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Some rules governing motion of a charged particle obeying the Dira¢ equation are assembled, including
exact helicity conservation for scattering on an arbitrary finite magnetic field configuration. The singularity
at the location of a magnetic monopole invalidates the derivation of the rules mentioned, leaving the Dirac
Hamiltonian H undefined for the lowest angular momentum state of the electron in the field of the pole.
Specifying the behavior of H under the discrete P, T, and C symmetries determines it almost uniquely.
One result is that H may possess a bound state of zero energy, contrary to assertions in early papers on the
subject. Zero-energy bound states which violate the superselection rule for electric charge are also studied,
including one which is the point limit of a solution for a fermion multiplet interacting with a finite-energy
soliton monopole. Implications of such a bound state for second quantization have been considered previously
by others and are further analyzed here. The suggestion that monopoles may possess half-integral fermion

number is shown to be unwarranted by present evidence.

I. INTRODUCTION

The Dirac equation for a charged spin-3 particle
with gyromagnetic ratio 2 moving in the field of a
magnetic monopole was studied thirty years ago,'*
but the resultant electron-pole scattering ampli-
tude was found quite recently.® The amplitude has
some remarkable features:

(a) All except the lowest angular momentum state
contribute only to the helicity-nonflip amplitude
fE=+)=f(===).

(b) The nonflip amplitude depends on electron
wave number & only through an overall scale fac-
tor 1/k, and otherwise is determined purely by the
scattering angle. The amplitude at a given & is the
same as the one obtained at that % by solving the
Schrédinger equation for a nonrelativistic particle
with gyromagnetic ratio 2.*

(¢) The lowest angular momentum state contri-
butes only to helicity flip, which is nonvanishing
when the incoming electron spin is opposed to the
“angular momentum of the electromagnetic field, ”
that is, when the incoming helicity has opposite
sign from the product ¢ of electron charge e and
monopole strength g. This amplitude obeys the
symmetry f(+= =) =f_(==+).

(d) The helicity-flip amplitude has an energy-de-
pendent phase (whose sign is ambiguous) but other-
wise is the same function of 2 as the nonrelativistic
amplitude of Ref. 4.

The present article is an attempt to understand,
on the basis of symmetry laws governing magnetic
interactions of a Dirac electron, the regularities
shown by electron-monopole scattering. Section
II contains a description of such symmetry laws,
including a helicity-conservation principle applic-
able to a particular type of “g-2” experiment mea-
suring the anomalous moment of a lepton. The
symmetries apply not only to ordinary magnetic
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interactions but also to those of a fermion multi-
plet minimally coupled to a non-Ahelian gauge
field.

In Sec. III the symmetries are shown to imply
the regularities (a) and (b) in a straightforward
manner. However, for the lowest angular momen-
tum state, with J=|¢|-3, the Dirac Hamiltonian
H is not well defined, since the radial wave func-
tion for this state must not vanish at the origin,
and the Kinetic momentum operator p-eA which
appears in H is singular there. The discrete PT
and PC symmetries may be used to constrain H.
These symmetries, together with the requirement
that H be self-adjoint, determine the boundary
condition on the lowest partial wave at the origin,
except for the choice of a sign. This sign ambigui-
ty corresponds precisely to the ambiguity in sign
of the phase of the helicity-flip amplitude men-
tioned in item (d). Thus, an analysis based on
general principles of quantum mechanics shows
that the scattering amplitudes found in Ref. 3 are
the only possible ones consistent with the discrete
symmetries.

In the nonrelativistic case the absence of any
charge-conjugation symmetry precludes deter-
mining the boundary condition at the origin. The
result of Ref. 4 for the phase of the helicity-flip
amplitude corresponds to one possible choice,
equivalent to the condition that the wave function
be finite at the origin. The phase disagrees with
either Dirac equation phase already at the first
order in electron speed.

In Sec. IV a zero-energy bound state is found to
be present for one of the two allowed Dirac Ham-
iltonians. Thus the necessity to revise the bound-
ary condition at the origin vitiates a proof? which
used a standard method to show that there were no
bound states. The techniques used here may also
be applied to monopoles arising in spontaneously
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broken non-Abelian gauge theories, when the di-
mensions of the monopole interior are small com-
pared to the wavelength or Compton wavelength of
the electron. It was shown recently® that there is
a single bound state for the case of a spin-3, iso-
spin-3 fermion interacting with a soliton® mono-
pole, provided that the fermion mass is generated
by the same scalar isovector field which breaks
the SU(2) gauge symmetry. This result is con-
firmed, but it is also shown that the same theory
for fermions of fixed mass yields no bound state,
since then helicity is conserved even for the low-
est partial wave. The helicity-conserving case
corresponds to a particular point in a one-para-
meter family of self-adjoint extensions of the
Hamiltonian, all realizations of the discrete sym-
metries P, T, C. The extreme cases correspond
to a Dirac monopole with two or no bound states.
Only these extremes obey the superselection rule
for electric charge.

Finally, in Sec. V is explored the nature of a
hybrid second-quantization scheme, in which the
point monopole is treated as a fixed object, while
the fermion degrees of freedom are described by
quantum fields. As shown in Ref. 5, the zero-en-
ergy bound state has strong implications for the
second-quantized formalism: The monopole must
be a doublet whose two states are connected by the
fermion field. These matters are re-examined
here from a somewhat different perspective, with
the conclusion that one member of the doublet
should be taken as a fermion vacuum, and the oth-
er as an occupied fermion or antifermion state,
thereby implying the existence of two types of
monopoles: fermion and antifermion acceptors.

II. SYMMETRIES OF MAGNETIC INTERACTIONS
OF A DIRAC PARTICLE
A. Discrete symmetries

The Dirac equation
iY=Hy={a-[-iV=-eA(F, ] +pM +eV(F, O}y
(2.1)

in the absence of external fields exhibits the well-
known P, T, and C symmetries

H=PHP'=THT '=-CHC™} (2.2)
with

Py(T, t) = BY~T, 1),

TY(T, t) =0, X(T, =1), (2.3)

CZP(F’ t) = Yzz/)*(?, t)

using standard conventions for the Dirac matrices
a, B, ¥" and the Pauli matrices 5. The free-par-
ticle angular momentum

F=T +10=—-ifx V+i¥
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obeys the symmetry laws

F=PiP1=—7iT ' =-CjC. (2.4)
In the presence of electromagnetic fields, the
symmetries still hold for H under the assumptions

PA(F, )P~ ==A(-F, 1),
TAGF, )T~ =-A(F, -t),
CA(F, t)C* ==K(F, 1),
PV(F, HP 1 =V(=F, 1),
TV(F, OT = V(F, -t),
CV(F, )C™ = =V(T, t).

