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Effect of fermions upon tunneling in a one-dimensional system*
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%'e study the effects of a fermion with Yukawa-type coupling upon the tunneling of the double-well

anharmonic oscillator. These effects prove to be nondramatic, despite the zero-frequency bound-state

eigenmode one would encounter if one applied the conventional boundary conditions to the path integral.

I. INTRODUCTION

In a, previous paper, ' we evaluated the path inte-
gral for the kernel of the double-well anharmonic
oscillator,

2 2

(8 9'P 4 (0
by expanding about classical solutions of the Eucli-
dean action, and thereby determined the two low-
est energy levels. These two levels would be de-
generate were it not for quantum tunneling, which
shifts one level up and one down by an amount
proportional to the probability for barrier penetra-
tion. Our analysis led to perfect agreement with
the ordinary %KB result.

In this paper me enrich the model by adding to it
a fermion with a Yukama coupling:

f.= ,'(s, rp)' ——-q' ——++t(i,s, -gy)e+
2

Here 4(l) is a one-component fermionic degree of
freedom. The term linear in y is included in
order to m'ake the fermionic part of the Hamilton-
ian antisymmetric under 4 -4~.

Our interest in introducing fermions is motiva. —

ted by the dramatic effect which massless fermions
have upon the tunneling between the classical vacu-
ums of the pure gauge theory analyzed by Belavin
eI; a/. ' It was shown by 't Hooft' that in the pseudo-
particle sector the fermion determinant possesses
a zero-frequency eigenvalue corresponding to a.

bound-state eigenmode, mhich leads to no tunnel-
ing between classical vacuums of different topology.
This effect is interpreted as a consequence of the
axial-vector-current anomaly. 3' In a recent
paper that discusses several models which possess
pseudoparticles, Patrascioiu' pointed out that in
the one-dimensional ease described by the Lagran-
gian (1.2), the fermion determinant again possess-
es a zero-frequency eigenvalue. (This zero eigen-
mode mas obtained by assuming that a linear com-
bination of the Euclidean eigenfunetion and its
derivative went to zero at the end points of a box

+4 (&, -gcp)4 +—q,hg (2.1)

mhere 4 and 4 ~ are now independent degrees of
freedom. These fermion fields obey the equations
of motion

of length T, and then taking the limit T —~.') Our
attempts to explain the resulting lack of tunneling
as a consequence of a symmetry or an anomaly
were fruitless.

A key element in our present analysis regards
the boundary conditions involved in evaluating the
path integral for the fermions. For a boson field,
cp(I), the kernel (cp,f, ~y, t,) is evaluated by integrat-
ing over all paths such that rp(t, ) = y, and y(t, ) = y, .
The fermion field does not admit such a prescrip-
tion, since fermion states with a, definite value of
4 (I) cannot be constructed. However, we can label
fermion states by their oeeupation number n,
where n can equal zero or one. %e would there-
fore be interested in computing (@gal,t, ~q,n, t,)
Unfortuna. tely, we do not know how to translate the
information about n, and n, into boundary conditions
obeyed by 4(t) and 4 t(t). Inspired by the work of
Dashen, Hasslacher, and Neveu, ' me will instead
compute Q „(yp,t, )cp,n, f,), with the boundary con-
ditions for the eigenmodes of the fermion deter-
minant chosen to be antiperiodic in time. An im-
portant virtue of our model (1.2) is that it can be
thoroughly investigated by conventional methods.
Thus me ean confirm the validity of the above pre-
scription for evaluating the path integral, and me

can easily determine the effect of the presence of
fermions upon our system. That effect proves to
be nondramatic; if the fermion coupling is weak,
the boson tunneling is only perturbatively affected.

