the model is given in I. However, the
physical content of the Inodel is as follows. %'e

have two isotriplets of hadronic gauge fields, pre-
sumably the p and A, vector mesons, and a triplet
of plons which Rx'e defined by R llJlear coIDblnRtlon
ofthefie1dsg~, g~, Pc, and Pz. The remaining (in-
dependent) combinations of these fields are un-
physical. Furthermore, we have a doublet of nu-
cleons and three isosinglet spinless fields, oU, o~,
and o~, the first two scalar and the last one pseudo-
scalax'. The particles without strong interactions
are the three intermediate vector bosons, the pho-
ton, a spinless field o~, and the leptons L and v„
where l denotes electron or muon.

For further discussion we specify the most gene-
ral, gauge-invariant Lagrangian of dimension 1ess
than or equal to four, as a sum of five terms:
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The explicit form of these terms can be found in I.
The first term, C~, contains only the hadronic
fields, U„V„Kx, fC~, K„and Ã, together with
interactions among themselves as well as with the
weak and electromagnetic gauge fieMs H~, and A„.
C«M is the Lagrangian of the fields O'„, A„, K„
and the leptons I and v, .

The remaining three terms are interactions
among the spinless fields. 2, gives the parity-
conserving interactions of K, with the hadronic
fields, and 2, , represents the parity-violating
interactions among the various spinless fields.
Finally, f, is an interaction that is linear in each
of the splnless flelcIs, K~, Ki, K~, RllcI Kg ~ TIlis
term can consistently be chosen equal to zero
without disturbing the renormalizability of the
i agrangian, since it is the only interaction that is
linear in each of the spinless fields. In that case
the pion will be a pseudo-Goldstone boson, which
implies that the pion mass originates from (finite)
closed-loop corrections. The calculation of these
corrections was presented in I. As me have ex-
plRlnecI ln the previous section) we w'ill be deRling
with pseudo-Goldstone bosons in this paper, so that
henceforth we will choose the interaction Z, equal
to zero.

We mill now introduce the Goldberger-Treiman
(GT) formula, . First, let us define the various
physical quantities that are involved in this rela-
tion.

We will define the pion decay constant F, by
writing the invariant amplitude for the decay pro-
cess in the form

which represents the parity-breaking contributions
in the pion-nucleon vertex. Such contributions are
induced by radiative corrections from the weak in-
teractions. In this particular case the effect of
these corrections must be finite because of a ze-
roth-order symmetry relation: There is no cor-
responding counterterm available in the Lagran-
gian, and since the Lagrangian is renormalizable
the correction must be finite. We will come back
to these parity-violating contributions in Sec. IV.

We mill now define the axial-vector coupling con-
stant G~ from the invariant neutron-proton-lepton-
neutrino amplitude. We RbbrevlRte this to the
(npfv) amplitude. Most of the contributions to this
amplitude are of the current-current form. By
this we mean that they can be described by the
exchange of some vector particle between a nu-
cleonic and a leptonic vertex. Those vertices are
then considered as the matrix elements of some
current, which can be decomposed in three dif-
ferent terms: g7y, n. , &7[y„, y„jg„u, and i7Q,u, with
corresponding form factors mhich are functions of
Q'-' only. Here Q is the momentum that is exchanged
between nucleons and leptons. A factor (1+ y, )
should be added if the spinors F~ and n correspond
to leptons. For nucleons there may be an addi-
tional y„depending on the parity classification of
the current that is involved. With this decomposi-
tion we can define t'„ from the form factor in the
scattering amplitude that is given by

G„(Q'-)(r(,y„y, ic„)(~(,y„(1+y, )i(„]

G„-=G,(O) .

where Q is the momentum of the incoming pion.
Notice that we have not extracted the Fermi con-
stant G~ of the weak intera, ctions, which is still
included in F,. Notice also that the pion is not
able to decay in lowest order since its mass is
zero because of its pseudo-Goldstone character.
Homever, this is merely a technical difficulty.

A similar problem exists in the definition of the
pion-nucleon coupling constant, G~, . This constant;
is in principle not R directly observable quantity,
because of kinematical reasons. In practice it has
to be derived from a theoretical analysis of pion-
nucleon scattering. However, in our calculation

, is kinematically accessible, because of the
zero pion mass in lowest order. Hence, 6~„, is
directly calculable as Rn on-mass-shell quantity,
and is defined by the invariant amplitude

We have introduced here R second para, meter Gp~„

However, me stress that this definition is not
unique unless the remaining terms in the ampli-
tude are fully specified. In particular there are
terms coming from tmo-particle-exchange dia-
grams (box diagrams) in the one-loop approxima-
tion that may contribute to G~. In fact, we will
find that the gauge- dependent ter ms coming from
such graphs will cancel against certain gauge de-
pendent terms from the one-particle exchange dia-
grams. Therefore we will retain both the current-
current terms of the form (5) and the contributions
to the (np&v) amplitude that are not of the current-
current form.

We nom define the quantity

where m~ and m„are the proton and neutron mas-
ses, respectively. The Goldberger- Treiman
formula' then gives the result

(6b)
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We wish to point out that we have defined ~o~ di-
rectly in terms of physical, on-mass-shell ampli-
tudes, and not in terms of matrix elements of cur-
rents. Consequently ~~~ is a physical quantity
which should be independent of the gauge in which
we will perform our calculations. Notice that both

F, and G„still contain the Fermi coupling constant
of the weak interactions.

Let us now further discuss the Goldberger- Trei-
man formula in closer connection with our model.
This relation is usually discussed in the frame-
work of current algebra. In that case G„and F,
are the axial-vector coupling constants of the had-
ronic axial-vector current (the Fermi constant Gz
is usually not included in the definition. ) The axial-
vector current is related to the (approximate) in-
ternal chiral symmetry of the strong interactions,
and according to the current-algebra hypothesis"
it is identical to the hadronic axial-vector current
that is measured in the weak interactions. This
makes G„and F, observable in neutron p decay and
pion decay, respectively.

In models of the type that we are dealing with, the
hadronic chiral current does not coincide with the
currents that describe the weak interactions. For
example, the chiral currents are not gauge in-
variant with respect to the chiral gauge group of
the strong interactions, contrary to the weak and
electromagnetic currents which are gauge invari-
ant with respect to this group because of the in-
variance under the combined strong, weak, and
electromagnetic gauge transformations. " The
main current-algebra, results, however, can be
derived from the Slavnov- Taylor identities" for
the weak and electromagnetic gauge group, without
any reference to the internal symmetry properties
of the strong interactions. This was shown in Ref.
20 and we will briefly present a derivation of the
Goldberger- Treiman formula along the same lines.
From this derivation we will then be able to dis-
cuss the corrections to this formula.

We start by considering the charged gauge field
W„and the complex spinless field K~ with charged
component g~. Both W; and tt)~ have interactions
with hadrons and leptons, and W, couples with a
universal coupling constant g~. Qne of the neutral
components 0~ of K~ has a vacuum expectation val-
ue which was given in lowest order in Eq. (1):
&oz&, =&2g~ 'Mz. Since we will consider perturba-
tion theory in g~, while keeping 37z constant, in-
teractions with the field ]~ will always be propor-
tional to g~. So is the coupling constant between
leptons and |t~z, G„given by G, = —,'g~m P1z ', as
was shown in Eq. (18). We wish to point out that
such a perturbation expansion makes sense for
two reasons: theoretically, because it is related
to an expansion in the number of closed loops, and

where J~ and J'~ are defined as the sources of the
fields W, and g~, where in both cases we have
extracted a factor g~ explicitly. The momentum
associated with these sources is denoted by Q.

The second term of this identity (8) can be shown
to be at least of order g~-', since the only interac-
tions with the field P~ involve either the gauge
fields W„, the lepton fields, or additional compo-
nents of Kz It is here that the pseudo-Goldstone
character of the pion enters in an implicit way
since the interaction term Z„which was taken to
be equal to zero so that the pion became a pseudo-
Goldstone boson, would give rise to a P~ interac-
tion without bringing in these additional fields that
interact weakly. Hence we have found an approxi-
mate conserved-current identity:

q.&pie. ln&=o(g, ', e'). (9)

We will now consider the contribution from the
pion to Eq. (9). Suppose that in the limit of vanish-
ing weak and electromagnetic interactions we have
a pion field that we denote by &~. In lowest order
of g~ we then write down the Slavnov-Taylor iden-
tity

1—f(2z)'&ol(c z, ), lo&=
Q2 g~f.(q'),oQ' (10)

where f.(q') is in principle defined by the transfor-
mation character of 7t~ under the weak gauge group.
However, f,(q') will also contain the higher-order
corrections from the strong interactions; in low-

experimentally, because g~ is small, whereas M~
is supposed to be large. In I we have already made
the factors g~ explicit in the coupling constants of
the Lagrangian where interactions with K~ were
involved.

We now quantize the gauge field, by defining a
gauge-fixing term C~= p B„W„and adding to the
invariant Lagrangian ——,

' C~'. The quantization of
the hadronic fields will be ignored here. In this
gauge we find the following propagators in lowest
order g~ and e:

f(2,)'&0
l (w. w„),

l
o&

=(Q'+Mz') 'I5„„+Q Q„Q ~p '[Mz'+ (1 —p')Q']J.

f(2.) &ol(w, t,,), lo&=;M, p- q- q, , (s)

'(2z)'&ol(c. c.), lo&=q '(Q'+M. 'p ') ~

Our starting point is now the Slavnov-Taylor iden-
tity for the matrix element between proton and neu-
tron states

&p
l
c, ln& =o.

