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Constraints imposed by CP conservation in the presence of pseudoparticles~
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We elaborate on an earlier discussion of CP conservation of strong interactions which includes the effect of
pseudoparticles. We discuss what happens in theories of the quantum-chromodynamics type when we include
weak and electromagnetic interactions. We find that strong CP conservation remains a natural symmetry if
the full Lagrangian possesses a chiral U(1) invariance. We illustrate our results by considering in detail a
recent model of (weak) CP nonconservation.

I. INTRODUCTION

In a recent letter' we have discussed the question
of CP conservation of the strong interactions in

theories of the quantum-chromodynamics (QCD)
type. This paper will be devoted to a more de-
tailed exposition of the arguments given in that
note and to the examination of the constraints im-
posed by natural strong CP conservation on more
realistic models. We illustrate the application of
our results by discussing in detail a model of weak
CP nonconservation due to Weinberg. '

In non-Abelian gauge theories the existence of
Euclidean solutions labeled by a topological quan-
tum number' has been shown to require a more
complicated vacuum state "than is included in

naive perturbation theory. There are in fact an
infinity of possible vacuums which can be labeled
by a. parameter 6). The Hilbert space of the theory
factors into the distinct subspaces of states built
on each t9 vacuum and there are no transitions be-
tween states in different subspaces. ' The vacuum-
to-vacuum transition amplitude in the 0 vacuum for
a theory with the Lagrangian 2(A, P) is given by

(0)0) = g J(dA„), f d(exp f d'*('. (A, ()

& exp(iq8),

where A is the non-Abelian gauge field and P rep-
resents all other fields occurring in Z.' J (dAJ,
means integration over all configurations which
satisfy the boundary condition

2
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32
2- d x Fif~F ~„=q.

This defines the topologically distinct sectors of
the theory. Naive perturbation theory includes
only the (f =0 term of the infinite sum in (1). The
factor exp(i(f 8) appearing in (1) can be considered
as a tecum in the effective Lagrangian

2
a -a

Jeff= g+i8 „2Fq,F~„.34K

The appearance of this additional term shows the
problem to which we address ourselves. It appears
to be a P- and CP-violating term. Thus if Z rep-
resents a non-Abelian gauge theory of the strong
interactions this term may generate strong P and
CP violations, even when 2 is chosen to exclude
such effects. The pressing question is then to find
under what conditions a theory like QCD describes
a world such as the one in which we live, which
has no strong P and CP violations. Our answer' is
that 2 must possess a chiral U(l) invariance, such
that changes in 0 are equivalent to changes in the
definitions of the various fields in 2 and have no
physical consequences. Any such theory is equiva-
lent to a 6) =0 theory and this has no strong P and
CP violations. This property has previously been
observed for theories where 2 represents a non-
Abelian gauge field coupled only to massless fer-
mions. ' Qur new contribution is that it remains
true when some fermion masses are included in

2, or even when all strongly interacting fermions
become massive, provided that at least one fer-
mion gets its entire mass from a Yukawa coupling
to a scalar field, so that the full 2 can possess at
least a single chiral U(l) invariance.

The plan of our paper is as follows. In Sec. IE

we give a detailed demonstration of our result for
a simple model with only one flavor of fermion
coupled to a single complex color-singlet scalar
field. Section III discusses how CP violations due
to pseudoparticles are avoided in more general
theories, in which weak and electromagnetic in-
teractions are included. We choose to discuss, in

particular, a model recently proposed by Wein-
berg, ' in which the physically observed CP viola-
tions arise from scalar exchanges. Weinberg's
version of the model does not have the requisite
U(1) symmetry and would in fact suffer strong P
and CP violations. However, one can readily
modify his model to remove this problem, at the
price of including some additional scalar multi-
plets. Section IV contains some concluding re-
marks.
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II. SINGLE-FLAVOR MODEL

Let us begin by an examination of a simple sin-
gle-flavor model. ' The Lagrangian is

2 = ——,
' F'„,F'„„+igD„y„g

(4)

fied, thereby guaranteeing the P and CP invariance
of the model. We present here a more detailed
version of our proof. "