II. DERIVATION OF THE DESIRED RESULT

The Euclidean version of our Lagrangian (1.2) is
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They yield

t
e(t) = Texp d7 gy(r) @(0)

0

and

S

4~(t) =Texp — drgy(r) 4"(0),
0

(2.3a)

(2.3b)

the problem reduces to studying a boson system
with the Hamiltonian

&„=--,(ag(P) + —
gt

—
~

+
2 (P,

/
(2.6)

where + and —refer to n = 0 and n = 1, respectively.
Thus the presence of the fermion can be described
in terms of replacing the original boson potential,

where T stands for the time-ordered product.
The fermion number operator,

A. p.
2

((t) =4 (p'-—

by two new potentials,

(2.7)

is thus conserved, so that Vg((t)= — 0' —
&

+
2

(('. (2.8)

(y p, t, ~ gp„gg, t,) 5„ (2.4)

The eigenvalues of n are 0 and 1.
The Hamiltonian of the full system can therefore

be written as
2 2

g —-', (a,gl* ~ —(g'-= — ~ ggg( ——,'l. (g.gl

Its effect on the fermion label is trivial, so that

Since it is obvious that H, + and H, have the same
spectrum, one effect of the fermion is to introduce
a twofold degeneracy in the energy levels. In the
weak-coupling limit, the system can be analyzed
perturbatively. We show in Appendix A that in
fact the first-order correction in g to the kernel
( g(((t,t, ) (,pNt, ) is zero. There is no dramatic effect
due to fermions.

III. A PATH-INTEGRAL ANALYSIS

In principle one would like to compute the Euclidean kernel, ((@((,t, (cp,n, t(), via a path integral, but for
the reasons stated in the Introduction, we shall settle for the trace of the kernel over the fermion label,

Q (gp llgt&= .J. &,g,(l)ng(tlat&g'(Ilexg —g~ gt l(&gg(* ~
g

g' —g -g'(&, -grplg — gg g '.
n. tj

(3.1)

We will first perform the C, C integrations, treating the boson field as an arbitrary external source.
Again, as discussed in the Introduction, we evaluate

g(n, t, g, )t=
n.

1 '2 t hgy
X)g (t)SCt(t)exp

&
dt 4t(eg-gy)@+

tg

(3 2)

by setting it equal to dom satisfying different differential equations and
that the differential operator is not Hermitian.
Yet we do obtain the following eigenfunctions (nor-
malized to Il):

where the E„(cp) satisfy

(sg-g(()g' =E (q)+

(-sg -g V)+.'= E.(q )+.',
with

(3.3)

(3.4)

1/2

4 (t)= exp
2 1

dray —tgy

{2&n+ 1)&t—'L

t, —t,

(3.6)

(3.5)

+~(t) = exp— dugs+ tgy

Note that 4 and 4~ are independent degrees of free-
. (2m+1)&t

+S
2 1
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where

1
(p

-=dt/p(t) .
2 1 tl

The eigenvalues are

(3.7)

(2/n+ 1)3(E ((p) = -g (p —i, m = 0, +1,a2, . . . .
2 1

(3.8)

It is easy to check that both 4 and 4~ form a
complete orthonormal set, where the inner product
is defined as J,' dt's t(t)4„(t). The fact that 4
and 4„obey E(ls. (3.4) and obey the completeness

tj m

relation make it especially simple to expand the

= 2 cosh[-,'g (p(t3 —t, ) J . (3.9)

Returning now to the original system, where the
boson field is also quantized, our result implies
that

propagator of our system in terms of these func-
tions. Since such an expansion can sometimes be
used to extract interesting information about the
theory, we include a derivation of it in Appendix
B.

Using our result to evaluate (3.3), we obtain

~0

g (n, t, ln,.t,&=2 II
n~

Q(('/(l(ee, (=,eJ oe(O exp. —— e( (e,q(' ~ — (' —— ~
n& t~

] '3, /(. t(.
3 3

Ag(p+ exp
)

—— dt (s (p)'+ — (p' ——
A. 2

(3.10)

But clearly this is exactly what one would expect
from the boson system of (2.6), i.e. , we have re-
produced the "desired" result of Sec. II.