By using the propagators ('I) we can write this as

p 'q '(fq. &p l~:ln&+Mz&p l~z ln&) = o(-.' ") (')



&=&z+gz ~z 'f.(Q')4z ~ (12)

which is determined by the general conditions on

physical field components

(o[{c„).[0)=o.

Using this definition for the pion one ean then cal-
culate the physical pion decay, making use of the
propagators (7) and the fact that the coupling of

pz to g~ is of higher order in g~ and can be neglec-
ted. As a result of our definition of the pion (12}
the final result will no longer depend on the para-
meter p, and we find that the pion decay constant
F, is simply proportional to f,(0).

An explicit calculation then shows that Eq. (11)
leads to the Qoldberger-Treiman formula

with the perturbation expansion as was specified
before. As we have pointed out previously, there
was indeed no need to refex' to the internal-sym-
metry structure of the strong interactions. Qur
proof depended only on gauge invarianee, and
some simple information on the interactions of the
field gz, namely that the interaction term 2„, which
was linear in g~, was absent. There is, however,
a somewhat implicit relationship with the symmetry
properties of the strong interactions, since these
are indeed chirally invariant when S~ is absent.

Let us now consider the result for AG~ for our
model in tree appxoximation. %'e introduce

est order f, would simply be a constant.
Hence, Eq. (10) shows that there is the following

contribution from 7t~ to the current matrix ele-
ment (p~ J~)n):

e.~ 'f.(e')(p ~~.l.)+ o(g;, "),
where J, denotes the hadronic source of the field

This result is found under the same assump-
tions as for the derivation of Eq. {9). Note that the

Q
' term indicates that the pion is massless up to

order g~' and e'. If we then take relation (9) in the
limit of vanishing Q for the axial-vector part of
the current, we find

g„(0)(m~+ m„) —f,(0}G~„,= 0(g~', e'),

where g„ is the axial-vector form factor of the
current, and G „, is the pion-nucleon coupling con-
stant that was defined previously. g„can, of
course, be directly related to the quantity G„by
using the propagators defined in Eq. (7). However,
to relate f, (0) to the pion decay constant F, we

must specify what constitutes the physical pion. In
first order of g~ the physical pion field will no

longer be given by 7)~, but by a linear combination
oI zz and gz, which can also be defined off the
mass shell

4=1+q + —qg g M M (14a)

which enters our ealeulation in the definition of the
physical pion field, and in the results for the gauge
field propagators at Q'=0. Using the results of I,
we find

G„=—,'g~'M, 'a '

III. INTRODUCTION TO THE CALCULATION

In order to determine the eorreetions to the
Qoldberger-Treiman formula AGT in the one-loop
calculation we will separately calculate G„, m~,
m„, G~„„and j', as they were defined in the pre-
vious section. In this calculation we will first es-
tablish the gauge independence fox each of these

so that AGT=O.
In obtaining this result we have taken the two

independent coupling constants of the chiral SU(2)
@SU(2) gauge group of the strong interactions both
equal to g, and, moreover, we chose the vacuum
expectation value of the field o„equal to zero. In
doing so, we have ignored part of the hadronic
paxity violations of this model, as we will further
discuss in the next section. However, even if the
contributions from these terms had been taken into
account, we would still find the result thai 4GT
was equal to zero. Hence, although we expect in
principle to find corrections to this result of ordex'

g~' and 8', we find that the Qoldberger-Treiman
formula is an exact relation in the tree approxima-
tion for arbitrary values of the parameters of the
model. This implies that the Qoldberger-Treiman
formula is a zeroth-order symmetry relation: be-
cause bGT is zero in the tree approximation there
are no counterterms available in the Lagrangian
to cancel possible ultraviolet divergences in the
higher-order corrections to this relation, so that
~G T must be finite due to the renormalizability of
the model. Hence the result of this section is that

bGT is both finite and of order g~2 or e'.
Since we have not found a sufficiently elegant

explanation fox this zeroth-order symmetry rela-
tion, we will refrain from fux'ther elucidation on
the genexality of this result. However, it is worth
mentioning that we have not found similar zeroth-
order relations that involve the hadronic vector-
current coupling constant. The presence of such
relations could have been expected on the basis of
the conserved-vector-current hypothesis or lepton-
hadron universality. Thi, s shows that current-al-
gebra results are in general no indication for the
existence of corresponding zeroth-order theorems,
as has been suggested elsewhere
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quantities in a way that will be described later.
This will provide us with a first nontrivial check
on the correctness of our results. All our calcula-
tions will be performed using the n-dimensional
regularization method. "

The perturbation scheme that is used for these
calculations was extensively discussed in I. Here
we will briefly sketch the main ingredients.

To quantize the gauge model we have added
gauge-fixing terms ——,

' C' to the invax'iant I.agran-
gian given in E(l. (2) for each of the ten generators
of the gauge group. We have made the following
choice for these gauge-fixing terms C which de-
pend on a set of parameters (U, $~, $~, and $„:

U ~U v @ ~U U~U ~

t-v= &ve ~;—&v 'Mv(4'rr+~4'c)

—&w 'Msl 4s ' ~&Zw g 'MvMs '(45+ 4)]
CA. ~A

The precise definition of the gauge fields can be
found in I. In addition, we have corresponding
Faddeev-Poyov ghost fields, and their contribu-
tion to the effective Lagrangian is also explicitly
given there. We have not diagonalized our propa-
gators in lowest order, so that propagators are
genexally given as matrices. The gauge-field
yropagators are decomposed as follows:

where D~ and D~ are 3 ~ 3 or 4 ~ 4 matrices, de-
pending on the charge of the corresponding gauge
fields. The yropagators for the gauge fields D~,
D~ and the proyagators for the p fields, D~, are all
listed lQ Appendix 8 ln I.

Given a choice of the gauge one can write down
the generalized Ward- Takahashi, ox' Slavnov- Tay-
lor identities of the local gauge symmetry. These
identities were given in I. In the tree approxima-
tion they provide us with relations among the gauge-
dependent pl opRgRtox'8: DI q Dg) Rnd DFpe Dpp ls
the propagator of the Faddeev-Popov ghost fields.
In order to establish the gauge-independence of our
results, we will express all the gauge-dependent
parts in terms of the propagators B~, such that the
only dependence on the gauge-fixing parameters
$~, $, (, Rnd )„will be contained implicitly in
D~. This can be generally achieved by making use
of the Ward-Takahashi identities. We will then
systematically show that all the D~-dependent,
terms cancel in the final results.

To establish these cancellations we will use
several manipulations. For instance, we will fre-
quently make use of the fact that all Feynman in-

tegl'Rls ax'e Lorentz-covariant ln oldex' to pro)ect
quantities of interest. Special care is given to
performing the limits Q -0 or q'-0. (q denotes
the pion momentum in F„and G~„„and the mo-
mentum transfer in 6„). Sometimes this limit
can not be taken without using the explicit form of
the propagators, in which case we have usually
refrained from further evaluations.

We will also frequently change integration vari-
ables in order to show that certain terms are equal
to zero. This is of course allowed in the context of
the n-dimensional regularization method. Fur-
thermore, we will express all 0$$ coupling con-
stants in terms of the inverse propagators of the
fields 0. Such inverse coupling constants are then
usually multiplied by the o propagators of the in-
ternal lines, which simplifies the expression con-
siderably. A similar technique will sometimes be
used for the D~ propagators. Since B~ ' has a ra-
th '

pl f t f pl' g tant
and masses, we can write the matrix identity
D+D~ '= 1 as a set of simple relations among the
complicated matrix elements of B~. We have col-
lected some of these identities and techniques in
Appendix A.

One more aspect of the calculational scheme
deserves special attention, namely the occurrence
of the factor n, which was introduced in E(l. (14a).
The denominators of the gauge-field propagators
are complicated polynomials, which at zero mo-
mentum are exactly given by Ms'-a (see Appendix
8 of 1). This means that after proper normaliza-
tion with respect to the lowest-order amplitudes,
each diagram will exhibit its own characteristic
power in 4. For instance, the box-diagram cor-
x'ectlons to 6& Rle llneRx" ln 4, px'opRgRtox' cox'x'ec-
tions are of order 4 ', whereas vertex corrections
are of zeroth order in ~. This implies, as we will
see in subsequent sections, that cancellations are
to be obtained in steps. One first combines the
terms of order 6 ', which should yield a factor of
4 in order to be added to the next terms of order

o etc.
As we have mentioned in Sec. II, the fields p are

mostly unphysical. The only physical components
ax'e the pion fields, defined as

s= a ~~2(- q)t)„+ g'c —s)(2g~g MpMs 'gs) . (16)

Since the pion is a pseudo-Goldstone boson, its
mass is zero in lowest order. In the one loop
approximation the charged pions pick up a mass
proportional to O'. This mass was calculated in
I and we recall the result of that calculation:



This answer was obtained by choosing the two
coupling constants of the chiral SU(2) 8 SU(2) gauge
group of the strong interactions equal to a common
constant g, and by taking the Vacuum expectation
value of the field g~ equal to zero in the tree ap-
proximation. This means that we are ignoring cer-
tain parity-violation effects in the strong interac-
tions. Since we are always calculating corrections
to zeroth-order symmetry relations, which hold

by definition for a continuous range of the paxame-
ters of the model, this has no theoretical conse-
quences. Also, since these parity-violating effects
are experimentally of the size of the Fermi con-
stant G~, they can safely be ignored when com-
paring oux final results with experiments. The
corrections to the GoMberger-Treiman formula
will be determined under these same conditions.
For that case the tree-approximation results for
the quantities that enter the Goldberger-Treixnan
relation have already been listed in Eq. (14).

