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We develop a model based on quark conservation which provides a relatively simple description for three-
meson vertices, even when the spins of the particles are large. This should lead to a simplified
parametrization of the Reggeon-Reggeon-particle vertex needed for multi-Regge phenomenology. Tests of the

model involving measured decay rates are encouraging.

I. INTRODUCTION

Phenomenological treatments of reactions in
which two particles go to three particles have gen-
erally neglected possible dependence on one of the
kinematic variables, the Toller angle, unless they
relied on a Veneziano-formula parametrization.®
This is primarily because the general formula®
describing the reaction of Fig. 1 in the double-
Regge limit
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has a rather complicated dependence on the func-
tions B(A, t,,t,) giving the coupling of particle D to
the two Reggeons at the central vertex. This cou-
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FIG. 1. Definition of kinematics for the reaction
af—-yXe.

pling B, which depends in an unspecified way on the
helicity A carried off by each of the Reggeons in
the X rest frame (X is assumed spinless), appears
in the vertex function V (¢,,¢,,7m,,) as
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A similar formula obtains for V,. In the absence
of a specific model for the 8 function, it is difficult
to parametrize the n,, dependence of the V; func-
tions in a convincing way. The variable 7, is re-
lated to the Toller angle w in the double-Regge
limit by
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so lack of understanding about B(A, ¢,,¢,) translates
into an inability to parametrize the Toller-angle
behavior.

Field theory is not much help, for there can be
many different couplings of the two particles Jg
and J, on the two Reggeons to particle X, and each
such type of coupling should appear with a different
coupling constant. The Veneziano model, on the
other hand, specifies g(x,t,,£,)=1; this model has
been applied to many 2 -3 reactions with varying
degrees of success. We feel that other models
should be investigated; since data for experiments
with large numbers of events in these channels is
becoming available, such parametrizations can be
tested fairly thoroughly. It is almost an axiom of
phenomenology that only simple models can, in the
long run, be handled with any degree of faith. This
paper should be viewed as a first step toward such
a simple model.

In Sec. II we explain the basic ideas of our model,
which is based on Zweig-rule conservation of
quarks at meson vertices. The actual expression
for the vertex is derived here and in Appendix A.
Section III discusses tests of the formula using
measured widths for tensor- and vector-meson de-
cays.
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FIG. 2. (a) Triangle diagram illustrating type of con-
tribution envisioned in our model. (b) A contribution we
have neglected. (c) In calculations of model, internal
quarks are put on the mass shell.

II. THE MODEL

As a first simplifying feature, we assume that
all mesons are made up out of ¢ pairs of spin-%
quarks, and that the basic meson vertex is some-
how related to the Zweig-rule-obeying triangle
graph of Fig. 2(a). The blobs at each corner repre-
sent meson wave functions of the ¢4 system. This
is already a very strong assumption; we ignore,
for example, all possible complications like the
gluon exchanges shown in Fig. 2(b). Models simi-
lar to Fig. 2(a) have been considered by several
sets of workers,? using various models of the me-
son wave functions. Frequently, their results de-
pend strongly on the behavior of these wave func-
tions for off-mass-shell quarks.

Phenomenologically, however, the great sucs
cesses of the quark model have occurred when the
quarks could be treated as on-mass-shell spin-3
particles (the parton model and the “concrete
quark” model are two such instances). We have a
strong bias that off-mass-shell properties of
quarks should not be essential to the physics. For
this reason, we feel that it should be possible to
obtain a reasonable model of the vertex from con-
sidering Fig. 2(c), where each quark line has most
of its contribution coming from some effective
mass 4. We will confine our discussion to the im-
plications of this approximation.

Of course, for general meson masses and quark
masses it is impossible to keep all the momenta in
the on-shell triangle diagram real and still have
momentum conservation at the three vertices. If
we insist on conservation of all four components
of the momentum, and calculate angles using dot
products in the usual way, the cosines of some
angles will be greater than one, or even complex,

for certain mass configurations. We accept this
as the price of having the simplest possible pa-
rametrization of the vertex. In other words, we
calculate all kinematic quantities in a region of the
meson masses and quark effective masses where
the triangle diagram is a physical process, and
we then continue the expressions in these masses
to the region that is actually under consideration.

Although this is a very unorthodox procedure,
some such assumption seems necessary to achieve
the desired simplification in the results. We will
pursue this assumption and see where it leads.’