To see that (9) is satisfied we examine the gen-
erating functional of the scalar Green's functions

Ze(J, JA') =e

efe'(dAe}fd, d f ddf dd f dd

with p' & 0. We note that (4) is formally invariant
under the chiral rotation

x exp d'x(Z+ Jy+ J*y*)

(10)
P -exp (+i oy, )f, (t) -exp ( 2io-) {t) . (5) The scalar vacuum expectation value is defined by

However, there is an anomaly in the chiral cur-
rent'

&"J'„=(g'/16v')F'„, P'„„

so that

~S0ff —5 d X Z,ff

5Z
=(y) =we",

Z=Z*=O

where ~ and P are real constants. The argument
proceeds as follows:

(1) We make the change of variables

p = e 's(d). + p+ io), (12)
=-i d4x e„J'„cr

=-i(2o)(g'/32m') t d'xF'„„F'„„.

Clearly then in this theory a chiral rotation rede-
fines the 8 parameter

This demonstrates that for any (9 value we obtain
an equivalent theory. To show that these theories
are CP conserving we need a further result:

c(=arg(e' G(Q)) =0. (9)

This requirement is trivially satisfied if p'& 0 so
that (t) has a vanishing vacuum expectation value.
In the more interesting case when {4)) pP0 it corre-
sponds to requiring that the fermion mass G(P) be
real when the fields are defined so that 0=0.'

In Ref. 1, we showed explicitly that (9) is satis-

where p and o' are real scalar fields.
(2) We use the knowledge that only terms of chir-

ality Q contribute in each p sector~ to allow us to
formally integrate out vector and fermion fields
and obtain an expression for Z in terms of nonlo-
cal polynomials of the scalar fields.

(3) Using only known reality properties of the
polynomials we can write the constraints (p) =(&)
=0. We find that they require a=0, w. These are
stationary points of the scalar potential. To find
which is the true minimum we must examine the
potential itself. This we cannot do with the full
(all-order) generality of our previous argument.
However, to leading order in G and h we can write
the scalar potential, and we find that the minimum
in fact occurs for +=0. We argue that there will
always be some range of the parameters for which
this is a correct result.

The generating functional (10) can be rewritten

Z {d d ) I{f AA
) ="f dd f d.d'f dp f dd*e p[Z(PP )]exxp e f d ( FF ijl()*P\='e

- n 7$

fd *pGp "'
p 'fd pp p

' '*'p -p(dp d d) (13)

However in each p sector only the terms with n-m =p contribute. This can be seen as follows. Focus on
the fermion and gauge field integration only. Terms in the path integral containing the structure
[$(l+y,)g] "[QI—y,)f] correspond to the expectation value of operators which change chirality by 2s-2m.
If chirality were conserved then only n- m =Owould contribute. However, the presence of pseudoparticles
produces net changes in chirality. ' It is not difficult to show" that in each p sector chirality changes by
4Q, =2q, which establishes the above result.
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%e can formally perform the integration of the vector and fermion fields. %'e use the notation

p(fdd„) fdpfdps. p fed ;F=F, p(pp)

[J d'»4G4 '(1-+?.)4]"" [J d'»KG*4*~(1 ?-.)4]"
(n+q)! nt

ff+ (g ff

=+ II II f '*I p(*)]f"',I 'p"(p)I „,"„'„' ', I (p p )I'"
-=~,($4 ')(G4)' (14)

%'e cannot of course write the specific form of the coefficients &„but we note two relevant properties.
Because the &„' are integrals over bilinear forms of ferrnion fields they are real. Furthermore, they satis-
fy the relationship

c:(»;p y&)
= &. '(3~p»() (15}

This result is simply a reflection of the symmetric role that ((]) and P play in (14). Alternatively, it can
be gleaned from K[I. (13) and the simple relationship that exists between chiral operators and pseudoparti-
cle number. Since q =n-m obviously -q =m —s and (15) follows immediately. Using this result leads to
the property

&,(en*) =A.*(en*)

