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Field-strength formulation of quantum chromodynamics
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Non-Abelian gauge theories in space-time dimension D & 3 can be formulated entirely in terms of field

strengths. I detail the formulation in four dimensions.

INTRODUCTION

In this paper, I wish to call attention to the fact
that (D~ 3) non-Abelian gauge theories can be re-
formulated in terms of field strengths, and to work
out details in the case of (D =4) quantum chromo-
dynamics (QCD). After completion of this work, I
learned that Roskies' and Calvo had reached simi-
lar conclusions concerning the uniqueness of the
Yang-Mills potentials.

The basic idea of the reformulation can be seen
in the first-order formalism for SU(N}o Yang-Mills
theory, '

(la)

(lb)

The point is that, if the D(N —1)-dimensional
matrix 9'„i„=f'i'G '„„has an inverse, then I can solve
Eq. (la) for the potentials in terms of the field
strengths

V„' =- —(9-')'„'„a„G'„„, (2a)
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Thereafter, reformulation in terms of field
strengths is relatively straightforward.

I have concluded that the inversion is generally
possible, except when D=2. I will discuss below
the explicit form of det9 when D =4, but the answer
is that det9 is identically zero only for D =2. It may
vanish for particular G'„„when D» 3, but this does
not appear to be a fundamental problem. Further,
det9 does not vanish around interesting G'„„, e.g. ,
the pseudoparticle. 4 It is my feeling then that the
reformulation may be valuable.

I offer the following understanding of my explicit
computations: In fact, the inversion (2a) and (2b)
will fail (detg =0) if one can make a gauge trans-
formation (T is transpose, p is an element of the
regular representation of the group)

p«Vo+ fi&&p J~a (p r)~—1

2g ll

that alters V'„without rotating G"„„. When D =2,
we have G"„„=&„„G', and we are dealing with a
single vector representation. In the case N =2, we
can gauge transform to G'= &"G. Then, further
gauge rotations about the third direction will not
change G'„„, while altering V,'. Hence, det9=0
identically. This argument is easily extended to
allN. Already at D=3, however, G"„„comprises
three vector representations, so there cannot be
any such damaging gauge transformations for
arbitrary G„„. In fact, for N =2, D =3, it is easy
to check that detg is not identically zero. (Try

In general, for SU(N), let the "vectors" and
"rotations" be N x N traceless Hermitian matrices
and unitary matrices, respectively. Let G, and

G, be (just) taboo "arbitrary" vectors (not simul-
taneously block-diagonalizable). If UG,.U~ =G,
(i =1,2), then it is easy to show that U= 1. A proof
goes along the following lines: G, may be taken
diagonal without loss of generality. The transfor-
mations U which leave G, invariant form the max-
imal Abelian subgroup. But then nontrivial ele-
ments of this subgroup will not rotate G, only if
G, is block-diagonal. By assumption, it is not, so
U=1. I am informed by Professor E. Wichmann
that this result is well known. Since already for
D=3 we have three vectors, we are safe for allN
and Do 3,

The arguments presented above are classical,
but, via functional integrals, I shall show that they

apply as well in the quantum case.

FIELD-STRENGTHS AND STRUCTURE OF THE INVERSION

I begin with the action for QCD in the first-order
formalism:

+ij' (}t™~R'v)i']
(4)
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In the generating functional, we integrate e & over
all G'„„,V', g, iti. Performing the (quadratic) inte-
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gration over V„', we obtain the field st-rength
action,

1
D~ G g 9 f 8 G g2g

——'G'„G' + $t(8+M)4

(6)

exhibiting a G for which it is not zero. In fact
there are many (most} such G's, so I will show this
for an interesting case.

There is a spectacular simplification of K in the
self dua-l sectors, O'=A', Gaj, ~E,'. After some
algebra, I obtain the result that K is proportional
to the unit matrix. Explicitly, for the self-dual
sectors,

J = sP~y —P2

K„„=&„„$, $ =3 ««]f E.E E~

(9-1)jj —g]-1O jG j
(14)

(9 ')"= O'G 'K ' . (6)

Here I am using an obvious 4 x 4 matrix notation,
and

j 1 =+
fsvPe PO ~ «0123

(7)
K =-G'G'G'- G'G'G'

This can be put in the form of Ref. 5 via the ident-
ity (Tr is trace}

""=-:T.(OO )
(8)

true for any i.
I have also shown explicitly that

(9 ') jKj'O O'j. (9)

This is equivalent to uniqueness of inverse. Hence
{Gr=-G, Kr=K) 9 ' is overall symmetric,

(g 1) jj —(g 1)jj (10)

as could be anticipated from the symmetry of 9.
Interest is then focussed on the symmetric matrix
K.