By making this on-mass-shell assumption, we
can treat the mesons as poles in the quark-anti-
quark scattering amplitude. Once complications
due to SU(3) are removed, mesons with natural
parity and charge parity [P=(~1)", C=(~1)"] have
only two independent residues in ¢ scattering,
and mesons with P=—=(-1)" have only one indepen-
dent residue, regardless of the spin of the meson.
Hence, if we use these residues as parameters for
our vertex function, we can describe vertices in-
volving particles with very high spin in terms of
only a few parameters. This is obviously a great
simplification if we are dealing with decays into
high-spin particles, or with vertices involving
Reggeons. We see that a maximum of nine pa-
rameters (three quark effective masses and up to
six residue functions) are needed to describe the
most general vertex; usually there will be fewer
parameters since (a) we expect all quarks of a
given flavor to contribute with the same i, and (b)
many of the residues which enter in practical work
contain one or more pions, which have only one
residue function.

In the rest frame of one of the mesons, the me-
son pole appears in those of the ¢q helicity ampli-
tudes appropriate to the meson quantum numbers.
For example, P=(-1)’, C=(-1)’ meson poles ap-
pearinf..,.., frs;o0y fio;ov, and f, ., _ and the
amplitudes related to these by parity invariance.
The residues of the poles factorize, so we have
two independent residue parameters R,, and R, _.
Hence the parameters appropriate to each meson
are defined in the vest frame of that meson. To
construct the overall vertex in the rest frame of
one of the mesons, we must boost the information
about the other corners of the triangle from their
rest frames into the rest frame where the vertex
is being constructed. The quark helicities are
rotated under this transformation,® so our triangle
graph Fig. 2(c) is essentially represented by resi-
due functions for each of the three corners linked
by rotation matrices. Each such d{’u’ describes the
rotation of quark helicities in transforming be-
tween the rest frames of the two mesons linked by
that quark line.
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Finally, we must remove the external quarks in
each qq scattering; this leaves the meson pole.
The different helicity states of the mesons con-
cerned are then present in amounts determined by

J
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where the labels of Fig. 3 are used and the various
angles are defined as follows:

(a) The vertex is calculated in the rest frame of
a meson of mass squared my?® and spin J; it de-
cays into particles with masses squared and spins
mg?,J, and mp?,J,. The spin projections of these
mesons are M, My, and M.

(b) The angle 6 is the angle between some z axis

J

my?+mg?
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rotational invariance.

In Appendix A we explain these steps in more de-
tail and demonstrate that our three-meson vertex
must be proportional to

@)

and the direction of C, in the s rest frame.

(c) R;;(m?) is the helicity-labeled residue at the
meson pole in the appropriate ¢gq scattering. For
example, for a pion R, ,(m,%)=-R__(m,?), R,_
=R_,=0.

(d) The angles of rotation of the quarks are de-
fined by
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(e) The angles at the meson vertices are given by
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This vertex may be multiplied by factors of
A(my2,me®,m Dz) sufficient to give the proper thres-
hold behavior. The residue functions R;;(m? may
depend on quark mass; it is possible that this de-
pendence is smooth except for threshold factors.
Otherwise all functional dependences are explicit
in Eq. (4).

Notice that all dependence of the vertex functions
on the helicities M, and M, is displayed. The par-
tial waves of a reaction such as the one in Fig. 1
can then be constructed by assembling an appro-
priate number of vertices (3) and propagators (2);

FIG. 3. Meson of mass my is composed of quarks of
mass us and pug. Meson of mass mc is composed of
quarks of mass pus and pg.
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high-energy behavior is extracted from the sums
over the partial waves. If the residue parameters
and quark-mass parameters can be determined
from some other reaction, we then have an explicit
representation for the double-Regge exchange.
Even if the parameters are not known very well,
Eq. (4) provides a relatively economical descrip-
tion of this vertex with only a few parameters to
be varied.

In the next section we use this model to study
meson decay widths, with an eye to extracting the
effective-mass parameters of the strange and non-
strange quarks.

III. APPLICATION TO MESON DECAYS

The model can be applied most easily to compli-
cated vertices if the quark mass parameters are
already known. These can be derived from simple
decays of vector and tensor mesons into two
pseudoscalar mesons, provided we are willing to
make some additional assumptions about the re-
sidue functions R;;, and about the factor multiply-
ing Eq. (4). These assumptions are the following:

(a) The only strong dependence of R;;(m?) on the
quark masses lies in threshold factors {[A(m?, 1,2,
1£,%)]/#Emin, where L, is the lowest orbital angu-
lar momentum state the ¢q pair can have in cou-
pling to the meson considered.