In a general field, J is not conserved, which
makes it of less interest. However, in a monopole
field centered at the origin there is a conserved
angular momentum which obeys the symmetries
(2.4) under the same assumptions (2.5), namely

(2.5)

J=Fx(-iV—eR)+55—eg7. (2.6)
The last term involves the magnetic charge g,
which by (2.5) is reversed by each of the discrete
symmetries, since they each reverse the mono-
pole magnetic field B=Vx A =g#/r% The conse-
quence of (2.6) to be borne in mind is that J2 com-
mutes with P, T, and C individually or in combin-
ation, while g commutes with any pair of the sym-
metries, so that the pair can give no more than a
gauge transformation to A. Since the gauge depen-
dence may be chosen in such a way that the radial
function ¥, in a partial-wave decomposition of
has no explicit gauge dependence,® the implication
of (2.5) for the radial Hamiltonian H, is simply
g—gunder PT, PC, or TC, but g——g under P,
T, or C. The discussion here is simply a formal
example of the remark’ that for monopole magne-
toelectrodynamics the discrete symmetries will
be invariances of the total Hamiltonian only if they
each reverse magnetic charge.

B. Dynamic symmetries

Implicit in Dirac’s first paper® on the wave equa-
tion of the electron is the relation, valid for a pure
magnetic field,’

P=H?-M?=(=iV—eA)P-eG-B. (2.7)

Since a nonrelativistic particle with gyromagnetic
ratio 2 would obey the Schrédinger equation with

k2=2MH=(-iV-eAP-eF-B, (2.8)

it follows that for fixed k? the large components
(and separately the small components) of a solu-
tion of the Dirac equation for a nonsingular magne-
tic field also solve the Schrddinger equation for
the same field. This equivalence, or invariance,®
is a subtle extension of a classical result into the
quantum mechanics of particles with spin: The
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trajectory of a charged particle in a static magne-
tic field depends only on its momentum, although
the speed of passage along the trajectory depends
also on the mass. The quantum version of this
statement is that the scattering amplitude of a
spin-3 particle with gyromagnetic ratio 2 (or a
spinless particle obeying the Klein-Gordon equa-
tion'?) interacting with a localized magnetic field
is a function only of wave number %k, and not ex-
plicitly dependent on mass.

Even though (2.7) is obtained by setting the elec-
tric field and potential to zero in Dirac’s formula®

(i3 = eV)? = (=iV—eA)? +eT - B-iea-E =M?,
(2.9)

it was not utilized in the first solution of the Dirac
equation in a uniform field.!* More than two de-
cades later the invariance relation between (2.7)
and (2.8) was exploited to simplify solution of the
uniform field problem.!?

If the Dirac spinor is taken also to be a multiplet
in some gauge group, and minimally coupled to the
gauge field, then the invariance discussed here
still applies whenever the gauge field has a purely
static magnetic configuration, that is, V=0 and
A =K(F). In such a case A and B are matrices in
the Lie-algebra representation acting on the spin-
3 gauge-group multiplet.

Another conservation law for a Dirac particle
involves the “helicity operator”

h=F+(=iV-eh). (2.10)
It is easily seen that % obeys
dh/dt=eG & (2.11)

and so is conserved in a static nonsingular magne-
tic field. Therefore, its square

h?=(-iV—eA)l -e5-B (2.12)

is also conserved, a fact already implied by the
preceding discussion. Far away from a localized
magnetic field configuration, %/(#2)!/? is simply
the helicity. This means that the scattering am-
plitude for a Dirac particle on such a field config-
uration must be pure helicity nonflip. Once again,
the same remark applies to the general case of a
multiplet interacting with a gauge field of any
group, not just the U(1) of conventional electrody-
namics.

The above result is relevant to a somewhat ide-
alized version of the g-2 experiment, in which
change of helicity in a magnetic field becomes a
measure of the departure of the gyromagnetic ratio
of the electron or muon from the Dirac value of
2e7i/2mc. The point is that for vanishing g-2 there
could be no change of helicity even if the magnetic
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field were inhomogeneous on a very short length
scale. This is a stronger result than the well-
known statement'® that in a homogeneous field the
precession is proportional to g-2. Since in practi-
cal experiments the inhomogeneities are negligible
on the scale of an electron Compton wavelength,
there is no change needed in traditional analyses
of the experiments. Nevertheless, it is remark-
able that the Dirac equation implies a conservation
law which would not follow from the classical equa-
tions of motion for a spinning particle in an in-
homogeneous magnetic field. Even in the nonrela-
tivistic limit the conservation is special to
spin é, since it depends on the fact that the Hamil-
tonian is proportional to the square of the helicity
operator and so must commute with it. This is
not true for any higher spin.

III. ELECTRON-MONOPOLE SCATTERING

A. Discrete symmetries

Since all the symmetry operations of the pre-
vious section have definitions which are unambig-
uous except for possible gauge transformations,
while the scattering amplitude f for an electron
on some magnetic configuration is invariant under
gauge transformations, the symmetries may be
applied to f in a straightforward manner. Let us
describe the initial and final states by helicity 7,
which is reversed by P but not T or C, and mo-
mentum E, which is reversed by P or T but not C.
Then we get

flh=n" K=K =f_((=h==i", -k==K"), (3.1P)
flh=h K=K =f_ ("= h, -k’ ~=K), (3.17)
and the product relation

fdh=n'K=K") =f(=h"==h,k*~K). (3.2)

The symmetry mentioned in item (a) of the intro-
duction, f(+=+)=f(~--), follows from (3.2),
while f(+==) = f_(~ = +) [item (c)] follows from
either version of (3.1).

B. Dynamic invariances

If the other results in Sec. II held for the singu-
lar monopole field, they would imply that the rela-
tivistic and nonrelativistic problems give the same
scattering amplitudes for equal 2. Since the only
length scale in the nonrelativistic problem is set
by 1/k, it follows that f would be a function of
angle alone, multiplied by 1/k. These statements
are true for the nonflip amplitude, as mentioned
in item (b). Further, helicity conservation would
imply vanishing of the flip amplitude. Both kinds
of dynamic invariance fail only for the lowest-par-
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tial-wave amplitude, which is pure helicity flip
and has a phase which depends explicity on &/M.