Consider the generalization of K,

X'„ is an auxiliary field, much like a Faddeev-Popov
field, which represents (detg) ' j'. As we shall see,
p'„can play a role in quantum corrections.

I will now state the form for 9' in the case K=2,
D=4. The result, first given by Deser and Teitel-
boim, ' is

For the pseudoparticle ansatz E,' = &,
' ~, I obtain

the even simpler result

( =2X3.

Of course, X is well known' and nonvanishing, so
detK cannot vanish identically.

Semiclassical physics in this reformulation must
be an expansion around saddle-point configurations
with detKv0. (Otherwise, as seen below, the
saddle-point equations for G are ill-defined. It is
problematic whether detK=O configurations can
play a role in more deeply quantum-mechanical
approaches. ) It is gratifying then that the reform-
ulation is well-defined near the pseudoparticle;
it will also be interesting to study more fully these
two classes of configurations (detK=0 and
detKaa0}. Later, I will illustrate the start of such
a semiclassical calculation by solving for X direct-
ly from the classical G equations of motion.

AT THE SADDLE POINT

The classical equations of motion for G, g follow
by variation of the action S. A helpful identity is

g 9-11lm
(9-1)ta eaH(9-1)bm

gG f ~ty
tyK

+ (g 1)jag 0N(g 1)bal (16)
which follows directly from 99 '=1. I obtain then,
at the saddle point,

K f = G 'G fG -G'6 fG

K=K

By examining each matrix element of K'„f„', I have
shown that

&'„„(S)+gO'„„+g 'e"' X' X„'=0,
(i tji+ iM +gg = 0,
9ff Xf -P

where

(17a)

(17b)

(17c)

Kjfg «pfIfK K 1 «jf QG f GjGIt, (12)

G'G j+G'G ' =G'G'+G'O' = -, Tr(G 'G')1 . (18)

I will show that detK is not identically zero by

Hence, K"', and, in particular K, is a gauge-in-
variant color-singlet. In fact, the cyclic properties
of K'f' can easily be seen by repeated application
of the identities

y a (J) —S ga ega+ ~aha) a pa

ga —ya g(9-l}aa gb

g'„=- (9-'}'„'„e„G'„„.

{18a)

(18b)

(18c)

The classical field equations (17a) and (17b) are
ill-defined unless detK p. If our approach is to be
semiclassical, we must begin with only this class
of configurations. But then 9'„f„has no zero eigen-
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values and we must take X'„=0, by (17c). In quan-
tum corrections to such configurations, the g'„will
in general play a role. In other, more deeply
quantum-mechanical approaches (strong-coupling?),
the p'„may play a more immediate role. This is
closely related to the statement that in such "other"
approaches, configurations withdetK=O may play
a role. Many interesting questions arise; e.g. ,
Do all nontrivial self-dual solutions in the usual
formulation satisfy detK w 0?

The equations of motion (17a) and (17b) (with
x= 0) are precisely what one expects from solving
the first-order equation for V'„, as discussed
above. The identification is

V~ ——g' = ——(G'G'K ')„„(B„G~~„—gJ~) . (19)

Notice also the induced "four-Fermi interaction
(times 9 ')" apparent in the action and in the field
equations. In what follows, I will drop the quark
terms for simplicity, stating full results when
relevant.

order formalism. A similar manipulation, includ-
ing quarks, yields the expected result: Equation
(23) with g -g, an an additional n S = J d~x Pt

x (/+M-g)g.
The gauge-invariant action Eq. (23) can also be

cast in the form

S= d'z --,' G+ — + 8, (6:+9)'+,SS . (24)
2 1 -2 1

g

The first term vanishes at the saddle point. Then,
at fixed J d'x 69:, S is a. minimum only if 8: +9 =0
(G =W).

THE PSEUDOPARTICLE

As a simple application of the field-strength re-
formulation, I will solve for the G =G pseudo-
pa.rticle directly from the (no-quark) G equations
of motion. In this sector, we have, using Eqs.
(18c) and (14),

(25}

With the ansatz E', =B,' = &',~, I obtain, using Eq.
(15),

EXPLICITLY GAUGE-INVARIANT ACTION

Under gauge transformation [Eq. (3)], sll
quantities transform as expected from the first-
order formalism. The field equations are invari-
ant. The action

$0~=-~ B,. ln&,

g,'= —,'(b, ,s, —e, , s ) inx.