%'e will make use of several results of the cal-
culations in I that were not always listed there. %e
have the same decomposition of the tadpole dia-
grams T,"', i.e. , the diagrams with an external
line o,. vanishing into the vacuum,

where T,. and t, are given in Eq. (I13). Note that
t, contains all the gauge-dependent contributions
of these graphs.

From the self-energy diagrams of the g fields
and the fermions of the model, which were mostly
calculated in I, we have extracted the wave-func-
tion renormalization constants for the pion and
the fermions, as well as for the fermion masses.
These results are presented in Appendix B.

Although the corrections to the Goldbergex-
Treiman relation are ultraviolet finite, as we
have shown in the previous section, they are in
general not fxee from infrared divergences.
Those divergences are related to the fact that the
photon is,massless, and that our calculations are
performed for the case that the pion is a pseudo-
Goldstone boson, which is by definition massless
in the tree approximation. However, apart from
that, we have often encountered unphysical in-
frared singularities in our calculation that are
connected with spurious poles in our propagator
decompositions, or, for instance, with the longi-
tudinal photon propagator, D~". (In view of such
infrared problems, the decomposition that we
have used for the gauge-field yropagators is ob-
viously not the most convenient one. ) Of course,
such unphysical singularities should cancel in the
final result. Since most of our calculations con-
sist of performing algebraic manipulations on the
integrand of Feynman integrals, which are dimen-

sionally regulated, the presence of these singu-
larities is usually ix relevant.

More precisely, the S-matrix elements are
calculated for n, the continuous number of dimen-
sions, different from 4. Qnly after the physically
relevant quantities axe obtained do we consider
the limit n-4. However, the gauge dependence
in those quantities will be absent for al/ values of
n. Therefore we can freely perform algebraic
manipulations on the integrands, such as taking
external momenta to zero, in separate terms
that exhibit unphysical infrared divergences at
n=4, by simply chosing suitable values for n.
This is not aQowed if the infrared problems are
of physical origin, unless special care has been
taken to absorb the divergences at n=4. There-
fore, we have kept the pion mass p.

' different from
zero in those cases where we encountered physi-
cal infrared problems to enable an identification
of the origin of the singularity.

For consistency this should then be done for
both internal and extexnal pions. This makes sense
for physical reasons also, since the infrared di-
vergences due to p, '= 0 are the result of our ap-
proximation scheme. The pions do acquire masses
in higher orders of perturbation theory after all."

In general, one should be careful to take limits
and (n-dimensional) integrations in the correct
order. In the presence of infrared divergences,
limits and integrals sometimes cannot be inter-
changed.

IV. THE (npm ) AND (m lv) AMPLITUDES;

DETERMINATION OF 6&'" 6 FPlf P PcfK

In this section we will describe the evaluation of
the various diagrams which contribute to the npg"
and ~ Lv amplitudes. An important part of the dis-
cussion will be to establish the gauge-independence
of these quantities. %'e will also discuss the pari-
ty-violating term in the pion-nucleon amplitude,
Gp„', .

Since the gauge-dependent terms are only rele-
vant insofar as one must show that they cancel
among themselves, we will confine ourselves to a
systematic description of the way in which these
eancellations occur. In order to obtain the can-
ceQations we have made extensive use of the
techniques that were described in the previous
section. and in Appendix A.

Vfe will distinguish three different contributions
to the np7r and g Lv amplitudes. First, we have
the lowest-order diagram with the contribution
from the external line corrections, as shown in di-
agrams A of Fig. 1. These contributions follow
from the wave-function renormalization constants,
as were calculated in Appendix B. How'ever, for
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In order to discuss schematically the cancella-
tions among the various graphs we will use the
following notation. We will denote the diagrams
of B and C of Fig. 1 by [B,i] and [C, i], where i
corresponds to the number of the diagram as given
in Fig. ). Moreover, we will denote by
T, L, g, o, (g- im} ' the transversal and longitudi-
nal component of the gauge-field propagators, the
propagators of the fields tt} and o, and of the nu-
cleons or leptons, respectively. Each (internal
or external)momentum will be denoted generically
by q„and each quantity with the dimension of
mass by M. The notation (g- im) will indicate
the presence of a fermion propagator. If we then
decompose the gauge-field propagators in their
components I. and T, and, moreover, use the sub-
stitutions for the propagators of the g fields as
they were given in Appendix 8 of I, we find the
following results:

(4)

FIG. 1. The diagrams which contribute to the pion
decay amplitude or to the pion-nucleon amplitude. In
the first case the solid line represents the lepton spinors
and in the second case the nucleon spinors. The wavy
lines are gauge-field propagators and the dashed lines
are spinless field propagators.

F, there is an additional contribution, since the
lowest-order diagram, which is proportional to
i7,(1+y,)u„, must be written in the form (3) by ap-
plying the Dirac equation for the lepton and neutrino
spinors. Through this the renormalized lepton
mass M, enters. Apart from that, the effect of the
diagrams A of Fig. 1 is to multiply the lowest-or-
der npv vertex by (Z,Z„ZJ'~', and the lowest-or-
der value of F, with ( ,Z„ZZ,)'~'m, M,

' Notic.e
that the terms proportional to y, in the lepton
wave- function renormalization do not change the
structure of the 7t Lv vertex, since those are pro-
portional to (1+y,}. In the npv vertex, however,
they give rise to a new type of vertex, which is
parity violating, i.e. , it is proportional to u~u„ in-
stead of u&y,u„. This contribution to Gp~'„" follows
straightforwardly from the nucleon wave-function
renormalization constants, and is given by

d "q&"r"(q)

&& [3 —n —(n-3)p qm ']
&&(q'-3p q) ' (19}

where p' = —m'. The second contribution comes
from the diagrams B of Fig. 1, where the pion in-
teracts with the nucleons or leptons through a
gauge-field line. The third contribution consists
of the vertex corrections that are shown in C of
Fig. 1.

[B,1]-[q„MLL) + [q„MTL]+[q„MTTj,
[B,3] -[q„q 'M'LL]+[q„q 'ML],

[B,3]- fq, q 'M'LL]+ [q q 'ML]+[q„q 'M'TL ]

+[q,q 'MT]+[q, McL]+(q,MaT],

[B,4] —[q.q-'M'oL]+ [q,q-'iV o],

[B,5] -[q„q 'ML]+[q„q 'M ']+ [q„(D,(0)T)],

[B,6] -[(tiI -im) '(g —m) '],
[C, 1]-[MLL(g —im) i]+[MLL(g —im) ']

+ [MTT(g- im)-'],

[C, 3]-[tt(g-im) iLo]+[q 'g(4(-im) 'M LL]

+[q 'f($ —im) iL]+[((g—im) 'To]

+ [q 'g(g-im) 'M'TL]+[q 'g(g- im} 'T],
[C, 3] -[q '(g- im) 'MicL]+[q (4I-iim) 'Mo],

[C, 4] —[(g—im} 'T(g —im) ']

+[(g- im)-'L(g- im)-'],

[C, 5]-[(f im)-io(g im)-i]

+[(g —im) 'q 'M'L(g —im) i]

+[(4(- im} 'q '(g- im) '].
In this notation we have not made explicit a factor
(M~'6} ' in the diagrams B of Fig. 1, which origi-
nates from the gauge-field propagator at zero
momentum squared, as well as the contraction of
the vector index p, with that of the fermion ver-
tex. It is obvious, as was explained in the previous
section, that in order to have cancellations be-
tween the diagrams of B and C of Fig. 1 it is cru-
cial that the terms from the diagrams B be pro-
portional to a factor 4, to cancel the effect of the
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gauge-field propagator, and that the terms from
the diagrams C produce a factor to remove the ex-
tra internal-fermion propagator. Apart from the
straightforward decomposition of gauge-fieM Rnd

$-field pl opagators we used the exp 1essions fox'

the tadpole diagrams that were obtained in I [see
Eg. (17)] in diagrams of type [B,5]. In the dia
grams of [8,2] we first substituted the product of
tmo Faddeev-Popov propagators by the product of
R longitudinal gRuge-field px'opRgRtor Rnd R $-field
propagator, so that these diagrams were then free
of explicit dependence on the gauge parameters E.

These substitutions follow straightforwardly from
the Nard- Takahashi identities which were given
in Ecl. (9) of I.

Obviously the schematic decomposition shows
very clearly which diagrams are manifestly gauge-
independent. The aim of the subsequent discussion
is now to show how the gauge-dependent terms,
i.e., the terms that contain the longitudinal com-
ponents, cancel each other. The cancellations are
established with the pion momentum Q satisfying
Q'=0, except when infrared divergences are en-
countered, and with the leptons or nucleons on the
mass shell. As was mentioned px'evlously the
llmlt Q 0 may give rise to diff lcultlesy Rnd one
needs complicated algebraic manipulations to ar-
rive at the final. result. Vfe now give a brief dis-
cussion of the various cancellations.