C. Singular point, construction of a self-adjoint extension
of the Hamiltonian, and consequent dynamical symmetry
violation

Since the magnetic monopole field is singular at
its center, it is not obvious that the Dirac Hamil-
tonian H (2.1) is self-adjoint, as is necessary for
the generator of time evolution of the wave func-
tion. We may exploit the manifest rotational sym-
metry of H away from the center to make an angu-
lar momentum or partial-wave decomposition of
H. Then the issue of self-adjointness may be exa~
mined in each partial wave separately. In addition
to helicity, the operator &+ # commutes with J.
For the lowest allowed angular momentum state
J=|q| -3, &7 must take the value S =¢/|q],
since |F+#|=| -¢+3T - 7| must be no greater than
J. If &+ 7 has only one value, then only f(%
=-k3+7-h'=+k3 - 7) may be nonvanishing, so
that the necessity of helicity flip for the lowest
partial wave is obvious. Furthermore, unitarity
permits immediate deduction of the magnitude and
angular dependence of this helicity-flip amplitude,

with only an energy-dependent phase undetermined?:

kf(h==kS = h' =kS)
=—q [Sin(e/z)]zlal—le—is‘bezlé(h) , (3.3)

where 6 and ¢ are the polar and azimuthal angles
with respect to the beam direction. This inevitable
failure of helicity conservation shows that the sin-
gularity must lead to inconsistencies if H and the
helicity operator % are treated as well as well-de-
fined operators whose commutation away from the
singularity implies commutation everywhere. An-
other way to see that such inconsistency may arise
is to consider the Jacobi identity for the three
Cartesian components of =iV - €A,

0=ev-B. (3.4)

This shows at once that magnetic vector potentials
may not be used to describe a distributed magnetic
source (just the familiar statement div curl A =0),
but it also suggests possible difficulties even for
point sources’; the reason it only suggests diffi-
culties is that the differential operations leading to
(3.4) are not well defined at the singular point. In
any case, the only requirement for a consistent
solution of the equations of motion is that H be
self-adjoint, and agree with its definition as a
differential operator everywhere that the operator
is well defined. If these conditions can be satisfied
the only possible adjustable parameters in H will
appear in boundary conditions on partial-wave
functions at the origin. For J> [¢|- 3, the par-

tial-wave Hamiltonian is self-adjoint with the
boundary condition that the wave function vanish at
the origin. This seems obvious from inspection

of Eqgs. (22) and (25) of Ref. 3, which exhibit the
radial Hamiltonian, but it may be shown rigorously
with the techniques applied below for the lowest
partial wave. Furthermore, the helicity operator
is also self-adjoint for J> |¢| = 5 with the same
boundary condition ¥(» =0) =0, and so commutes
with H. The self-adjointness of H means that H?
is defined, so that the equivalence of the relativis-
tic and nonrelativistic Hamiltonians for computing
scattering at fixed & is also established.

Let us now focus attention on the lowest partial
wave, whose “large” and “small” components may
be written as F(#)n,,/ and G()n,,/7, respectively,
where 7,, is an angle-dependent spinor correspond-
ing to J=|q| -4 and &+ 7=S. The Hamiltonian act-
ing on the column vector (F, G) is given by Eq. (28)
of Ref. 3 and may be written in matrix form as

H,=-iSpd,+BM (3.5)
with

01 10
p=< ), B=< ) (3.6)
10 0 -1

In the same notation, the helicity operator is evi-
dently

hy==iS8 . (3.7)

Both Hj and %, are Hermitian with the boundary
condition at the origin F=G =0. However, they are
not self-adjoint on this class of wave functions. It
is possible to make a self-adjoint extension of H,
but %, will not even be Hermitian with the resultant
boundary condition, and consequently need not be
conserved.

The Weyl-von Neumann theory of self-adjoint
operators' requires some definitions: An opera-
tor A which is Hermitian (4,,=4,,) on a dense
subset of a Hilbert space has deficiency indices
n, if the equation

Aty =1iy (3.8)

has n, linearly independent (and normalizable)
solutions. For simple differential operators At
means the operator A, but applied to vectors out-
side the subset on which A is Hermitian. If the
deficiency indices are nonzero then A is not self-
adjoint. However, if the indices are equal, n, =n_
=n, there is a family of self-adjoint extensions of
A, parametrized by a set of #» X n unitary matrices
U, corresponding to maps of the eigenvectors with
eigenvalue + onto the —¢ eigenvectors. For any
particular U, given a set of n orthonomormal vec-
tors vS” for +Z, each one is matched to a particu-
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lar ¢{7) for —i. The domain on which the extension
of A is a self-adjoint operator is then the set of
vectors lying in the original domain of A, added to
arbitrary linear combinations of the n vectors v;
=27+ 05, on which the action of A as extended
is

Av=i(vP =0y, (3.9)
For H, the deficiency indices are n, =n_=1, with
G =gt F ™ =exp[-r(M? +1)/2 +ia],

GO =—e 'O = _exp[~r(M? +1)"/2 =i +ix]

(3.10)

and €' %=(1+iM)/S(M? +1)'/2, The single real
parameter x labels the different self-adjoint ex-
tensions of H,. By adjusting X, one may obtain a
v=v™) 4+ v(=) with arbitrary imaginary ratio G/F.
Since the domain of H, as extended contains wave
functions which vanish at the origin, plus v, we
find that H, is self-adjoint on the domain of L@
differentiable functions obeying the condition

G(0)/F(0) =iaS

for any real a. It is trivial that H(a) is Hermitian
on this set; the profound part of the Weyl-von Neu-
mann construction is the proof that, since H(a)
has deficiency indices n, =n_=0, it is self-adjoint
and has no further self-adjoint extension.