(b) Apart from the dependence on meson mass
contained in the threshold factors extracted in (a)
there is no mass dependence of R,;(m? for mem-
bers of a given SU(3) multiplet. The ratios of
residues between members of a multiplet are then
determined by assumption of SU(3) invariance
(after this threshold factor has been removed).

(c) The entire vertex is determined by multiply-
ing Eq. (4) by the minimum power of [A(mg?,m 2,
myx?)]*/? necessary to assure proper threshold be-
havior. This factor is (see Appendix B)

{[A (me?,m 5% my®)] 1/2}3:
where
g=d +do+Jp
+min{|J = Jg = Jpl, |Jg = T = JIpl, [T p=J = g}

(We may also have an overall numerical constant
multiplier; however, this will not affect the con-
siderations of this section.)

If we make these assumptions, the four common
tensor-meson decays into pseudoscalars K* - K7,
f'=KK, f-77n, and A,~ KK are all determined
(up to an overall constant) by three parameters:
the ratio of R, _/R, . for the tensor octet, and the
masses of the strange and nonstrange quarks. The
four decay rates then give us three ratios; we can

vary our three parameters in an attempt to fit the
decays.

We have carried out this study under the assump-
tion that the mesons were “ideal” composites of
the appropriate quarks (i.e., that f’ contained only
strange quarks and that f and A, contained no
strange quarks). This is a simplification, of
course, but we feel the main worth of the model
should not be dependent on small mixing angles.
Similarly, we did not perform a least-squares fit;
we just searched through sets of values for the
three parameters until we found a range which fit
the decays. Clearly a more thorough study could
be performed; our results at this stage are en-
couraging and we believe that they support such
further study.

The tensor-meson decay ratios could be fit with
nonstrange quarks with masses ranging from 179
MeV to 214 MeV. The acceptable range of the
other two parameters depended on the nonstrange
mass. If the nonstrange mass was low (~179 MeV),
allowable values of the strange-quark mass ranged
from 557 MeV to 566 MeV, and allowable values
of the residue ratio R, _/R, . ranged from -0.94
to —0.90. At the larger nonstrange-quark masses
(~214 MeV), the strange-quark mass was within 1
MeV of 573.5 MeV and the range of R, _/R,, was
between —-0.86 and -0.84.

It is encouraging that a set of three parameters
can be found which fits the three data points, given
the highly nonlinear dependence of our expressions
on some of these parameters. The fact that the
quark “masses” determined this way are similar to
those determined in various other models is
nothing less than astonishing. (We had hoped that
the squares of the effective masses would come
out negative, accounting for nonobservable quarks.
However, we were not able to find any solution with
12 negative.)

To see whether our solution was accidental, we
next examined the vector decays into two pseudo-
scalars p—mm, K*— Kn, and ¢ — KK using this
same range of quark masses. The (K* — K7)/
(p—-mm) ratio can be fitted within this same range
of masses for the strange and nonstrange quarks
if a residue ratio near -1 is used (values of the
ratio which fitted again vary with the particular
quark masses used, over a range of 0.1 or so to
each side of —1). However, these same values
gave widths for ¢ — KK which were too small by
factors of 10 to 20.

Since we expect that R, _/R., should probably
change slowly with mass along an (exchange-degen-
erate) Regge trajectory, we believe the fit to (K*
- Km)/(p— ) for a ratio near -1 is in approximate
agreement with our fit of the tensor decays (where
this ratio was near -0.9). This is not conclusive,
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however, because we were also able to obtain fits
in the same mass range if very large positive val-
ues (6, 10, 12, or 16) were used for R, _/R,,. In
no case could we obtain a simultaneous fit to the
two ratios of the three decays p—7m, K* - K7, and
¢~ KK. All values of the parameters within this
“interesting” range gave small widths for ¢ - KK.
Since the fundamental experimental peculiarity
about ¢ decay is the narrow width, we feel that a
model which underestimates this width is better

than one which overestimates it. It is also possible

that the ¢ decay rate may be much more sensitive
to our extra assumptions than the other rates be-
cause of the peculiar closeness of the ¢ mass to
the ¢,q; and KK thresholds. Tentatively, there-
fore, we conclude that our model (with the addi-
tional simplifying assumptions mentioned here) is
in substantial agreement with data on tensor and
vector decays into pseudoscalars. The effective-
mass parameters deduced from this data for the
strange and nonstrange quarks seem reasonable.
Further tests of the model in more complex situa-
tions are therefore warranted.