(g) The teems PxoPoxtional to LJ . The contribu-
tion from [8,1] is absent. The terms from the
diagrams [8,2] [8,3] can be summed in the Q'=0
limit, Rnd axe indeed proportional to 4. This then
cancels, sometimes after involved algebraic Inani-
pulations similar to those described in Appendix

A, against the contributions from [C, 1] and [C, 2].
g) The teems PyoPortioggl to oL. In the dia-

grams [8,4] we express the oft coupling constants,
represented by a factor M in our decomposition,
in terms of the inverse propagators of the 0 fields.
Schematically we have then M - (1jM)[D, '(q') —q']
in those diagrams. Since these coupling constants
are multiplied by D„we can use that D, '(q')D, (q')
=1, so that we arrive at the following decomposi-
tion for [8,4]:

(8, 4] —[q,q 'mr, ]+[q„Mof,]+[q„q 'M ')+[q oM ']
The terms proportional to vL can then be added to
those of [8,3]. However, it is only after we com-
bine these terms with similar terms from Z„ the
wave-function renormalization of the pion, that R

factor s ean be extracted. Then, finally, one can
obtain a cancellation with the terms from [C, 2]
and [C,3].

(e) The terms Pxoportiongl to TL. As is ob-
vious from our decomposition the terms from [8,1]
and [8,3] cannot be added directly since they differ

)g 4
&28g (9l —1)

d gD& g g —2P g (20)

If we consider the total answer (19) and (20) for
M~ very large, then we find that both contributions
are of order e'M~ ', which is of the size of the
Fermi constant Gz. This result supplements a
discussion in I where it mas argued that parity vio-
lations, although not naturally of order Gz in these
types, of models, are usually softer than could be
expected on general grounds.

V. THE (np/v) AMPLITUDE; DETERMINATION OF 6&

%e will now describe the evaluation of the dia-
grams which are relevant for the axial-vector
form factor G„. Again we mill schematically in-
dicate how the gauge-dependent terms cancel in
the final answer. The diagrams of interest are
given in Fig. 2. The diagrams A of Fig. 2 contain
the effect of the wave-function renormalization
constants of the external fermion legs. Again it

by R relative "factor" q'M '. In order to bring
them on the same footing, we can use identities
among the gauge-field propagators D~. These
identities are listed in Appendix A, and they have
the following structure (schematically): q'T =M'T
+ 1. After using these identities, the terms froxn

[8,1] and [8,3] can be combined and turn out to
be proportional to a factor 2 in the limit Q2-0.
However, through the use of the identity q'T =M T
+ 1, we generate additional terms of the form

[q„q 'ML, ] in the diagrams [8,1]. All the Tf, terms
cancel when combined with the result from the
diagrams C.

(d) The terms PxoPortional to a single L. Vfe

have found many terms proportional to a single L,
either directly in our schematic decomposition, or
after subsequent menipulations siInilar to those
described under (b) and (c) respectively, for the
graphs [8,4] and [8,1]. In order to obtain a com-
plete cancellation we must add the contributions
from the wave-function renormalization constants
Z„Z„Z„Rnd Z„. After that, a factor 4 can be
extracted from the diagrams [8,1-5] and the re-
sult eaneels with terms from the diagrams C of
Fig. 1. Notice that the terms proportional to I
Rnd fermion propagators cancel separately.

%e will now complete our discussion of the parity
violation in the pion-nucleon form factox, G~„' . It
turns out that the only contribution, beside the one
from the wave-function renormalization constants
given in (19), comes from a diagram of type [C, 5]
in Fig. 1. It gives rise to the following result:
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is relevant that these constants, which are listed
in Appendix B, contain terms proportional to y, .
The diagrams B of Fig. 2 give the self-energy
corrections to the exchanged vector boson. The
diagrams C„and C, of Fig. 2 give the vertex correc-
tions to the nucleon and lepton vertex, respectively.
Finally, the diagrams D of Fig. 2 are the box-dia-
gram contributions to the amplitude.

As we have already mentioned in Sec. II, the
box-diagrams D are no longer of the current-cur-
rent type. Nevertheless, these diagrams have
gauge-dependent pieces, and, since those must
cancel at the end, one should be able to cast at
least the gauge-dependent parts in the current-
current form. Several gauge-independent parts
will also factorize directly in that form, but at
the end we will still be left with terms that are of
a different structure. We have listed these terms
in Appendix C. Qf all the current- current terms,
we have kept only those that contribute to the axial-
vector form factor G~, evaluated at zero momen-
tum transfer as we have explained in Sec. II.

We will now describe the decompositions of the
diagrams A-D in Fig. 2 into gauge-dependent and
gauge-independent terms, using the same conven-
tions as in Sec. IV:

( I ) (2 ) (3) (4) (6) (7)

CN

or

ci / 4 / 4 / K /

(t) (2) (3) (4) (5)

(2)

FIG. 2. The diagrams which contribute to the axial-
vector coupling constant G&. The notation is the same
as in Fig. 1, and the dashed line with an arrow repre-
sents the Faddeev- Popov propagator.

[B,1]-[q„q„M 'TT]+[q„q„M 'TL]+[q„q„M 'LL],

[B,2] -[M 'q ']+ [q 'L]+ [M'q 'LL),

[B 3] [q L)+[q T]+[M'q 'LL]+[oL]+[o'T]

[B,4] -[q 'L]+ [M'q 'LL]+ [M 'cr]+ [Lo],

[B,5] —[M 'T]+[M 'L]+ [M 'q ']+ [q 'L]+ [M 'o],

[B,5]-[q 'L]+[M 'q ']+[M '(D, (0)T)],

[B,7] -[M '(it-im) '(g im) ']-

[C, l]-[Mq 2I(q im) ']+[q„T-L($—im) ']+[q TT(f im) ~], —

[C, 2]-[Mq L(g —im) ']+[Mq 'T(g-im) ']+[M'q 'LL(g im) ']-
+[M'q 'LT(g —im) ']+ [M&rL(r/ —im) ']+ [Ma T(g im) '], -

[C, 3]-[q q (g-4im) ~]+[q„q M L(g-im) ']+[q„q M LL(g-im) ']
+ [q„q 'o (f-im) ']+ [q„q 'M'oL($ —im) '],

[C, 4]-[(g im) '(g im) -'T]+[(r/ -im) '(i/ im) -'L)]-
+[(g—im) ~(g im) 'q ']+[(—g —im) ~(g —im) M q 2L] [(g+-im) (g —im) o], '

[C, 5]-[(g im) '(g —im) 'q-]+[(g-im) ~(g —im) 'q M L],
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[D, I]-[M'TT(g —im) '(g —im) ']+(M'LL(g im—) '(g i-m) '] +[M'TL(g- im) '(g —im) '],
[D, 2]-[M'q 'T(g-im) '(4( —im} ']+[q 'TL(g —im) '(g —im) ']

+[M'To(g —im) '(g i—m) ']+[M'La(g —'im) '(g i—m) '],
(D, 3] —[M'q (r(g —im) '(g im-) ']+(M q 'Lv(g —im) '(g —im) ']

+[M'q '(g im)-'(g —im) ']+ [iM'q L(g —im) '(tt —im) '] +[Msq 'LL(g —im) '(g —im) '] .

In making these decompositions we have written
the gauge-field propagators as linear combinations
of L and T, and we have made use of the expres-
sions for the tadpole diagrams obtained in I [Eq.
(13)], and the substitutions for the propagators of
the Faddeev-Popovfields and the g fields, which
were also given in I. The factors q

' in these de-
compositions correspond to those in the )}-field
propagators. In the box graphs we have not yet
taken the pion mass p, to zero, so that q

' may
stand for (q'+ p'} ' also. In the other graphs no
infrared problems are encountered when taking the
limit p, '-0. The decompositions are normalized
dimensionally relative to the lowest-order ampli-
tude.

It is again important that the diagrams A-D of
Fig. 2 carry certain powers of the quantity 4 ',
originating from the number of zero-momentum
gauge fields that are exchanged. Normalized to
the lowest-order amplitude [which has one such
propagator, and carries thus 6 ', see Eq. (14)]
the diagrams B of Fig. 2 have a factor 6 ', where-
as the box graphs D of Fig. 2 have 4. The others
have no such factors. Hence, to establish the
cancellation of gauge-dependent parts, the dia-
grams B of Fig. 2 have to yield a factor b. That
result will then combine with the diagrams C of
Fig. 2, and must then again lead to an answer
which is proportional to a factor 6 in order to
cancel with the terms from D of Fig. 2. It is ra-
ther tedious to do the algebra and extract these
factors, but the general theory requires that the
results are to be obtained along this line.

The aim of the subsequent discussion is now to
describe systematically the cancellation of the
gauge-dependent terms, i.e. , the terms that con-
tain the L propagators. In this discussion the
limit Q'=0 is generally understood.

(a) Terms proportional to LL. The contribution
from [B,1] is of order Q'. The terms [B,2, 3, 4],
when added yield a factor 6'. The only contribu-
tions from the triangle graphs come from [C„2]
and [C„3]. They can be added and are then pro-
portional to 4. Subsequently this contribution and
the previous one cancel completely against the
contribution from diagrams [D, 1] and [D, 3].