In Sec. IV we shall see a somewhat more com-
plicated self-adjoint extension, but it is perhaps
worth noting here that the helicity operator 7/, is a
classic example with no such extension, havingde-
ficiency indices

(3.11)

n_s=0, ng=2. (3.12)

We now come to the question of determining the
parameter a. Recall that away from » =0, H obeys
the discrete symmetries given in Sec. II, so that

in particular one has for H,
CPH(CP)™'=pH¥p=-H,. (3.13)

If this symmetry is to hold for the full H;, then the
boundary condition must be invariant under CP,
giving

) )

or
a=+1,

(3.14)

(3.15)
It will be relevant later to note that P invariance
implies

a(S) =a(-S). (3.16)

For either sign of ¢, we may compute the phase
shift resulting from the boundary condition as

tand, =—ak/(E +M). (3.17)
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These are precisely the two possible phase shifts
obtained in Ref. 3 by adding a small anomalous mag-
netic moment « and taking the limit k= 0. The sign of
ke is simply a. For any nonzero « this procedure
plainly gives an H, which still obeys the CP sym-
metry H,—-H, so that the symmetry should apply
in the limit. What the discussion above has shown
is that any procedure giving a self-adjoint H, with
the usual CP transformation must yield a = 1.
Therefore the limits « — +0 exhaust the possibilities
for maintaining CP invariance of electron-mono-
pole interactions.

For the nonrelativistic problem the radial Ham-
iltonian analogous to H, is given by

2MHy,, = =3 2 (3.18)

Again there is a one-parameter family of self-ad-
joint operators specified by the boundary condition

F0)/F'(0)=b. (3.19)

The conventional choice, followed in Ref. 4, corre-
sponds to & =0, giving a phase shift 6, =0. Since
there is no C operation defined in the nonrelativis-
tic case, there is no general principle to specify
b. To make , agree with 8, to first order in elec-
tron speed one should choose & =—a/2M, but this
is evidently arbitrary. For no constant b will the
nonrelativistic solution equal the relativistic one,
so that the necessity of defining H at the singular
point has destroyed the equivalence of the Dirac
and nonrelativistic Hamiltonians for electrons of
equal wave number in a magnetic field. The equiv-
alence could only be restored by the CP-violating
assumption 1/a=56=0 or =,

D. Some consequences for experimental phenomena

The issue of higher-order corrections to the
approximation that a Dirac particle is scattering
on a static point monopole field remains open, but
one would expect appreciable corrections at least
for k< 10°M, coming from the anomalous magnetic
moment. Within the regime of applicability, the
effect of the phase shift & for an unpolarized initial
beam is to rotate the transverse polarization of
the outgoing electron by an angle 2S6 clockwise
about the outgoing velocity. Note the implications
of P for the transverse polarization, that the com-
ponent perpendicular to the scattering plane is the
same for either sign of ¢, while the component in
the plane reverses sign with q.

IV. ELECTRON-MONOPOLE BOUND STATES

A. The Dirac monopole case

From (3.5) and (3.11) it follows that there is a
zero-energy bound state for a =+1 only, with
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G=iSF=iSVM e~ /VaT. (4.1)

The possibility of such a state was ruled out in
Ref. 2 because the conventional nonrelativistic
boundary condition 1/a =0 was assumed. (This was
understandable, as in the Coulomb problem for a
Dirac particle the large components of ¥ are finite
and the small components vanish at the center.)
The resulting Hamiltonian is indeed self-adjoint,
but of course violates CP symmetry. For general
positive a there is a bound state with

E=M(1-a@)/(1+a),

G=iSaFxe " (4.2)

w=2aM/(a® +1).

Only for the limiting cases a—=0 or a—= does the
bound state disappear into the positive- or nega-~
tive-energy continuum, respectively.

B. Dirac particle multiplets interacting with soliton monopoles

In the theory of classical SU(2) gauge fields'® in~
teracting with a scalar isovector field which spon-
taneously breaks the SU(2) symmetry, “topologi-
cally stable” configurations with long-range mag-
netic monopole fields are known to exist,® and in-
teractions of fermion multiplets with such solitons
have been considered.® In Ref. 5 it was shown that
zero-energy bound states may appear for these
non~-Abelian monopoles. Since, for small ratio of
fermion mass to vector-meson mass, the bound-
state wave function has negligible overlap with the
interior of the monopole, one may analyze these
bound states quite accurately by representing the
complexities of the monopole interior with a bound-
ary condition consistent with the requirement of
self-adjointness. To do this we shall specialize
to the case of an isospin-3 fermion multiplet inter-
acting with a minimum-strength monopole, so that
q for the two types of fermions takes on the values
+3. Once again, only the lowest partial wave
(which has J =0 here) will be sensitive to the
boundary conditions. In that partial wave, we must
solve the problem of self-adjoint extension for a
Hamiltonian acting on a four-component wave func-
tion, with an F and G for either sign of ¢. Our
previous discussion was restricted by implicit use
of the charge superselection rule,' so that the
boundary condition could not mix the two g sectors.
However, if a soliton monopole is treated as a
static object, it can mix charges. We shall see
later that this charge mixing is likely to be elimin-
ated already by classic radiative corrections, but
for comparison with the earlier work® we may en-
tertain temporarily the possibility of such mixing.
Evidently now the adjoint of the Hamiltonian with
F(0) = G(0) =0 boundary conditions will have two

linearly independent eigenfunctions corresponding
to either eigenvalue +i, and hence the deficiency
indices will be n, =n_=2. The self-adjoint exten-
sions will be parameterized by the set of unitary

2 X 2 matrices, or 4 real parameters. Once again,
further conditions are needed to constrain the
parameters, and we resort to the discrete symme-
tries to help.

We may simplify the analysis by observing that
the antiunitary operations 7 and PT each commute
with the adjoint of H,. Consequently they inter-
change eigenvectors with eigenvalues +. The ef-
fect of the Weyl-von Neumann construction de-
scribed in the previous section is to extend the do-
main of H, by including functions whose boundary
values at the origin are multiples of a fixed vector,
which is simply the chosen combination v(*? + v (2
evaluated at the origin. Evidently this time the
allowed boundary values for the extended domain
will be linear combinations of two such fixed vec-
tors. Since the four functions corresponding to i
eigenvalues, when evaluated at the origin, yield
four linearly independent four-component vectors,
any two made equally of +¢ and —¢ eigenfunction
contributions would be candidates to give a self-
adjoint extension. Since T and PT interchange
eigenvalues, any two linearly independent vectors
which form the basis for a representation of the T
or PT symmetry would be such candidates. Of
course, the boundary condition vectors v; must
obey an additional constraint toassure Hermiticity
of H,

vl pSv,=0. (4.3)

As explained in the Appendix, if the vectors v; also
form the basis for a representation of C and P,
then the resulting boundary condition obeys (4.3)
and guarantees a self-adjoint extension of H, with
all the desired symmetries.