Using this notation we find

(16)

oo

Fs(d d*) fdd f=dd d.(PP ')'? d.(P'P')(«ad) +d:(PP')("a" "P') ssp(dd'd"'P )"
Furthermore, using (16) and the definitions (9) and (12) this implies

Z(d d) =f dp f do d (pe') +g[F(p o ')canna-op„(pe') sinsa][ esp[de'e(S+p ~ (ir)+Z e n(S+p-rir)],

where E„and G„are the real and imaginary parts
of [~G~(X+p+ic)]"A„(4)P*), respectively Now.
we impose the constraints that, by definition, the
field p and o have vanishing vacuum expectation
values. This gives us

(p) fdpf dop(d=, +p F cosna =0,
fl

(o) = f dp J e'Qa„s'nna=o,
n

(19)

(20}

where we have used the fact -that any odd power of
o' integrates to zero. For any value of a we can
choose X=A(a) such that (19) is satisfied. The co-
efficients G„are then functions of X(a) and in gen-
eral (20) will be satisfied only if a =0, ][. We have
thus identified two stationary points of the scalar
potential. To proceed further we must ask which
of these is indeed a true minimum. This requires
more knowledge of the details of the potential than
we can obtain from the very general arguments
given above. However, as we shall discuss below,
there will be some range of the parameters 6 and
h and A. for which the true minimum occurs at e

=0, which then gives a CP-conserving theory.
A more intuitive understanding of this result is

perhaps gained by examining an explicit foxm for
the scalar potential. This we can only do in the
leading approximation for small G and h. As can
be readily seen from (I'?) the terms with (q ~

~ 2
contribute only in order G', so for the moment
we can ignore them. This means we not only are
making an approximation to leading order in G and

h, but also in G~, so the region of its validity may
be very limited. (We will return to this point in
more detail a little later. )

Let us examine, as usual, '4

r(p) =)nd f dn,

&lnZ

( }
=4(x).

When 4)(x) =(]]), independent of x, then

I'(e) =-(»)'6'(0) I'(e),
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where V(Q} is the scalar potential. In the approxi-
mation that all higher-order terms in G and h can
be neglected we find that this gives

with

~(4) = ~'0*0+~(4*4)'. (22)

Ve(p) = U(Q) -K~ GP (cosa (22)
The constant K is real and positive. Formally we
can write it as

f (dA „),f~ f dg f d x P (x) ,' (I -+y,)g (x) exp[ f d x'(--,'FF +i &PAL)]
K=

f(dA&} f dg f dgexp[f ( ~F-F+i &PAL)d x]
(24)

From the form of (22) it is clear that the scalar
potential in the 8 vacuum does not possess the U(1)
symmetry which we required in the original 2 and

thus in U(Q). [This same lack of U(1) symmetry
was noted by 't Hooft' and explains the absence of
a Goldstone boson in this theory, even though
naively one might have expected to find one. In a
more physical model it explains the absence of a
ninth light pseudoscalar meson. ] However, as we
remarked previously, (22} is in fact a rather crude
approximation to the potential. Although G and A

may be quite small in situations of real physical
interest the combination GX is not so small, being
in fact the fermion mass scale.

We cannot rigorously improve our estimate (22),
but it is worth remarking that if the dilute-gas
approximation' were valid in the multipseudopar-
ticle sectors then we would in fact obtain (22) to
all orders in GA.. To see this one must examine
Eq (14) in.more detail For .constant P and in the
dilute-gas (independent-pseudoparticle) approxi-
mation the &„' factorize into a product of terms
each of which corresponds to the integration over
the zero mode of a fermion in the presence of a
single pseudoparticle or antipseudoparticle at
position z and with size A:

Cq =

~2n+ q

where the weight &u(X) represents the probability
of such pseudoparticle configuration. Then the
generating functional Z exponentiates and we ob-
tain (22) to all orders in GX. However, we are
aware that this argument is very crude. It depends
on the dilute-gas approximation, and furthermore
on a semiclassical treatment of the individual
pseudoparticles. Since we are dealing with a
strongly interacting gauge theory this is a danger-
ous game to play. We present it here only because
we feel it clarifies our result to some extent. The
rigorous all-order arguments that gave us (19) and