(5) The teems PxoPortional to oL. The contri-

butions from [B,3] and [B,4], [C„,2] and [C„,3],
[C„2]and [C„3], and [D, 2] and [D, 3] cancel
among themselves.

(c) The terms proportional to TL. In order to
add the terms from [B,1] and (B,3] one has to use
the identities among the gauge-field propagators
D~, which are listed in Appendix A. If those iden-
tities are used twice we can add the two contribu-
tions, after which the quantity L factors out. In
addition, the use of these identities will lead to
terms proportional to single L's, which are dis-
cussed in (d}. The terms proportional to LT are
now combined with those from the diagrams [C, 1]
and [C, 2], some of which exhibit a. nucleon or lep-
ton propagator together with an explicit factor b, .
The terms without such propagators will also yield
a factor 4 after recombining them with the result
of the self-energy graphs B of Fig. 2. The cancel-
lation is then obtained after adding these terms to
the box diagrams D of Fig. 2.

(d) Terms P~oPortional to a single L. The dia-
grams A, B, and C of Fig. 2 give terms linear in
L. If one also takes into account the terms that
originate from the manipulations in (c) then the
total result adds up to zero.

This, then, completes the discussion of the
cancellation of the gauge-dependent terms. In the
next section we will describe what happens to the
gauge-independent terms in the calculation of 4G~,
the deviation from the Goldberger-Treiman for-
mula.

VI. CALCULATION OF DG~

In the previous sections we have shown how the
gauge independence of the quantities that enter into
&«was obtained. The next step is to combine the
answers for the various quantities and calculate

In doing so it will be of crucial importance
to verify that 4G~ is indeed free of ultraviolet
divergences, and that the answer is of order gl-
or e', as we have argued in Sec. II. Since the
box graphs which were listed in Appendix C al-
ready satisfy these two requirements, we will
ignore those in the first part of this discussion.

We have again found a large number of cancella-
tions which can be obtained by using the same
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techniques as were described in the previous sec-
tions. Again, the presence or absence of powers
of the quantity ~ was usually relevant. First, we
have calculated the effect of the various tadpole
diagrams, and we have found that all these terms
add up to zero. Concerning the remaining terms
that still depend on the propagators of the fields 0,
we have established by direct computation that all
those terms cancel as well, except for

CI I I I I I I I I 0 0 I I I I I I I I I)

(a) (b)

FIG. 3. Examples of triangle diagrams: (a) contri-
butes to Gz and (b) contributes to G&„, .

(21)

We have then considered the contributions com-
ing from the fermion-loop diagrams, given in

[B,6] in Fig. 1 and [B,7] in Fig. 2. A direct calcu-
lation of these quantities, when combined with the
fermion-loop contributions of Z„ leads to a re-
sult proportional to

discuss the case that the fermions are the nucle-
ons. We can then determine the contribution to
G„by taking the divergence with Q, =p,' —p, and
dividing by 2zm. In the limit Q'-0 we will then
obtain G„((7«y,u„). If we take the divergence of (22)
we can now apply the well-known trick

1 1 1..„,' « — - ~ «--)Yg y5

1 1

jf -zm Yfi, V5
LPl

(22)

where p and p' are the momenta of the incoming
and outgoing fermion line, respectively. Let us

which looks ultraviolet divergent at first sight.
However, dimensional regularization ensures that
this result vanishes. This can be seen either by
substituting the explicit expressions for the various
integrals, or by introducing (I/n)[(a/sp, )p, ] in the
first integral, and performing a partial integration.
In this context it is also worth mentioning that we
have generally ignored integrals of the type

J d "p p
' throughout the calculation, since these

integrals can be shown to vanish also within the
method of dimensional regularization. Hence all
the contributions from fermion-loop diagrams
vanish. However, in establishing the gauge inde-
pendence of our results, we have sometimes
generated terms that are of a similar structure.
Such terms, which do not contain the 0-field or
gauge-field propagators are present in the wave-
function renormalization factors, the corrections
to the fermion masses, and in some of the triangle
diagrams. When all these terms are combined,
their contribution to ~GT turns out to vanish also.

All these cancellations have been obtained by di-
rect algebraic manipulations. However, to com-
bine most of the triangle diagrams, like those
given in [C, 1, 5] in Fig. 1 and [C, 1] in Fig. 2, we
will need a different approach. To introduce this,
let us first consider the following example of a
triangle graph with two internal fermion lines, as
is shown in Fig. 3(a). The contributi. on of this dia-
gram to G„will be proportional to

1 1
+ . y5P' —im p —im (23)

D, (P)D,(q)[- (P+ 2q) 5„+(2P+ q)~5„+ (q —P), ii, a]

P~P ~
9'g vp

where p and q are the momenta of the gauge-field

The last term will be proportional to a diagram
that contributes to G~„„which is shown in Fig.
3(b). In this particular example, there is an exact
correspondence to the diagram of G~„„so that by
this method one can directly write the difference
betwe n the corrections to G„and those to G~„, as
an integral that involves only one, instead of the
original two fermion propagators. Not only wil1.

this lead to simpler expressions, but this trick
will enable us to treat larger blocks of diagrams
at the same time. In this way we were then able to
write the result for ~GT from all the triangle
graphs with two fermion propagators in a form
with one fermion propagator and one gauge-field
propagator. (The terms without any gauge-field
propagator have been discussed before. )

A generalization of the same method can now be
applied to the propagator and triangle diagrams
with two gauge-field propagators, like the dia-
grams [B,1], [C, 1] of Fig. 1 and [B,1], [C, 1] of
Fig. 2. The general structure of the diagrams that
contribute to G„ is shown in Fig. 4(a), and leads
to the following contribution:
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Cl I I I I I I 0

(0) (bj

FIG. 4. Examples of propagator or triangle diagrams:
(a) contributes to QA and (b) contributes to 6», or E, .

propagators, and Q=p+q. If we now again take
the divergence with Q, we find

We could now generalize the previous discussion
and try to write q'- p' as the difference of two
inverse gauge-field propagators with possible
correction terms. This can be done straightfor-
wardly by using the identities (A3) and (A4) of
Appendix A. Schematically we can then write

(q2- p2)D, (p)D, (q) -D2(q) —D~(p) I+D2(p)D4(q) .
(24)

Again the last term has the structure of a diagram

that contributes to G~„, or F,. The general struc-
ture of such graphs is shown in Fig. 4(b). How-
ever, in this case there is never an exact corre-
spondence, and we are not able to completely
eliminate the terms with two gauge-field propaga-
tors, as was previously found to be the case for
diagrams with two fermion propagators. The re-
maining terms represent contributions to bG~&
which we have listed and further evaluated in Ap-
pendix D.

We will now discuss the terms that contain only
one gauge-field propagator. We have already
mentioned such terms, coming from the diagrams
with two fermion poles after using the substitution
(23). Those terms can be combined with similar
terms from the fermion masses and wave-func-
tion renormalization factors. Now we have also
generated contributions from the diagrams with
two gauge-field propagators, after having used the
substitution (24). In addition, we will find terms
with one gauge-field propagator that originate from
the pion wave-function renormalization factor Z„
listed in Appendix B, as well as similar contribu-
tions from the diagrams [8,3] and [C, 2] of Fig. 1
and [8,3], [B,5], and [C, 2] of Fig. 2. All these
terms can be combined into the following relative-
ly simple contribution to &G~

g2 DvV+ DVV DUU DUU ~2 —DUA egg q2 DUW+ DUW+ ~2 DwA+ DVW+ DVW
(2v)4 n n p2 2 T T T T g T 4 w T T g T T T

2 1 2 2 2~

2 g 2 & + & -~(n.q)2=-u2

2 3 1 2 „„1--U„2 2-~„1 -U„1 1 2m, ' 2p„q+
2

„——,e'DT + 2M2egDT 4 e'DT + 2M2egDT
2U j np42 2w' 2 q q+p. m, +Q p' —2pop,

(25)

In this result the argument of the gauge-field propagators is p. In the first and third terms the limit Q-0 has been taken and an integration f d"p has been suppressed. The second term originates from the
pion wave-function renormalization Z, . Here the integral fd"pd"q5"(p+q —Q) has been suppressed. In
the fourth term we have ignored the same integral, and again we have refrained from taking the limit Q2

=0, because of infrared difficulties, as we have discussed in Sec. III.
Two remarkable properties of this result are worth mentioning. In the first place, one can easily verify

[for instance, by using the identities (A3) and (A4) to extract the large momentum behavior] that the result
(25) is ultraviolet finite. Secondly, the dependence on nucleon and lepton masses has cancelled.

We will now discuss the final result for ~G~. We distinguish the following five contributions:
(a) the term containing D, , given in Eq. (21);
(b) the box graphs that are not of the current-current form, given in Eq. (C2);
(c) terms proportional to (n —I)/n, given by the first term of Eq. (25) and by the following contributions

from Z, [see Eq. (B2)]:

g2M

(2U)4 n p2 4 w T T T T 4 w T T T Td()p U P g 2(DUU 4. DVV 4.DUF)DWW+ I g 2(DUU4 +VV+ DUV)DWW

g 2(DUW4 DVW)(DUW 4 DVW)+ g2(DUUDVV 4. DVVDUG 2DUVDUV)

)((2gg [D (DV v+ DUF)+ (DVV+ DUV)DUW DVw(DUU+DUF) (DUU+ DUF)DVW]) (25)
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{the propagators all depend on the momentum p);
(d) the result of propagator diagrams, shown in Eq. (D3) combined with the remaining terms from Z, ;

e

(n —I)Me'&M2 — d p d"q 0"(p+ q q)[—(e'D~+ ,' V 2 -egDeA}av~ - '42e-gDvAD~~J ~

g~ dQ eQ no
(2?)