To illustrate the simplified technique let us redo
the case discussed in Sec. III. We desire a single
two-component vector ( F(0), G(0)) which is an ei-
genfunction of PT,

(F0), G(0)) =(1, ia), (4.4)

precisely the result (3.14) of the more cumber-

some direct procedure used before. This form

automatically obeys (4.3), which therefore gives
no further constraint.

For the problem of interest now, we may repre-
sent TPv; by vf, making use of arbitrariness in
the choice of phases for the S=+1 and S=-1 sec-
tors. Insisting that each vector be an eigenvector
of PT, with eigenvalue +1, gives

vy=(a,, iby; ¢, idy), (4.5)

where the letters each stand for a real quantity.
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Orthonormalization of the vectors reduces eight
real parameters to five, and the further imposition
of (4.3) gives the constraint

a,b, -a,b, - ¢,d, +¢,d, =0, (4.6)

which brings us to four real parameters in a con-
venient form. See the Appendix for some amplify-
ing remarks.

In principle there is a degree of arbitrariness in
the specification of the discrete symmetries, each
of which anticommutes with S. If we introduce iso-
spin Pauli matrices 7,, 7,, and 7, =S, then any
real linear combination of 7, and 7, might appear
in each of P, T, and C. However, there are
strong constraints: Given the choice already made
for PT, we may insist without loss of generality
that v; be an eigenvector of CT. Since CT com-
mutes with S, it might contain a factor e“s, but
only € =N7/2 would allow v, to be an eigenvector.
For even N, we get

y=(a,, +ia,;b;, +ib), (4.7

while for odd N, the last entry is reversed in sign.
We analyze the two cases separately:
(i) Even N means CT may be represented by
CTy = -iBpy,, leading to
v, =(a, ia; b, ib), (4.8)
v_=(c, —=ic;d, -id).

Since P, T, C each carry S=+1 to S=-1, and since
each takes a pair (1, ?) into a pair (1, =) with
some overall phase, we must choose Py, =819
(the alternative 7, ~i7, is equivalent), giving

v, =(a, ia; b, ib), (4.9)
v_=(b, -ib;a, —ia).

The Dirac monopole, charge-conserving case cor-
responds to setting either a or b to zero. For

b =0 there are two zero-energy bound states, one
of which migrates up in energy as b departs from
zero, the other down. Both states disappear into
the continuum for a = b, and there are none for
|6]> la]. The case a=41b is interesting, because
this boundary condition is easily seen to give a
self-adjoint extension of the helicity operator 7,
=-17,9,, as well as of the Hamiltonian. Therefore
h, is conserved in this case. This immediately
shows no bound state could be present, since a
function exponentially decreasing with » could not
be an eigenvector of %,. The classical interpreta-
tion of helicity conservation is that an electron
plunges into the pole and reverses charge in order
to conserve the “field angular momentum” —g7,
while its helicity is unchanged. In the charge-con-
serving Dirac monopole case, helicity is flipped
to balance the change in field angular momentum.
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In terms of the SU(2) gauge theory with a nonsingu-
lar vector potential, helicity conservation is guar-
anteed by the theorem in Sec. II, so that a =b
corresponds to the limit of infinite charged vector-
meson mass, or vanishing soliton radius, for a
doublet of fixed mass interacting with an SU(2)
soliton monopole.

(ii) Odd N means CT may be represented by
CTvy; =-i1,BpYy, leading to

v, :(a’ za; b, —1b) ’

(4.10)
v_=(c, =ic;d, id).
Again, P must be chosen as 87, giving
v-!— =(1,i;1, —2)) (4.11)

v :(1, _i;_ly —l) ’

where the signs in v_ are constrained by the condi-
tion Pv, =+v,, It is at once evident that there is
one bound state of zero energy, corresponding to
v,, while no other linear combination of the ¢
gives a bound state.

This is the zero-soliton-radius limit of the case
considered in Ref. 5, in which the mass of the fer-
mion doublet is generated by coupling to the scalar
isovector field, sothat outside the monopole the
mass becomes M7, (which corresponds to a trivial
interchange of the third and fourth entries in our
vectors v;). Inside, the covariant derivative of the
scalar field is nonzero, so that the helicty operator
Ge(-iV=- eR) no longer commutes with H. How-
ever, the failure of commutation is proportional
to M, and so helicity conservation should be valid
asymptotically as #/M diverges. By some rear-
rangement of choice of phases, (4.11) may be re-
placed by

v,=(1,1;1,1),
v, =(1, =1:=1,1).

(4.12)

These indeed give eigenstates of k, =tk except for
corrections of order M/k.

In the charge-conserving limit there is an exact
U(1) symmetry, so that the phase €7, is arbitrary.
In particular, the even N solutions with a=0 or
b =0 also form a basis for representation of the
discrete symmetries with odd N. However, there
is no continuous family of such representations.
The form (4.11) is an isolated solution.

To summarize, allowing charge-mixing while still
imposing the discrete symmetries gives a continuous
family of solutions, connecting the case of a Dirac
monopole interacting with two kinds of fermion with
opposite charge, each with a zero-energy bound
state, to the case of a Dirac pole interacting with
two kinds of fermion, each with no bound state.
Just at the point where the bound states disappear,
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helicity conservation is exact, at the cost of max-
imal violation of charge conservation. A second
isolated boundary condition possibility gives one
zero-energy bound state,® charge conservation up
to (k/M)? corrections (which become large for
relativistic incident particles) and helicity conser-
vation up to (M/%)? corrections (which become
small in the relativistic limit).

C. Inhibition of charge-exchange processes by classical
radiative effects

In the fully quantized theory, or even in the clas-
sical theory with the gauge fields free to respond
to disturbances, electric charge must be con-
served, as discussed already in Ref. 16. For the
following, let us assume that the monopole pos-
sesses a definite, quantized electric charge.
Further, let us take the radius of the pole as
R=~1/M,, where the vector-meson mass My is
large compared to M/e?, with e the electron
charge. If M and M, were both generated by spon-
taneous symmetry breaking, they should be of the
same order of magnitude, but our whole discus-
sion is only relevant for the case M < M;,. Since
low-mass fermions but not low-mass charged
vector mesons are known, this restriction may
have some interest.