(20} are sufficient to reach our desired conclusion,
that for some range of parameters n = 0 is the true

minimum of the scalar potential and thus the re-
sultant theory is P and CP conserving. "

III. INCLUSION OF WEAK AND ELECTROMAGNETIC
INTERACTIONS

So far our arguments have been made in the con-
text of a very simple model. Clearly we really
want to investigate a theory like QCD with weak and

electromagnetic interactions included. We make
the standard assumption that these latter interac-
tions are also governed by a non-Abelian gauge
theory, which is, however, spontaneously broken.
Then, in addition to the strong non-Abelian group
we have a weak non-Abelian group to worry about.
In principle, we must also include the effects of
the q 10 sectors of the integrations over the weak
gauge fields. However, 't Hooft' ha, s argued that
these contributions are cutoff because of the non-
vanishing vacuum expectation value of the scalars,
which are not singlets under this gauge group. He

ha.s estimated the strength of the q,~ c 0 sectors
to be of the order of e '" and thus truly negligible.

The weak pseudoparticle effects are much too
small to account for the observed CP violation in

E decays. Thus to obtain physically relevant CP
violations one must include this possibility in the
weak Lagrangian. However, our work provides
certain constraints on how one may incorporate
these violations into the theory. Obviously, one
must arrange things so that there is no possibility
of obtaining strong CP violations arising through
the (strong} pseudoparticle sectors. As we shall
see, this requires that one violate CP in the weak
Lagrangian in such a way that a. chiral U(1) sym-
metry remains effective. We should note that this
is a general requirement, even when the weak
Lagrangian is CP conserving. We shall illustrate
these points below by studying in detail a recent
4-quark model proposed by Weinberg, ' in which

physical CP violations can arise due to the ex-
change of scalar particles.

Before doing that a further general comment
should be made. This concerns the question of
whether we can avoid parity violations of order o.
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when we introduce weak isospin assignments which
are not the same for the left- and right-handed
quarks. In the context of a theory whexe all fer-
mion masses arise from Yukawa couplings of
scalars to fermions, all parity-violating terms of
ox'der n are in the form of complex higher-order
corrections to these Yukawa couplings. Since our
arguments allow a general (complex) Yukawa
coupling such terms do not present a problem to
us. The condition(9), or its generalization discussed
below, will sti1.1 apply, where G is now the Yukawa
coupling as corrected by the creak fvnd electron~ag-
netic l'H. teractions.

Let us discuss these ideas in terms of a concrete
model for the weak and electromagnetic intexac-
tions. A plausible model, with enough x ichness
that it can incorporate weak CP violations, is pro-
vided by the 4-quark model discussed recently by
Weinberg. ' The weak group is SU(2) && U(1) and the
quaxks transform under the group as two left-
handed doublets

jd, ) (N, )
(X,jl, Pls jq

and right-handed singlets. In order to ensure that
the model conserve strangeness and charm natur-
ally" there are at most two scalar doublets coupled
to the quarks. The relevant terms to consider, in
Weinberg's notation, are the Yukawa couplings

2

+ g r', „6,„(y',e„-y,' X,,) +H. c.

and the scalar polynomial P

&(%)=+M,'(0,'e,)+P o,.(e,'V, )(V,'e.)

+ Q "rs 4s 7'iSs ' 4's 'res+ ~ Crs 'pr 9's pr Ps .

(27)

Hermiticity requires that c„,=c,~ while the M„,
a„„and b„, must all be real. In order to have a
CP-violating theory Weinberg needs at least three
different scalar doublets. Then the phases of the

c„, cannot simply be absorbed into a redefinition of
the scalar fields and physical CP violations will in
general occur.