APPENDIX A: DERIVATION OF THE VERTEX FORMULA

The form of the decay vertex will be calculated
in the rest frame of particle J,my%. However,
meson Jg,M? with particular quantum numbers is
represented by a pole in certain well-known com-
binations of helicity amplitudes in ifs own rvest
frame. Hence we need to be able to transform
particle helicities between the rest frames of J
and J;, Je; and Jp, J and J,. This transforma-
tion is well known?; for spin-; quarks it consists
of the matrix d}/3,(6), where

(E,/u)(E,/u) - cosh§
(0,/ 1) (bo/ 1)

for E,E,, the energies of the quark in the two
frames considered, and cosh{, the parameter of
the Lorentz transformation between them. We will
therefore have three such d functions in our ver-
tex: one transforming quark 5 from the rest frame
of J to that of J., one transforming quark 6 from

cosf =

J

p _(rnx2+u2_“2
° 2my

with p, = (1/2my) [A(my?, 12, ug?)] 2,

2 2 2 2
Mo =mg? =2+ g
2my

Pe=be —p5=(

FIG. 4. We can equally well envision the top line in
Fig. 3 to be a creation of a gq pair from vacuum. This
labeling is used in the kinematics in Appendix A.

the rest frame of J, to that of J,, and one trans-
forming quark 8 from the rest frame of J to that
of Jp.

To set up the kinematics, it is easiest to break
line 6 as shown in Fig. 4 with p,=—p,. The ener-
gies and magnitudes of the momenta of quarks 5
and 8 are determined by two-body kinematics for
a system of mass-squared m,?, and those of quarks
6 and 7 are determined by the known momenta of
C, D, 5, and 8 and momentum conservation at the
vertices:

P, =(Eg,p sind, 0,p cosb), (A1)
Pp=(E p, =p sind, 0, —=p cosh)

with
E - Mg+ my? —m £ o= Mx®rmp?—mg?
¢ 2m > Th 2m ’
‘X X
— 2 .. 2 2\11/2
p——me [A(my?my2,mp?)]Y2,

A(X,y,2)=xz—zx(y+5)+(y—3)2~

We now use thedirection of the outgoing mesons in
the overall center-of-mass system to set up an
axis system for the quarks. Note that we have ar-
bitrarily chosen the final-state mesons to be in the
xz plane, but there is no reason for the internal
quarks to be confined to this plane. Hence

»Dq COSa sinb + p, sina cosp cosb, p, sina sinB, p, cosa cosb - p, sina cosp sin6> (A2)
Thus momentum conservation yields (in the overall c.m. system)

, (b = p, cosa) sind - p, sina cosp cosh, —p, sina sing,

(p = p, cosa)cosd + p, sina cosp sin0> . (A3)
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Note that with this construction pg®= ug? if

"‘L62 - “'52 - m02 +2ECE5
2pp,

This is compatible with p,=p, - p,, P,°= I, at the other vertex.

The quark-antiquark scattering distribution, in its own center-of-mass frame, has angular dependence
d)‘f_)\zxs_h(f)) for a partial wave of angular momentum J,. We can decompose this angle 6 between the in-
coming and outgoing quarks as 0=0,+0,, where 91 is the angle between the incident quark and some arbi-
trarily defined z axis. Then dh_xm_h(e) =d3¢ xquc 01)d MCXS_M(GZ) Let this z ax1s for particle C be de-
fined by the direction C takes in the rest frame of J. Then the decay amplitude ndx?‘_)\ 6,) can be re-
moved, leaving us with an amplitude for production of a meson with helicity M, proportional to dse NN ”c 6,).
We therefore need to calculate the angle 6, for particles C and D, the angle between the mcommg quarks
and the direction of the outgoing meson, in the meson rest frame.

To calculate this angle, we must transform the momentum of quark 5 to the C rest frame. This gives
pscosa—p,cosa coshé, — Esinhé; (coshé, = Eq/mg, sinhé. = po/mg), so

cosa = (A4)

pscosa coshé, — E_ sinh§,

cosf, = rA
with
’ - 1 A 2 2 2y11/2
ps__zTn: [ (mc ymg Mg )] .