Consider now the collision of a relativistic elec-
tron with a monopole supposed capable of chang-
ing charge. Since the portion of the electron’s
field which does not touch the pole must travel
freely forward, giving bremsstrahlung of expected
energy ~ve?/R ~ye®M,, the probability of charge
exchange must be exponentially damped for
M < e®My,. At the other extreme, if the electron
were quite nonrelativistic it would face a potential
barrier against charge exchange of height e2M,,
resulting in exponential damping by a barrier
penetration factor ~Me?/k. Thus, from the static
to the relativistic regime, penetration of the pole
by the electron with consequent charge exchange is
overwhelmingly suppressed. This has been de-
duced without any assumptions about the energy
required for the charge lost by the fermion to be
taken up in other kinds of charge-carrying excita-
tion.

The implication is that a zero-energy, mixed-
charge bound state might still be present, but the
size of its coupling to the exterior, i.e., the co-
efficient of its e~ “tail,” must be exponentially
small. Under the assumptions on M/M, made here,
only the Dirac monopole solutions of Secs. III and
IV A could be relevant to experimental observa-
tions.

The phenomenon of decoupled zero-energy bound
states is present for a Dirac particle with a small
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anomalous magnetic moment of either sign, inter-
acting with a monopole.’® A bound state is found
for each partial wave, but all except the one dis-
cussed here in part A are decoupled by the centri-
fugal barrier.

One may ask whether classical radiative correc-
tions mightdecouple zero Euclidean-action fermion
trajectories in the presence of pseudoparticles.
Such trajectories have been discussed recently,®
but the question raised here seems open.

V. SECOND QUANTIZATION FOR FERMIONS
IN THE PRESENCE OF MONOPOLES:
ARGUMENT FOR INTEGRAL FERMION NUMBER

The discoverers of zero-energy fermion-mono-
pole bound states observed an interesting conse-
quence for the action of the fermion field if the
standard anticommutation relation

6(xq = Y DL(2), ¥s ()} =650 (x - y) (5.1)

were to hold®: The field ¥ must connect two degen-
erate spinless states of the pole, which therefore
differ in fermion number »# by one unit. In other
words, if the bound state were unoccupied, an
electron could be “dropped” into it, radiating at
least one electron mass in photon energy, while

if the state were occupied, a positron could be
dropped into it. Avoiding the asymmetry suggested
by use of the term “occupied,” the authors of Ref.
5 proposed to assign to the two condition values
n=%3. Since monopole strength g is absolutely
conserved in such theories, any n may be replaced
by

n'=n+xg (5.2)

(where x is an aribitrary real number) with no ob-
servable consequences resulting from the redefini-
tion. Both z and n’ are odd under charge conjuga-
tion. By the same token, if baryon and lepton num-
ber were exactly conserved, each baryon could be
said to carry lepton number 7, without possibility
of contradiction. Thus the intriguing notion of
“half-fermions” suggested by 7 =+3 has no meaning
for a single isolated pole. However, it is a con-
venient choice because it makes n manifestly even
under Pand T. It is the automatic result of defin-
ing the fermion density as

p(® =3[ (x), ¥»)]. (5.3)

To gain insight into these matters, let us consi-
der some observable properties and reactions in-
volving poles and electrons. It was shown recently
that if particles bearing electric and/or magnetic
charges obey the usual connection between spin
and statistics, then composites formed from these
particles will also, even though the spin of such a
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composite may differ by a half integer from the
sum of the spins of its components.?® This means
that if the n==3 pole is a boson, so also is the
n=+3 pole, so that fermion number here has no-
thing to do with statistics. Furthermore, two such
monopoles of opposite magnetic charge, and pos-
sessing a total electric charge and 7z both of one
unit, in combination would form a spin-3 fermion
which could turn into an electron plus photons.

While the n values have no meaning by them-
selves, the electric charge and charge density of a
monopole are observable. The Dirac quantization
condition?! could be obeyed if all monopoles had in-
teger multiples of an electron charge, or if they
all had half-integer electric charges. For a theory
with only point monopoles and electrons, any given
pole could be in a state with either of two charges
(depending on 7 =13) differing by e. However, if
the charges were 0 and —¢, it would make more
sense to consider the first as unoccupied, with
n=0, and the second (perhaps different in mass)
as occupied, with #=1. In that case there is a
distinct possibility with observable consequences,
which bears a relation to the case discussed so
far analogous to that of integrally charged triplets
to quarks. Monopoles could be labeled by a new
dichotomic variable, so that a pole of given
strength g and type (+) could have electron number
n=0 or n=1, while a pole of type (-) could have
electron number n=0 or n=-1. This two-type
classification would arise naturally if the fermion
density were defined by normal ordering

p(x) =N[p T (0] =pty=-ColyTylo) . (5.4

where |0) is the fundamental or vacuum state of the
theory. The normal-order definition, as the name
suggests, is the normal starting point for pertur-
bative quantum electrodynamics. For free elec-
trons, it is equivalent to the commutator definition,
but in the presence of an external potential, espec-
ially one which produces an electron bound state,
normal ordering isused, not the commutator defin-
ition.?? Clearly, to use this definition here one
must identify one of the monopole states as the
vacuum and the other as an electron state of charge
—e if it is higher in n#, or as a positron state of
charge +e if it is lower in n. This choice involving
two types of poles seems unavoidable if a consis-
tent QED is to be built in the presence of massive
monopoles. Two poles of opposite strength but
same type (+) could annihilate to form 0, 1, or 2
electrons, while two of opposite type could form
-1, 0, or 1 electron (where “~1” means a posi-
tron). Also a type (+) and a type (=) pole of the
same g would be distinguishable and suffer no
symmetry constraint on their wave function.