(e}the box graphs that were written in the current-current form, Eq. (C1), together with the terms
originating from triangle diagrams that were given in Eq. (Dl), and the remaining terms from Eq. (25).

All these contributions (a)-(e) are separately ultraviolet finite, which proves our claim that the Gold-
berger-Treiman formula is indeed a zex"oth-order relation, from which the deviations are finite and cal-
culable. The results (a)-(e) are also separately of order g)v' or e', as was required according to the argu-
ments presented in See. II. The only terms which are not manifestly of this order are those given under
(c). Namely, we have the following terms:

N-1 11 p
(2)I}4 n n 2 p' r r r r g

—-g' d"p —D'"+D'"-D "-D"-W2-D"" +e'M '(D"Dvv+DvvD"' 2D'vD'v) (23}V 2' T 1' F T T

Howev81' llsiIlg 'tile Eqs. (A3) aIld (A4) 'tllls call be I'ewl'1't'tell Ill the fol'Ill

gQ dep M I(DUIVDVA DVWD[IA)
i n —111, 1 e

(2)1)' n & 2 p' g

WR 'I;[-[e'"-()+ 2 )D —I)'[& ——))+ 2 *)&")))'")),
g T (29)

which is of order e'. In fact, one can show that
the total contribution from (c) is of order e'.

This concludes the calculation of & . It is,
however, worth mentioning that a,lthough ~GT is
ultraviolet finite, it is stiB infrared divergent.
The infrared divex'gences are contained in the con-
ventional box-graph contributions, mentioned
under (b), and in the contribution (e). Most of
them are due to the presence of massless photons
slid ploIls {ill the lllnli il = 0). Howevel', so1118 of
them do not seem related to the px'esence of mass-
les8 physical particles. Of course, these diver-
gences must be superficial and should cancel in
the final result. Indeed, if we add all these terms,
it turns out that they are RB proportional to the
term

This particular combination no longer exhibits
a pole at @~=0, so that the infrared divergence
disg, ppeQ, x's.

VII. CONCLUSIONS

%'8 have shown in the previous section that the
result fox' 4~T is finite and of order e' or g~'. It
is no% straightfor%'ard to examine Rll the remain-
ing terms for physical values of the parameters
(i e , M„~M. .e-~, e/g«1, g~/g«1). In this
approximation the complicated gauge-field pro-
pagators in I reduce to much simpler forms, and
th8 lnt8grRls can be evRluated. HO%'evel, before

we ean obtain a final answer, there are several
problems to be fa,ced.

First of all, the numerical magnitudes of G~
and E %'h1ch a.l 6 commonly used ln checking the
validity of the Goldberger-Treiman relation have
already been adjusted for radiative corrections.
Taking 6„, for instance, this involves the compu-
tation of the virtual corrections through order e'
and the infrared divergent bremsstrahlung correct-
ions. The extraction of the virtual correctionss'2~
ls usually done 1n the limit 1n %h1ch PR, Rnd pg cRn
be neglected. This reduces R box graph, which is
R function of two 1nvariantsy BRy Q and & = pp 'pgy
down to a triangle graph %hich is R function of Q2

only. The infrared divergency is then cancelled by
the corresponding bremsstrahlung term in the rate
for the radiative decay. However, these standard
considerations apply to the computation of various
decay r ates whereas our calculation concerns the
ratio of amplitudes.

Since the same order of e' graphs are already
included in oux answer for G~ and I'„ these
terms &could need t0 be subtracted mt before we
ean find the remaining corrections to 4GT.

Then there is the problem of infrared-divergent
terms due to the presence of a massless pion. We
have regulated this divergence by calculating these
dangerous terms with a, finite pion mass p2. Hence
we are not strictly using a pseudo-Goldstone pion
everywhere in the calculation. Clearly the regular
infrared-divergent terms due to the presence of R

massless photon now get mixed with these addition-
al terms. Also the procedure used to extract
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the regular infrared- divergent terms, namely,
setting m, and P, equal to zero, becomes much
more subtle. For instance, what should one do
with terms involvi. ng 1n(»n, '/i(, ')'P Recognizing that
we are dealing with a remodel and are only interested
in the approximate magnitude of the numerical
result, it does not seem worthwhile to get entangled
with these problems. Hence we take the point of
view that the remaining terms in our answer should

only be checked to see whether there are any ano-
malously large terms. We have already shown that
the corrections ax'e of order e' and g~'. In the
limit that M~- ~ there could, for instance, be
sizeable contributions from terms proportional
to e'lnM~'. If such terms are absent, then we
ean-safely conclude by saying that the corrections
are of typical electromagnetic size, say 1'fo or
less, and avoid giving an explicit number for the
correction to the Goldberger- Treiman relation.
An analysis of our final answer has indeed shown

that the large value of M~ does not induce an en-
hancement of the corrections. Let us discuss some
of the final terms and make a few additional com-
ments.

First, considex the texms which are independent
of nucleon or lepto~ propagators. These consist
of the terms in (n —1)/n in Eqs. (25), {26), and
(29). Most of these terms do not contribute to
order e'. We find the result

i-n —1 eMp
( 2)

(2v)' n

M
q'(q'+ M„')(q'+ M„')(q'+ M~')

3 M M
162M'-M2 M2W g p p

which is proportional to the pion mass as calcu-
lated in I. The term in Eq. (21) is also propor-
tional to (n —1)/n. However, it does not contribute
to order e' because D~~ is approximately given by

D."-=g g 'M, 'M {q'+m, 2)-'(q2+»n, ')-'.

The term in Eq. (27) which is proportional to
n —1 can be evaluated by expanding the propagators
in a Taylor series in Q'. After isolating the terms
which are finite in the limit M~ ~ we find

0

2g d 2 2

(2v)' e g~ (fQ'(n 1)M 2g 8 . d))p d((q 6())&(p+q q) e2LrM+ egDUA D»(»{q) AD»ADU)v{q)

3e2 M~ M~ M~2 M~ 3 Mg
=(8 ' q)( * » ')*'" nr * '(ns * ()( ')*'2 ~ * ns 'I'

Clearly there is nothing surprising about these answers. AQ dependence upon M~' has canceled completely.
In this limit (M~ ~), we can identify M~ and M» as the masses of the p meson and 2, meson, respectively.
Hence both results in Eqs. (30) and (31) are numerically smalL

We now turn to the integrals with infrared problems and nucleon or lepton poles. The terms in Eq. (Cl)
and Eq. (Dl) which are of order e' involve the propagator combinations [e'D~r"(p)+ (W2/2)egDUr" (p)]D»r»{q)
and (~2/2)eg Der"(p)Dr (q). All the other terms lack sufficient powers of M(»' to be finite in the limit where
M~'- ~. Note that the former term has a factor of p ' so it is more likely to be infrared divergent. The
latter term has no such problems and is actually of order G~. If we now eolleet together all the terms in
e Dr" + (&2/2)egD~~", including those in Eq. (25), we find the result
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where D(q) is defined in Eq. (C3). As mentioned
previously, some of the infrared divergences are
superficiaL The combination v 2 gg~ 'Ms'&Dr~(q)
-1 behaves like q' for small q', so the first term
in Eq. (32) is infrared convergent. The second and
fourth terms are infrared divergent in the lirpit
that the pion is massless, so we have regulated
the terms with a small mass p,'. In the approxima-
tion that higher orders in e and g~ are neglected,
D(q) reduces to
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the Institute- Lorentz, Aspen Institute for Human-
istic Studies, and the University of Washington for
hospitality.

v2g„ 1 1
SgM 'a q*+ p' q'+M') ' (33) APPENDIX A: SOME USEFUL FORMULAS

Some of the integrals in Eq. (32) are triviaL
The terms with no lepton or nucleon poles can be
evaluated and lead to answers similar to those in
Eqs. (30) and (31). The terms involving nucleon
poles lead to more complicated expressions in-
volving I„,m, and m& . Unfortunately, one of
the lepton pole terms is infrared divergent and
leads to a term involving ln(m, '/p, '). There are no
terms containing lnM~ in this part of the answer.

The last part of the analysis concerns the contri-
butions from the box graphs which cannot be
written in current-current form, namely the terms
in Eq. (C2). All these integrals are well behaved
in the limit that M~ - ~ and never yield terms in
e'lnM~'. Hence there are no anomalously large
terms in our answer for ~GT.

We do not want to discuss the box graphs further
because they have severe infrared divergence
problems. The only way to extract the virtual
photon terms is to take the limit that m, and P f

tend to zero. Such a program runs into trouble
due to the additional infrared singularities caused
by zero-mass pions.

We conclude by briefly summarizing the main
results of the paper. The corrections to the Gold-
berger-Treiman relation have been calculated in a
unified gauge-field model. We have explicitly dem-
onstrated that the corrections are finite and gauge
independent, which confirms our general result
that +GT= 0 is a zeroth-order relation. In the
case that the pion is a pseudo-Goldstone boson, so
that its mass is due to the electromagnetic and
weak interactions, the corrections to &GT are also
of order e' or g~'. In the physical limit (M~- ~,
e/g«1, g~/g«1) the corrections are completely
independent of M~, so we expect the size of the
correction to be approximately 190.
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In this appendix we have collected some results
which have been used throughout the calculations.
Some of those were already briefly sketched in
Sec. III.