A little algebra yields

(my®+mo? = mp?) (e = B2 = mg?) +2mg2(my® + U2 = )

cosfp =
c [A(mxa,mczrmnz)] VTA(mcz, “52, u_ez)]lfz ’ (A5)
(my2+mp? = m?) (g = %) +2m p*(my® + 1% = 1?)
cosf (o] 8 TL7__Q_.T_L__%._
D [A(mx )mc ;mD ) ! 2[A(Wlb b IJ‘a ’
The transformation angles for the spins of the quarks are
cosy = <m02+ b= pg® mxtep—pg - cosh{ )/ [A(me?, nd w A2 A0y, 1y w2
s 2mg g 2my Ll ¢ 2mg g 2my g ’
m02+uaz_ “62 mx2+ “aa - “52 )/IA(mﬂzy n 2 m 2)]1/2 LA(mxz m 2 u 2)]1/2
cosy, = —cosh Lo ¢ 262 5 A6
¥s ( 2m phg 2my g & 2pgmp 21 gmy ’ (A9)
and
COS¢ = (mcz+ uﬁz - “’52 sz + “'62 - #82 - mcz+ mDZ - mX2> [A(mcz, “’ez, “'52)] ya [A(mbz’ u‘ez) “’82)] V2
2ugmg 2mpllg 2momp 2mg iy 2m pltg

We now have all the ingredients to assemble the amplitude. First, consider the vertex at particle J. To
get from the z axis to p, in this rest frame, we must first rotate through a about the y axis, then rotate
through +p about the z axis, and finally rotate through 6 about the y axis. The quark state thus rotated is

e-te.r,. e—iBJz e_‘aJ9185> ,

so its overlap with our initial meson state of angular momentum J and helicity M is
<J58|e(a1ye+iﬁlzeieJleM> - Z dis_a(a)eﬂﬁsd{“ 0).
€

The quark pair 6,7 is created without contact with any gluons, so the helicities of 6 and 7 must be the same
in the J,m,? system. We thus have a factor which expresses the change of helicity under transformation to
the rest frame of C or D:

A2 AN 2 (e)dY 2 AL 2W ) |y ene=7= A 2 IAY 2 @)Y 2Ws) -

Finally, within the rest frame of C (or D) we must calculate the overlap of our quark state
e 18z ¢719c%|5/6') with the meson wave function |JoM;). We therefore obtain the vertex factors

- J i J
ePed’ F gu,(0c) and e*od 2., (6,) .
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Our expression for the vertex thus takes the form (inserting the residues R,; of the meson helicity am-

plitudes at the poles)

5,8,7,8
5',8',7 ,8'

2 [ a8 s qa)e*™ dle OOR(my )2 IS WNAYIWIR g (")

X g=iBMc g 5,0_6,”0 (8c)R g 71 (m pR)e*B¥pg s,‘i.,.MD(GD) .

The 8 integral is trivial; we find e =M, — M so that the vertex becomes

Z d fmc -Mp(e)d 'Arlc -Mps-s(a)R 5a(mx2)d¥:(w Jds > (e =¥-)

5678
s'e'7'8’

X A AW DRy e (M) §F g1 (60 Ryt () 32 (6) . (AT)

The sums over quark helicities can now be per-
formed for any particular mesons of interest. One
should bear in mind the relations R, M =TR o o,
for quark-antiquark residues, where 7 is the natur-
ality of the meson, P=7n(~1)’. The other simpli-
fication of importance is the fact that unnatural-
parity trajectories of natural charge conjugation
(like the 7, B, etc.) couple only to R., and not to
R, ., whereas those of unnatural charge conjuga-
tion (like the A,, if it exists) couple only to R. .

APPENDIX B: SOME PROPERTIES OF THE VERTEX
1. Fundamentals: Parity and threshold behavior

Our expression should exhibit all the helicity de-
pendence of the vertex. We note that the actual
vertex coupling [after removing d‘{,,,c _,,D(e)] obeys

Vuc MD=77770"70V-MC My
as required by parity invariance. Because of our
somewhat cavalier treatment of the triangle inte-
gral, we allow this expression to be multiplied by
any nonsingular function of the masses my?, mg?
and m?%; this is in fact necessary in order to ob-

R..R. ,Ralzl [d;(lc _”Ds_a(a)dgf’-;(gps)d:/?,l(d))délg(%)d

2

r

tain the correct threshold behavior at the meson
threshold.