Note that if cp 0 Ep t t2 0 but 4 p is not a
bound-state eigenfunction, but rather it has plane-
wave normalization [i.e. , J dtet(t)O(t)r =- ~J.
Thus the antiperiodic boundary conditions do not
lead to a zero-frequency bound-state solution.

We are currently applying these methods to the
four-dimensional problem, and will report on our
results in a forthcoming paper.
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We recall' that for g = 0 the lowest-lying energy
eigenstates occur at

16 2 3 1/2 I

E = —~2 ] y ~ e 3~3o /3"" . (A2)

~)i 2(t(3/X)" '
—lg'-&. = Iz-&+ 2 lg. &E Eg+ g

I ~o& I &o&

(A3)

Since for the unperturbed-potential V((p) = V(-(p),
the first-order effect of the perturbation s(ig/2)(p
is zero. However, the wave functions are changed:

l&o&+ I &o&

APPENDIX A

—x(/2 ((, » —g (t/, 3/A)'/3 i.e. , g«v/(. .
2 2

(A1)

We show here that first-order correction in g to
the kernel ((ponot3I(p, n, t,) is zero. To solve the
boson problem we need to assume weak coupling,
i.e. , Xh/t(, 3«1. Weak coupling of the fermion
occurs if

—la'&, = l~, &+
2 la-&E E

ttg 2(p /e(. )
'

g+

where ILo& and IRo& are the ground sta.tes of the
left and right well, respectively, when one ignores
the presence of the other well.

One can now compute the kernel, ((ponotol(p, n, t,),
for -(p, = (p, = (((,3/X)"3, with a large Euclidean time
interval, t2 —t, . It is saturated by the two lowest-
energy eigenstates, so that we obtain

g -(1/h), sg+(t2- t, )

where a refers to n = 1 or 0, respectively. Notice that the O(g) terms cancel. Q.E.D.

@ ( 3/q)(/3(i g ( ~ /, )u3
(y „ t Iyn t &=6 3I((p=( //() lft,)l q 1+ ' ' ' 1+ '" e '""' '-'" ' '

g+ g- -' g+

@g(~2/g)l/2 tie((/2//()I/3
1 2 1+

&g+-Eg — - - .+- .—
(A4)



16 EFFECT OF FERMIONS UPON TUNNELING IN A. . . 1805

APPENDIX B

In this section we present the expansion of the Euclidean propagator in the presence of an external source
(t) in terms of 4' and 4't. Let S(t,', t', ) be the propagator; then

t2

S(t,', t f)
= (0-|TC (t,')0 t(ti) i0) = 8(t,' —t', ) ttexp dr gp(T)

1

S obeys the equations

(-s, . -gq)s(t,', t', )= tts(t,' t', )-

(Bl)

(s, , gy—)s(t,', t', ) =

fthm(t,

' - t,') .

It is easy to check that

(B2)

(B3)

(B4)

S(t,', t', ) = g , (as)

g e (t,')e'(t,')=Is(t,'-t, ).
Then the expansion of S [on the interval (t„ t,)] in terms of 0 and 0 „ is simple:

t,')0 t t,') t2
S(t,', t', ) = Q ' ' +Ckexp drg(p(~)

—t Jj.

where all that remains to be determined is C, the coefficient of the solution to the homogeneous equation.
To evaluate C we explicitly plug in for the eigenmodes,

. (t', —t,') ( 2n +1) vexp, dr gy+ (t,' —t',)gyp+ t t2

(2 1)
+ C xp 7'gcp

~gq7 1

and consider the limit t,- and t, - -~,

S(t,', t', ) —— . dE
2%i

t2 ]

exp, dv gy + (t', —t2)gy+ t(t', —t2)E
+ CS exp d7 gq-zgy+ E

g
I
1

t2
=[ e(( —t )e(-gj)', 8(t —') (- )j',)9~ c)]lrexp(, d g() .

1

Comparing with (B1), we conclude that, in the limit which we considered,

C = e(g(p) .

(86)

(a7)
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