Qne can generally express a four-vector P„ in
terms of two other vectors P, and P, by means of
the following formula:

(Pi PR)(PB p) PR'(Pi p)' (p'. p')2

(pi'P )(p2pi) -p, '(p, p)
(P, ~ P2)' —P,~P22 (A1)

32p, Ms'=s —[D, ']ss(s)+4M2beg~'g MU'Ms ',
(A2)

ISWQg~g iMcMskq = —[D~ ] (s) —Sbegg g Mil

Sv 2 ~~g'M„M y =[ D, '] (s) —Sbgl g'M„,
16 ~' gMg„'6, = [D, '] ~(s),

SggM „'ebi = —[D, '] r (s),

SV 2 g~g 'M„Ms 6, = [D, '] rs(s) .

This result, which can be generalized in various
ways, allows one to write Feynman integrals of
the form fd"P P„F(P,P„p,) as a linear combination
of the external momenta P,„and P,„. The co-
efficients are integrals involving scalar functions
of P, P„and P,.

As was described in Sec. III, one can express the
ag coupl. ing constants of the I agrangian in terms
of the inverse propagators of the fields o. These
relations are given by

64iiP!c' = s [D, '] (s),

16ii,M '=s [D. ']v"(s)+Sv 2 beMcMs,

16ii,g'M '=s [D, '] (s)+Su 2 be 'M„Mz,

16iiet Ms = —[D, i] ~(s) —Sv 2 bMcMs,
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The argument of the propagator s is a free param-
eter in these relations. The coupling constant b

has been taken equal to zero in most of the cal-
culations reported in this paper.

Similarly one can derive relatively simple rela-
tions among the various transversal gauge-field
propagators D~, by substituting explicit express-
ions for Dr'(s) into the relation Dr(s)DF '(s) =1.
We then find

sM (D w+ eg 'D v")

= 2 W2 g2,g '(D r '+ D r }—M w M v D r

Finally, we will discuss a typical example of the
algebraic manipulations that we have used. Con-
sider the diagram [B,1] of Fig. 1, with two dif-
ferent propagators D, and D, . This diagram is pro-
portional to

I= d "Pd"q 6"(P+q —Q}D,(P)D, (q)(P„—q„).

(A5)

If we now interchange P and q, and then use that
this integral has to be proportional to Q„, we find
the result

sM w(DFw+eg -1DV&)

=2 Wag g-'(D""+D") M 'M ~DFw,

~=a Q„Q d "pd "q 6"(p+q Q)-
x [D, (p)D, (q) D, (q)D, (p)] (p' q') .

sM 2(Dww + eg 1Dw")

g g 1(D wvD+wF) M 2M 2Dww+ M w

In the limit Q- 0, we know that D, (P)D, (q)
-D, (q)D, (p} can be written as R( —,'(p —q)) ~ (p' —q').
If we then perform a symmetrical integration, we
obtain the result

sM, (Dvw+eg 'WrD ")=-2' g g'D

wg)Fw ~2g g- Dww (1+ ~ )D IY (A3)

d"PR P P'.2
(A6)

sM 2(Dvv+ eg V2 D"") =-,' ll 2 g g 'Dvw-D"v+M„
U

sMv~Drv= 2 W2g g 'Dvw (1+ v.')DFFF-+Mv ',
-2(D~+ eg-IIII 2 DFA) 2 ~g g g-1Dvw Dvv

sM 'D "=
2 II 2 g g 'D —(1+ F.')Dvv

For the charged propagators the terms that con-
tain the photon field A must be deleted. For
neutral propagators our notation requires the sub-.
stitution of D by D. In addition, we have the
following identities for neutral fields only:

sMv~(eg 1D ++D+z+}

= 2 W2gwg 1(Dvr" +Dr ) —Mw' Mv
' D~~,

sM, "(eg-5'""+-'WZ D"") =-'g g-1D~&

(A4)
sMv~DF"= II 2 g g 'Dw" (1—+e')D""-
sM (D"2" eg +'Dw +eg '~P D"")=M 2.

These relations (A3) and (A4) are convenient in re-
arranging some of our results in order to obtain
the necessary cancellations discussed in the text.
The square of the momentum of the propagators is
q =s.2

Thus we have now evaluated the general structure
of (A5), which is usually sufficient in order to
obtain the various cancellations. In most cases
it is not necessary to find the explicit form of R(P).

APPENDIX B: THE WAVE-FUNCTION RENORMALIZATION

CONSTANTS, AND THE FERMIQN MASSES

In order to calculate the correct expressions
for G~„„E,and G„, and to arrive at gauge-inde-
pendent results for these quantities, we have to
normalize the wave functions of the pion, the lep-
tons, and the nucleons. The wave-function re-
normalization constant for the pion, Z„, follows
from the pion propagator D, in the one-loop ap-
proximation, with the pion field as defined in Eq.
(16). This propagator was calculated in I, where
it was also found that the eigenstates of the mass
matrix remain unchanged in this approximation.
The definition of Z, is then given by

Z„= lim (s+M, ')D, (s),

and as a byproduct of the calculations presented in
I we find the following expression for Z:

Z = 1 —
~
— d "q II(q),

(2W)' n

where
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11(g)=,g D"" D" 2) —+2(D "—2» D '» "D»" 'D )—7 & + a a

~ (D 4» D»'—4 'D ) D"" -'D"")—
n

g g ID ~ D ~ D +g gMM IP-ggggM M(D ~ D )I D D )
n-1

n

n —1-g g '(ggD"" ~ ggD —2g g 'M M 'D"*) D " —'D ")

g-1[V(Y D U+ ~ DUv Q~~-1(DUE+ Dvz ~g g-1M M -1Dzz)

—2g„g 'M 21 D]( ,D""——'D""

—
2 g'q [(1+St ')D2, "+ (I -4e )Dzv"+ 3/Xgwg '(Dzw+Dz" )+gwg (1+g„'g MU'Mz )Dz ]

1 4 —n

2 -2 2 -2 2 2
' n

n-1 1
+ —g'q '[(1+42' ')(Dr +Dr )+Dr""+Drv+~gwg '(Drw+Drvw+Dr"w+Drvw)

+gw'g '(1+gw'g 'MU'Mz ')(Drww+Drww)+ 4~eg '(1+ 2e 2)Dr"

+ 4egw g '(1+gw'g 'MU'Mz ')Drw"] + —II,(q, k)
d

ds s=p
(B1)

II,(q, k) is defined by

(2k2 2p2 2)(p2 2)-2~ -2 2D»4A

~ ( —1)(1— M ( g D (P)(D ~ D 2D )+ g ID (P) D (p) ~ 2)1 (P)ID
1 k'
nP'

(+UW(p)(D VV+DUV) DVW(DUU+DUV)

—[D,""(P)+ ~,""(p)]D,"'+ [&;"(P)+ ~ ,""(P)]D"']) .

We have suppressed the argument q in the propa-
gators. Furthermore, we used the definitions
s=k', andp =k-q. Notice that there are infrared
divergences contained in II,(q, k). In such terms
we have kept the lowest-order pion mass p finite,
in which case the derivative is evaluated at s=-p .

The definition of the fermion wave-function re-
normalization constant requires more care, be-
cause of terms proportional to p'y2 in the fermion
propagators. As far as the neutrino is concerned,
only its left-handed chiral component has interac-

Z —1+ gw d)2 D lvlv(3 ) 2
D 4 (3&)4 q Z

X(q'+m)') '+Z„ (B3)

where z„ is a gauge-independent contribution that
we need not specify.

tions. These give rise to a wave-function renor-
malization constant Z„(for the left-handed compo-
nent only):
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For the remaining fermions we first write the
inverse propagator in the form

8 '(P) = exp[-(z(p')y ]~ '(P)exp[u(p')y, l,
where a(p') is chosen such that 8 is now free of
terms proportional to y,. The wave-function re-
normalization constant of an incoming fermi. on is
then given by Z'~'exp[-a(-m')y, ], and that of an
outgoing fermion is given by 7'~'exp[a(-m')y, ],

where m is the fermion mass, and 7 is defined by

s(p) ~ 7
PB

Hence the total wave-function renormalization
constant can be written in a form that includes a
term proportional to y„ the sign of which depends
on whether the fermion is incoming or outgoing.

For the (incoming) lepton we obtain in this way
the following result:

jg~' „e' „„1 1 I ~ 1 q +m&
Z, =i+

( )g
d"q 2 Dz —2+ 8 Dl, z 2 . +2 z( )2 (&+y5)

g& q q- P'0 o' P-0
2 2l m,——y, » z + Dr +4 —Dr 3-n+ 2, (q —2P'q)O'W e O'A + 0 2, -1

8 Mzq p-q g'g

+D~~v[2-n+(2-n)q&, '+m, 'q '](P-q) '

where we have suppressed the argument q' of the various propagators. z, is again a gauge-independent
constant, which contains a logarithmic infrared divergence. We have used that p'= -I, '.