The overall vertex should vanish like {[A (my?,
me?,mp?)]*%}Emin at A=0, where L, is the lowest
allowed orbital angular momentum state between
the outgoing mesons. In general, if nMenp=+1,

L"“"=mln{|J— Je - JDI» |JC - J-JDI’ lJD- J- Jcl}’

whereas if nmgnp= =1,

L™ =min{|J = Jg =I5, o = I = Jpl, [Vp= T = Jl}
+1.

Since each of the displayed angles cosa, cosf,, and
cosf, behaves like 1A, Eq. (4) itself will behave
like (1K) *7¢*'p unless there is some cancella-
tion between terms which might possibly yield a be-
havior like (1/VA) *7¢*7 0=, We therefore multiply
the expression [Eq. (4)] by (/A)°, where

§=Jd+dg+dp
+min{|J = Jg = Ipl, [Jg = I = Jp|, [Jp= T = Jcl}.

Using the relation R, Ag=TRo\ -, We find that
the terms in our expression will look like

F
5 -6' g 6c)d g% 4y (6 p)

J
+MMeNpd .‘,’c -Mp=5+ ola)d l;/:' () 5)d1-/3% —(¥)d t/a% -s(¥e)d {-‘5:’ +6'Mg (6c)d -aq.r 7 up(e n)]

or

(B1)

RaRoo Bew 3320, )ayfs a0 [ % -ups-s(@)d 1-g uy 60 52710 )

J J
+ "mcﬂpd {"c +upa-s(a)d a'c-a' =Ne (ec )d a'p-'l’ '”D(G D)] .
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As cosf =,
d"tl,u' (9) - (—l)ud J-MM’ (9) ’
Al (8) = (=) ad_ . (6).

Hence as A -0, the term like (1/VA) */c*/b is
multiplied by (1+7ms7mp), and the contributions for
MM p= ~1 are less singular, by one power of VA.
Hence we need multiply by only one power of A for
any choice of J, Jg, and J, and all the possible
parity combinations will automatically be taken
care of. Notice that in fact WA)® is a power of A,
not VA. The various choices of L_, here corres-
pond to the different contributions to the triple-
Regge vertex.?

The vertex thus has all desired kinematic prop-
erties.

2. Regge couplings in two-body phenomenology

Because the vertex has all proper parity prop-
erties, various selection rules due only to parity
conservation are automatically fulfilled. For ex-
ample, consider the production of particle J, off
a pion (J; =0) in the ¢{-channel center-of-mass
frame. From (Bl) we easily see that the M,=0
amplitude will be populated only when nm.np=+1.

This leads us to consider the common situation
of production of an 1= +particle (such as f or p)
from an incident 7 via exchange of an off-shell 7.
We then find that (Bl) reduces to

R+ + (t)R+ + (m nz)Rs"l’ (sz)
X dY2W)dYE Wyl be)d Ly pla)
X [d520u, 00+ (<1)Pa P, (6,)].

Once the two specific couplings R, , and R, _ for
the external particle have been supplied, this pro-.

vides a model for the relative amount of helicities
greater than 0 found away from the ¢=m,? poles
[note particularly that the unknown function R, (t)
cancels out when taking the ratios of different he-
licity couplings]. The higher the spin of the pro-
duced particle, the more useful this parametriza-
tion becomes in calculating density-matrix ele-
ments.

3. The case when all quark masses are zero

If the quark masses are zero, the quark helici-
ties do not rotate in going from one frame to an-
other. Our general formula then simplifies con-
siderably to

Ro(my®)R o(mc*)R g5 (m °)
J J
x[d flc -Mps-a(a)d 5-ceMc (6c)d s-ﬁwp(eo)

7 J
+ "mcnndi-u(f Mps-a(a)d 5% -Mg (6c)d 8-DG-MD(BD)] .

Unfortunately it is fairly easy to demonstrate that
this is in conflict with the data. The decay B = w7
is well known to produce predominantly trans-
versely polarized w’s.® In the zero-quark-mass
approximation, the ratio of longitudinal to trans-
verse w’s is (using the constraints 5=8, 5=6 re-
quired to obtain the proper quantum numbers of the
B and the 7)

Long | _|dgg(a)dge(6 p) _|2cosacosby
Trans day(@)ds, (6 p) sina sinf

_|20mg® - my? - m,?)(mg® - m,* + m,?)
2im my 2im mg

(mp? =my?)? =m

2mPmympy

=+ >1,

a serious conflict with the data.
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