It is worthwhile to examine in detail the most
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concrete argument for half-integer fermion num-
ber, which depends on a subtle thought experiment.®
Consider the Dirac equation for an electron in the
presence of two poles of equal and opposite
strength g, =g and g, =—g. When the poles are
widely separated, there will be two zero-energy
bound states, one localized around g,, the other
around g,. I the poles approach, the two states
will mix with each other, resulting in a splitting
of the energy levels. Because the Hamiltonian an-
ticommutes with C7, the levels will always have
equal and opposite energies. For a separation of
order 1/M, the bound states will disappear, one
into the positive-energy continuum, the other into
the negative-energy continuum. Now suppose the
monopoles are adiabatically separated. When
they are again far apart, the fermion field might
be expected to take the form

¥= 2 a(E, H)(E, &, De* B
E>M
+2, (B, £)p(~E, &, F)e'E*
E<M
+ [0+ Dl

+ 5[0, - 0, (5.5)

where ¢,, ¢, are normalized zero-energy bound-
state wave functions localized around g,, g,, re-
spectively. At first sight, the above expression
seems to lead to violations of the cluster decom-
position property one expects for a quantum field.
The problem is that @ and b are both associated
with wave functions localized at two widely separ-
ated points. However, observe that the vacuum is
a coherent superposition

[0> =(]0,)+]02)/V2,
o, =(1xa’aM)|0)/vV2.

The operators ¢, =(a+b')/V2 and d, =(a T ¥6)/V2
annihilate |0,). Thus, for the vacuum [0,), we
write the zero-energy state contribution to ¢ as

(5.6)

C. ¢1(F) + dI ¢2(F) ’ (5.7a)
while for |0_) we write
dlo,(F) +c_g,(P. (5.7b)

In either case, the number operator receives a
contribution

n=ctc-d'a (5.8)

while the number density operator (using either
the commutator or normal-ordering definition for
p in terms of a and b, giving the commutator def-
inition only in terms of ¢ and d) becomes, for
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[0,

p (D =(CTC- %)¢I.2¢1.2 ‘(‘ﬁd‘ %)‘p;.x‘pz.l .
(5.9)

For the state |0,) there is a fermion number —3
and charge +¢/2 on &, and fermion number +3 and

-
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charge —e/2 on g,; for |0_) the fermion numbers
and charges are exchanged.

So far the analysis seems to confirm the half-in-
teger quantum numbers, but in fact higher-order
electromagnetic effects cannot be accommodated
consistently. In the state a'b'|0) there is a Cou-
lomb interaction energy

Kesoms ==¢? [ 427 a6, D01 (F)6 D)/ [F - 7|

2
o= & [ @ a ol EONENE IF

==2Maln2.

Consequently there is an oscillation at this fre-
quency between the states |0,) and |0_), implying
exchange of charge and fermion number between
the two poles, no matter how great their separa-
tion. Of course this would violate current conser-
vation, and so should only be taken as a sign of
inconsistency of the assumptions.

A little thought shows that the inconsistency will
arise unless the field in the limit of large pole sep-
aration contains either the combination

ap, +b'¢,
or
ad, +b7¢1 .

In other words the only consistent hypothesis is
that the monopoles are of opposite types. This
means that the Hilbert space on which the electron
field acts is a superposition of two different Fock
spaces. Since the field does not mix the two
spaces, it is immaterial whether the superposition
is coherent, or incoherent (which would mean that
different photon radiation patterns were associated
with the different Fock spaces).

It was argued® that, since there are four distinct
configurations for the two poles close together
(0, e”, e*, e"e”), there should be only four config-
urations when they were separated (te /2 on £y
+e/2 on g,). However, this counting is ambiguous,
since it neglects the radiative coupling which
makes (e*e”) unstable against decay to photons.
The result of the present analysis is that for large
separation there are two possible sets of four con-
figurations, corresponding to the two different
Fock spaces. The CT symmetry assures that the
two sets will occur with equal frequency, but does
not require half-integer fermion numbers.

An amusing consequence of the existence of two
types of pole is the possibility that an electron-
containing pole could pass close to an electron-
containing antipole. The collision would be like
that of two uranium nuclei, in the sense that a

|

(5.10)

single-particle electron state would be driven into
the negative-energy continuum. Presumably the
consequences should be similar also.??

Addendum

Questions raised by R. Jackiw have led me to
clarify and extend the analysis of this section,
strengthening the main conclusion.

(i) It has been assumed here that the fermion
and electromagnetic currents may be taken as
proportional. This is justified by the arguments
in Sec. IVC which show that the only realistic case
in which single-particle wave functions would lead
to a reasonable approximation to an exact theory
would be an electrically charged fermion interact-
ing with a Dirac monopole. Furthermore, even in
the unrealistic charge-mixing approximation of a
soliton monopole arising in a gauge theory, only
the Fermi field carries the minimum unit of
charge; the gauge and scalar fields carry twice
that charge. Therefore, it is hard to imagine how
these other fields could cancel a half-integral
charge associated with half-integral fermion num-
ber.

(ii) The one-dimensional problem of a fermion
bound to a kink configuration of a scalar field, re-
viewed in Ref. 5, needs to be discussed further.
To obtain analytic results let us make a point ap-
proximation here also, so that the problem is
that of a fermion of mass M for x>x,, -M for x
< x,. It is easily seen that there is one bound
state, and it has E=0. If an antikink were located
at x, < x;, two bound states would be found. As the
kinks approached, the bound states would split, one
going up in energy, the other down, but they would
only merge into the positive- and negative-energy
continua for exactly zero separation of the
kinks. Since the adiabatic approximation must
break down for a finite separation determined by
the dimensions of the kink, it follows that adiabatic
motion does not lead to a unique identification of
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the high-energy state with a fermion and the low-
energy state with an antifermion. Consequently,
already for the one-dimensional case one is en-
titled with no fear of inconsistency to postulate two
types of kinks, fermion acceptors and antifermion
acceptors.

(iii) The results for one dimension are sugges-
tive, though not conclusive, for the three-dimen-
sional monopole case. They suggest that the as-
sumption in Sec. V, that the electron bound states
for a pole-antipole pair would merge into the con-
tinua at finite pole separation, is probably
wrong: It would only happen for zero separation.
Even if this were not the case, the merging could
not be an adiabatic process occurring in finite
time, since the bound-state wave functions must
become infinitely spread out as they approach the
continua. In the analog problem of U-U colli-
sions, the negative-energy electron wave function
remains confined by the Coulomb barrier even as
it enters the negative-energy sea,?® but monopoles
provide no such barrier. Therefore, once again
it is impossible to connect the pole-antipole vac-
uum adiabatically with the ordinary vacuum. This
means the two-type classification is again permis-
sible and consistent.