As written by %einberg the theory does have a
U(l) symmetry which can be written, for the rele-

vant fields, "as

X,- exp(inlay)X, ,

5', —exp(in~@$6', , (28)
g', - exp[i(n~+ ne)]y', , y'„- exp(2ingq'„

@,
'. - exp[-i(n~+ n~)] Q,', Q,'- exp(-2ins, )p,'.

with the further identification

Under such a redefinition, using Eq. (8) for each
fermion flavor, "we have

However, in view of the constra. int (29) this gives

where P and 1" represent the xenormalized scalar
polynomial and Yukawa couplings, corrected to all

Clearly this U(1) symmetry is not of the type re-
quired. Because of the constraint (29) it does not
allow us to change 8 by a redefinition of fields in 2
since the net change in chixality from this rotation
is zero. %e will shortly see that this theory has
strong CP violations. If however we remove the
constraint (29) and require 1l to be formally invar-
iant under (28) with arbitrary n~ and n&p we do have
a chiral symmetry such that we can change 8 by
redefining fields in 2 and the theory will not have
strong CP violations. However, such a symmetry
places an addtttonal constraint on P(P). This ts
satisfied provided all c» =0."

We remark that %einberg's original version, in-
cluding the constraint (29), leaves open the possi-
bility that p2 is in fact the same scalar multiplet
as (I) 1 However, if we impose the more general
invariance with arbitrary zz and zd, then clearly
Q, and Q2 must be diffexent multiplets since they
have different transformation properties. The
theory saith only a single scalar multiplet appear-
ing in the Yukaua couplings does not have strong
P and CP conservation because it also lacks a
chiral U(2) symmetry that alloujs us to change 49.

The simplest way to see that steinberg's version
of the theory is not P and CP conserving is to ex-
amine the (admittedly crude) leading approximation
to the effective potential. The derivation proceeds
as before except that in a theory with N fermion
flavors the q-pseudopartiele sector gets nonvan-
ishing contributions only from terms of chiralityq¹' As discussed in the Appendix, we find

V, (y) =P(y) fCRe[(de-tr')(detr')(y, *y,)'e"],
(82)
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orders in the weak and electromagnetic interac-
tions and the constant EC [the multiflavor generali-
zation of K in Eq. (24)] is real and positive and in-
cludes weak corrections. Now P(P) already con-
tains the term

Rec, (Q, p )', (33)

so it is clear that the additional term from the q
qf: 0 sectors is just a change in the effective cy2
parameter. Minimization of (32) corresponds to
the condition

arg([c»+ (deti')(detl')e' ]e"!' & }=0, (34)

where P, and P, are the phases of g, and Q, at the
potential minimum. However, the generalization
of Eq. (9), the requirement that fermion masses
be real when the fields are defined so that 8 = 0, is

arg[(detl'}(deti')e' e"' ' 'i] =0.
It is quite clear that (34) and (35) are not compat-
ible unless c»=0. However, this is exactly what
is achieved by imposing the more general invari-
ance (28) with arbitrary a6, and n~ on S. With that
constraint we can in fact repeat the general argu-
ments which gave us (19) and (20) and find that the
constraint {35)corresponds to a stationary point of
V to all orders in perturbation theory. This sta-
tionary point will be the true minimum for some
range of the parameters in the theory, and hence
there will be no strong P and CP violations in this
version of the theory.

In the Weinberg version of the theory physical
CP violations occur due to scalar exchanges if
there are at least three scalar doubletsg&. How-

ever, this result depends on the fact that there are
then three independent complex phases arg(c;, ) in
S only two of which can be absorbed by redefining
the relative phases of the f;. By imposing the
symmetry (28) we eliminate two of these c;&'s and
thereby eliminate the physical as well as the un-
physical (strong} CP violations of Weinberg's mod-
el. The situation is, however, easily remedied.
If there are four scalar doublets then even with
invariance under (28), which guarantees strong
CP conservation, P(Q} is once again rich enough
in complex parameters c;,. to cause CP violations
of the type discussed by %einberg.