For a (incoming) nucleon we have

g l ~ g dnq 3 DAAq-2~ 3(DUv Dvv) -2+ 3D vv
(2v)' 2 g' ' ' ' ' ' ' q'-2P'q

1
475 2 2p,

W

3DL + 2D& +Dz + —1+7 D " 3-n —n-2 P qm
' +g~.

z„is a gauge-independent constant, which is different for protons and neutrons. For the proton it contains
the usual logarithmic infrared divergence. %e have suppressed the argument q of the propagators and we
havep'=-m'. Finally, we list here the expressions that were obtained for the fermion masses in the one-
loop approximation:

M„=O,

~M

m,
' (2v)'

XIV

8 (2v)'

P.D". (0)r,

m, '
t -I,)y 2-n q' ~g q'+4m,

2 2 2 + 2I ia Dr 8 n+ ~ 2 ~g
z g +~g g l,P- g) g 2 tpl& Zvg&

[8-n+(2-n)q'm, '+m, 'q '](p-q) '+-,'(2-n)m, '(2D +8 )

4
s . -„„,~g

- „4m, *~ (2 —
g)q*)I20$g g +2 ~ g- +

w 8 2P '0 p2=-m 2

m (2v)' '-'~@~-'I -'D" (0)r

f" e(e '2t v") ('~-~ '(3 ')) (~*e'))". '+*

x[2 —(n —2)(p q)m-']+(n —l)(2D,""+5;")),z
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AppEiIX C: THE BOX-DIAGRAM CONTRIBUTIONS TO G„

1859

In this appendix we will list thvarious gauge-independent contributions from the box graphs. These dia-
grams are all finite and of ordeg~ or e . We distinguish two different contributions. The first one can
be written in the current-curre form. Here we have ignored all terms that do not have the axial-vector
form. The second contributionannot be written in the current-current form. In this case we have not yet
taken the limit of vanishing moentum transfer. All the expressions have been normalized with respect to
the lowest-order value of G&.

We first give the current-cu:ent contribution:

q' g p' —2&P, m, '+ Q' p' —2P P, q' —2q p„
V8'

gg„g(D "'"D D"D ("1
"——

P —P'Pr

g2 +DUwDvw+DvwDU)v g. eg z(DUwDvA +DvwDUA) + )f2 eg-1DvwDwA ]P2+ 2P P p
2' T T T o' T T 2' T T T

1 m2
T z' P2 2 P2 2P, P p2 q2 q2 p2+ 2P, P

In this result we have igno'd the overall factor

and the momentum conventi» are Pr -P„=Q =P„-P~. We have generally taken the limit Q'= 0, except for
the first term containing thphoton propagator where we encounter infrared singularities. The momentum
of the neutral gauge-field ppagators is P, and that of the charged ones q.

We now give the contrjb~ns which cannot directly be written in current-current form. We have taken
out the same factor as abg and use the same momentum assignments:

4 g [y2(Dr +2I2eg 'Dr"Dr y JSzy„(Dr +Dr"y,)

y„(Dr'+D—r'y, )S.Y, &r'+Dr'y2)][»SDY, (1+y,) —2y, (1+y)S)y„(1+y,)]

+ggw '[ J2e'D-z"y S„(Dz"+Dr yz)+2egy&(Dr" + Dr yz)S„y2(Dr" +Dz"yg

2 egy2 (DUr j r yz)S2 y2 (DUr + D r yyy)] [y()S(y„(1+ yz)]

gy, (D y D ") y, g(D "y—D )(g ,—', )y„, (1~ y,) (,y, (1 ~ yJ]q2+ 2q 2 q —2q p„p'+ 2p p p2 —2p p,

if'YD(i"y, +Dr ) ygif(Dr"y, —Dr ) yD(q'+imz)(1+yg

y, q'y, f (q' —im, )y, (1+y g im, y, (1+yg
' q'-2q p i p +2p'PD p' —2p'PI

py„(Dz, +Dz ) y„ri(Dr y, Dr ) il(y„(1+Y-D) ()-
y, q'y, y, (q'+ im, )(1+yg)—e'gg, '2v 2mm, , ' ' ',

2
D, D(q)

Pn

mm, U y„(2im -p') (2im+p')y„„w yD(2im+p) (2im+p')yD

(-p'+2imI)y(1+ YB zz( ) g m I qys qyz (-P'+2im, )(1+y,) z2
p' 2pz,

' eM M q'+2q. p q' 2q p„p' 2p. p,
(C2)
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%e have used the following conventions. The first term in the large brackets is supposed to be sand-
wiched between the proton and neutron spinors &i~(p~) and u„(p„), while the second term is sandwiched be-
tween the electron and neutrino spinors s, ( p, ) and u, (p„). All the spinors satisfy the Dirac equation
(p —im)u(p) =i(p)(p -fm) =0. Furthermore, we have introduced the following notation:

D",'(q) &2 ~g 1 1 1 — D", (p) W2 g, 1 1 1

S~=(p'„-q' —im) '= (p'~+/ —im) ', S„=(p'„-p' —fm) '=(p&+ q' —fm)
(C3)

Notice that the functions D and D will only exhibit a pole at zero momentum if p, the lowest-order pion
mass, is taken equal to zero.

APPENDIX D." SOME CONTRIBUTIONS TO hG~ QUADRATIC

IN THE GAUGE-FIELD PROPAGATORS

In sec. VI me have described hom the triangle diagrams with two gauge-field propagators mere reduced
to expressions with only one such propagator. The effect of this reduction method mas, however, not
complete, and me were left with some terms. These terms will be listed in this appendix. %e will dis-
tinguish two different contributions. The first one originates from the nucleon and lepton triangle dia-
gr ams:

n-2
P +2P P

2m -p' p„& M
2& q (t)vw&ww Dvw&vw g2

—
-&DwzDvw)

2 (2)4 z2& r r r r ~8' r r

2
2P P1J

y
1 2P Pl/

m, ' q' q' p'+2p p,

)
2q- p„m, p q Q. p 2q- p. l, p q p'-q'

+

The neutral gauge-field propagators carry momentum p, the charged ones q. The integration Jd"pd"q
x 5i"'(p+ q —Q) has been suppressed. Notice thatwe have not always taken the limit Q'-0. However, it is cru-
cial that the result (Dl) is both ultraviolet convergent and of order e' or gw'.

The second contribution comes from the propagator diagrams. The reduction method goes along the
same lines, and me have found the following result:
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IgaM 2 [DFF(Dvv ++sg IDW-A) DNIDFF]

+-,'g '[m, '(1+e') - ',g,'-g 'I„'e*][D","{D~+P2Sg I Dr ) -Drvgvy+~2 &gD~&),D~D~ D~D~]

+gmM ~n, (l+")[Z~{DVW+Vg -rD™)-a(SFW+Vg -IDF"}]

+ ggw I,'(1+2&')+ g—', M, '(2+2'') f(D~+DQ~DFrw -Dyw[])rv+D& g2S~I(D~~+D~~)]

+(D +)) )(D' +&Beg 'g *) ))""(() +-()g )}- gg M '()+~')--gM '((+)a')1

xoDNt+Dvy)(Dvw+~gvg ID')-Dvw[Dul +Dvy +~peg l(Dvk+gFA)] + (Dly+Dvl)yw Dyw{DFy gory)}

+ g Sg 1~ R(1 + ~2)((Dvw+Dyw)(Dww+ lDwj) Dww[Dvw DFw y(v~ DF~)]]3 -l a

DAA+ 2
~gDUA ~ 2+ 1 2 2',I Q y+ 2 g)Wr 2

+ ~g &+& +Sgjy g MU 2+~ Dr gag Dp +M'S g MU ~+& Dg — Ag Dr

~2DAr(L +~g Da'A g mg~SM 2 2+~8 D&''+ g g 1M 2 I +~2 UI'

(+~g' g+gw'g 'M„')(1 +e')')}2g gw
'D"w

+
2 ega& I& 1+& +-,g& g 'MU' 2+&' D~+ M~'e'+gl, 'g 'MU' 1+&' D,

-()g '(2+a')+g 'g 'M '(g+e')I g g '))" — gg 'M '()+e'g) ") (01)

%'e have ignored an overaQ factor and integration,

and we have used the same mornentutn assignments as in tile previous result. Alsche result (D2) is ultra-
violet convergent, as can be deduced from t e fouling a g ment. me can ~rite a..rm of the form

@.
'- D,V)D.(q') t e'=0 ~ d@. fl~'D, V}]D.(q') -D, (p)Iq*D.(q')]).

We then use the Eris. (A3) and (A4) to obtain terms of the form (d/dQ')[D, (p')D, (q )],Is well as
(d/dQ'}[D, (p')] and (d/dQ')[D, (q')]. The first term is finite- because of the differentiaon with respect to
an external momentum. The other terms vanish, because their dependence on Q' is Qy superfici. al. If
we use this techniriueit tur,ns out that Eq. (D2) can be written in a much simpler fon.
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) 4(DUW ~DYW){DUW+DVIY) ilga{DVYDUU+D'(t)g)YY 2f)UVDUF)

f2
[DUW(g) VV+DE) + (pYY+g) UF }DUW DYWg) UU+ gUV) {DUU+DUF )gYW]

T r
s=g~=o

( s 1}-M'b, )(2 gg
42

(2W)4 2 W gqd)i
d"d d"ddd (d+d-()) e')) + edD )D""r 2 T r

rDFA, DUN'

2 ~=0~=0

This form can then be combined very easily with certain contributions from Z„(see Appendix 8), leading
to a complete cancellation of the first block of terms.
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