(iv) In the main part of Sec. V it was found that it
is very hard to decide the question of half-integral
fermion number from general and abstract consid-
erations, but that a straightforward effort to im-
plement 7 = +3 led to inconsistencies. Conversely,
in this addendum it has been found that no incon-
sistencies arise from the two-type hypothesis with
integral fermion number. Taken together, these
arguments show that introduction of the radical and
mysterious concept of solitons with fermion num-
ber +3 would be premature at best.

V1. SUMMARY

The discrete and the dynamical symmetries of
motion for a Dirac electron in a magnetic field im-
pose powerful constraints, including a helicity-
conservation law which is not widely known despite
nearly fifty years of research on the Dirac equa-
tion.

The field singularity at the location of a magnetic
monopole leads to violation of all the dynamical
symmetries, but only for the lowest partial wave.
In nonrelativistic terms, for this partial wave a
quasicentrifugal potential, strong enough to shield
the heart of the monopole from a spinless particle,
is exactly canceled by the attractive magnetic di-
pole interaction of the electron. Consequently, to
define a self-adjoint Hamiltonian it is necessary to
supplement the Dirac differential operator with a
boundary condition at the pole, different from the
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usual requirement that the wave function be every-
where finite. Instead, there is a 1/7 divergence
at the pole, proportional to a particular spinor.
For a Dirac monopole, the boundary-condition
spinor is determined by a single real parameter,
which therefore labels the different self-adjoint
extensions of the Hamiltonian. However, only for
two values of that parameter may the discrete CP
symmetry be realized by the extended H.

Thus, the Weyl-von Neumann theory of self-ad-
joint extension, combined with the discrete sym-
metries, leads to an almost unique (actually bival-
ued) choice of H. The two possibilities are pre-
cisely those resulting when H is taken as a limiting
form of the well-defined Hamiltonian for an elec-
tron endowed with a small anomalous magnetic mo-
ment of either sign.® If the anomalous moment en-
hances the Dirac moment (as for a real electron)
there is a zero-energy bound state for the limiting
H.m

The same techniques used for the Dirac monopole
may be applied to the unphysical case in which the
pole is a point limit of a classical finite-energy
field configuration arising in a non-Abelian gauge
theory. This is unphysical because such a mono-
pole violates the charge superselection rule by
mixing different fermion charge states for the low-
est partial wave. While such classical field con-
figurations might well be related to monopoles,
one would expect classical and quantum radiative
corrections to decouple different charge states
for fermions with energy much less than the mass
of a charged vector meson, as well as to ensure
that charge lost by a fermion is absorbed by the
gauge field.?

Unphysical or not, at the level of single-particle
wave functions the problem of a fermion multiplet
interacting with a charge mixing pole is well de-
fined. The example of a fermion doublet has been
analyzed in detail, reproducing a result® which
yielded a single, charge-mixing, zero-energy
bound state. In addition, a different realization of
the discrete symmetries gives a continuous one-
parameter family of boundary conditions, with
limiting extremes of a Dirac monopole with either
two or no bound states. In the middle of the range
is the amusing case of exact helicity conservation,
entailing maximal-charge flip and of course no
bound states.?s

Perhaps the most subtle issue yet investigated
is the physical significance of a zero-energy bound
state for second quantization of the fermions. A
previous argument® that the result would be two
equivalent vacuum states of the monopole, with
fermion number +3, has been rebutted. The gen-
eral counterargument is that a perturbative ex-
pansion like quantum electrodynamics depends on
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the existence of a unique vacuum state. Two dif-
ferent vacua connected by the Fermi field would
require a wholly new approach, if it could be done
consistently at all. Detailed consideration of con-
sistency requirements on the Fermi field in the
presence of a pole-antipole system supports the
view that fermion numbers (0, 1) or (0, —=1) are the
only allowed choices. The resulting picture, in-
volving two types of monopoles, realizes in second
quantization the CT invariance found in the single-
particle, first-quantized theory.

The mathematical beauty and richness of mono-
pole physics continues to unfold. From the theore-
tical point of view, the next step may be the devel-
opment of a generalized QED of charged fermions
in the field of a point monopole. If that can be
achieved, it will leave still open the challenge of
second quantization for the degrees of freedom
associated with a monopole, perhaps treated as a
nonperturbative excitation of meson fields. Of
course, the biggest challenge is still to find a
monopole in nature.
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APPENDIX A: DISCRETE SYMMETRIES AND
SELF-ADJOINT EXTENSIONS OF THE HAMILTONIAN

It is suggested in Sec. IV B that imposing dis-
crete-symmetry requirements on a pair of vectors
giving the possible boundary values of the fermion
isodoublet wave function at the origin would be an

efficient way to obtain self-adjoint extensions of H
obeying these symmetries. Clearly all such vector
pairs will give the symmetries, but will they give
self adjoint extensions? To answer this, let us
establish a standard basis

(P =(1, 2**%0,0),

(A1)
v(H =(0,0; 1, Feti®),

The Weyl-von Neumann procedure corresponds to
choosing vector pairs

y=0() + U000, (A2)

Since PT = BK (where K stands for complex conju-
gation) exchanges v¢’ with v, PT will be repre-
sented on the pair ¢ only if the unitary matrix U is
symmetric. For a general U there will be repre-
sentation of PT(6) =BKe'°™ with some choice of 6.
The phase 8 clearly will not influence the eigen-
value spectrum of the extended Hamiltonian, and
so we may set it to zero, restricting attention to a
three-parameter set of U matrices. The parity
operation P=87, gives Uz(” - vi*’. Therefore, if
P is also to be represented on 7, the matrix U
must be symmetric with respect to both its dia-
gonals, and so has only two adjustable parameters.
Conversely, two eigenvectors obeying PTv, =1,

and Py, =(-1)*"'1, must correspond to a possible
self-adjoint extension of H, since these conditions
imply

y=x,00 7+ xp0 Q4 yufH) 4 yrul? (A3PT)

and
(A3P)

which is equivalent to specifying a two-parameter
U in (A2). Therefore, any pair of vectors giving a
nondegenerate representation of P, T, and C will
give boundary conditions which guarantee that the
extended H is self-adjoint. The proviso “nondegen-
erate” refers to the need for two different eigen-
values of P, which is satisfied by the solutions in
Sec. IVB.

xj =(—1)l+1yj )
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