The field equations, 9(gG))+gG =0, are con-
veniently grouped as

(26)

S= d x BG8 BG) —~G —g —Bg
I (20)

5+P+2gG =0, (27a)

(27b)
is not, however, explicitly gauge-invariant. (It is
if one drops surface terms after the transforma-
tion. } This is because, in obtaining S from Eq. (4},
we had to do an integration by parts to put the V„'

integration in standard form. I can regain an ex-
plicitly gauge-invariant action via the useful ident-
ities

I „3f' 1f"+——+ —(f')'—+gx = 0,4 4 R
(28a)

(28b)

Both are second-order differential equations. With
the assumption' that &= X(R) (R' =-x„x„), these be-
come respectively (f= InX, prime m-eans d/dR)

Gi gf

=-G„'„s,g', + s,(G,'„g'„) . (21)

To obtain these, I have repeatedly used the defini
tion of,'J' [Eq. (18c)], and the implied fact that

Gf +gfJ'AJJ Glk 0 (22)

even off the saddle point. This gives us a choice of

many forms for the action. Taking appropriate
combinations of the second and fourth forms in Eq.
(21), and dropping the surface term, I obtain the
explicitly gauge-invariant form

1» ——G6:(g(G))- -,'G'- x —9x . (23)
2g 2

This form is what might be expected from the first-

In general, two second-order differential equations
for the same function would be cause for concern.
This system, however, is easily solved: Eliminat-
ing the second derivatives, we have

(f"' +f'+gx =0
4 R

the most general solution to which is

4b 1'('}=, (R"b)

(29)

(30)

b arbitrary. Further, this A. also solves Eqs. (28a)
and (28b). This is the usual pseudoparticle. I have
spent some time trying to see a similar structure
in the full Eq. (27) (with no ansatz), but, thus far,
to no avail.
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REMARKS

Finally, I would like to make a few remarks about
directions. In the first place, the inversion, Eq.
(l9), is singular at g =0. As a result, I have not
been able to expand the field-strength formulation
in the usual perturbation series; I strongly suspect
that the field- strength formulation is fundamentally
nonperturbative.

Two other weak-coupling schemes present them-
selves, however. (1) The usual semiclassical ex-
pansion is easily available [scale G =—(1/g)C]. (2)
An expansion directly in the form Eg. (23) yields
the gauge-invariant (but useless) P(g) =0 in the lead-
ing approximation.

A similar gauge-invariant strong-coupling
scheme is also suggested. The point is that each
of the three terms in Eq. (23) is separately gauge-
invariant. We might call -(1/2g) J GP(S(G)}d'x
the gauge- invariant "kinetic energy, " and
--,' f G'd'x the gauge-invariant "interaction. " The
strong-coupling expansion is then in powers of the
kinetic energy. This has the usual strong-coupling
problems in lowest order, but, for non-Abelian
gauge theories, it is the only gauge-invariant
strong-coupling expansion I know. It also has the
usual advantage (of strong-coupling schemes) that
such an expansion is expected to converge. This
is easy to see via the methods of I ipatov': Under
a scaling G -WNG, the interaction G'-NG', while
the kinetic energy GF- MNGF (J is invariant under
G-scaling). Thus, the strong-coupling expansion is
expected to be of the convergent form

K
N (N( )1/2 (31)

g N!

I have also concluded that gauge-fixing is not a
problem; e.g. , ghost-free gauges are easy to trans-
late into the field-strength formulation. (Ghost
gauges are, however, problematic. ) What would
be interesting would be an investigation of allowed
"G gauges" (gauges directly in terms of G). This
would be easiest to study in phase space, where

our formulation is close to the usual (but with "co-
ordinates" and "momenta" reversed).

Finally, I remark that the field-strength formula-
tion allows the introduction of certain gauge-invar-
iant quantities as dynamical variables. E.g. , in
a representation such as

(G „'„]= r„„(sin8„„cosg„„,sin8„„sing„„,cos8„„),
(32)

the variables r, „=(g,G'„„G',„)'~' are gauge-invari-
ant. Such directions are interesting, and may lead
to a gauge-invariant formulation of non-Abelian

gauge theories.
Note added in proof. There is a subtle point

about first-order formalisms (in general) which
shows up most clearly in Euclidean space. The
reader may want to check for himself that the
same thing happens in first-order formulation of,
say, Aft)4 theory. Ior convergence of the Euclidean
functional integrals, the variables G'„„must be in-
tegrated over purely imaginary contours, i.e., SG
=iaG', G' real. (Alternately, replace G iG a-nd

integrate over real contours. ) By symmetry prop
erties (G ——G), it is easy to show that the func-
tional integrals are still real. Of course, the
saddle-point equations

&'„„(g)+gG'„„=0

show that the saddle points are at real G (because
g, and hence 3:, is invariant under G scaling}. The
saddle points must be approached by contour dis-
tortions.

To go beyond semiclassical expansions about
nonsingular (detga0} configurations, one must
find a consistent prescription in the neighborhood
of the singular configurations.
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