IV. CONCLUDING REMARKS

The Weinberg model discussed in the previous
section serves as an illustration of a completely
general result. We see explicitly that in the ab-
sence of a chiral U{1) symmetry at the Lagrangian
level the theory cannot be written as one in which
all fermion masses are real and 8 =0. Imposing a
chiral U(1) symmetry remedies this situation and
restores strong CP conservation. Physical CP-
violating effects must still be introduced at the lev-
el of the La.grangian, since weak pseudoparticle
effects are too small to account for them. The
Weinberg model discussed above is one possible
way to achieve milliweak CP-violating effects. A
class of alternative models has been discussed by
Lee." In these models the scalar Lagrangian is
limited to two doublets and hence is automatically
CP conserving. Microweak CP violations arise be-
cause of a richer quark structure allowing CP-
violating phases to appear in the quark-gluon La,-
grangian. These models also readily lend them-
selves to the imposition of a chiral U(1) symmetry
and hence can be written so that strong P and CP
violations are avoided naturally.

Finally we observe that although our deta. iled
arguments rely on the inclusion of physical scalar
fields in the Lagrangian we expect that the result
is probably more general. If the Lagrangian has
the requisite U(1) symmetry and fermion masses
arise from some (as yet not understood) dynamical
mechanism, then we would expect the resulting
theory to exhibit strong P and CP conservation.
The U(1) symmetry guarantees that the fields can
be chosen such that O,ff 0 and thus has strong P
and CP conservation before the dynamical mass
generation. Our experience with scalar fields in-
dicates that such strong-interaction symmetries
are not spontaneously broken, at least for some
range of parameters in the Lagrangian. Thus we
believe that this would also be the case in the event
that mass generation is dynamic.
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APPENDIX

The expression (32) for the effective potential to leading order in Yukawa couplings is obtained by exam-
ining the one-pseudoparticle sector, since all higher pseudoparticle numbers give contributions of higher
order in Yukawa couplings. The nonvanishing terms in the q =1 sector are those which have AQ, =2 for
each of the four fermio~ flavors. Hence we must look for terms in the expansion exp(id'x ZY} which have
one right-handed antispinor and one left-handed spinor for each fermion flavor. Clearly this means we
must examine the term (1/4!){2Y) with Zl' as given in Eq. (26). Each term contains four factors of the
form (I"EsgP~), where E is any fermion spinor. These factors commute with each other, so the 1/4!
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simply cancels the 4! from counting all orderings of the factors. In order to get two XR factors and two
6„we clearly must pick only terms quadratic in I'"s and I "s. Furthermore only the combinations I"„r,',
and I"„I2, will appear multiplying the desired set of spinors. Let us examine for example the term multi-
plying (p', ~)'. It is of the form I »I",,(X~(P,z)(~(P,z)+I,',I",,(X~(P,z)(%~6',z). By a Fierz rearrangement
this can clearly be rewritten as (detl"')X~(P, zXzs(P, z.

Rearranging all terms similarly we see that the relevant terms are

(detr' detr') [(X~d',z)(X~(P,z)(rP', *)'((P~Xz)((PaaX,z)(p,')' —(X~(P~X2sXzz)(pi*(j&', *)((P~X,z)(d'aa (Pz)(9,'y,')
(X-X,.)(X (P,)(y', q,")((P (P,.)((P X,.)(y.'y.')+(X X,.)(X X,.)(q', )'((P (P,.)((P~(P,)(ql)'1.

Further Fierz rearrangements allow us to rewrite this in the form

detI' detI(Q*', Q ) (X~X,z) (X2sX z)((P~(P,z)((Paa (P,z) .
We have written this expression in terms of the Yukawa couplings but we must first integrate out the weak
vector-meson effects. This has the effect that l"- I but does not otherwise alter our discussion. Perform-
ing the remaining integrations over vector and fermion fields leads to a result

Ke' detI' deti'(P*, P,)'

for the q =1 sector, where K is a real positive constant. For the q = -1 sector one obtains the complex
conjugate of this expression by the same arguments. The sum of these gives the expression (33) for the
effective scalar potential.
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1958 (1977).

~~The charged weak vector fields also transform non-
trivially, W» exp[+i((y~ —e~)] W».
The weak pseudoparticle effects require the inclusion
of a second 8 angle which we call 8~. This will also
be redefined by the transformation (28). However, as
commented previously all effects of the q ~ & sectors,
and hence of this angle, are physically negligible.

~ It is clearly arbitrary whether we choose to make all
remaining scalar fields transform like qh& or f2 or
some like each of them. The Yukawa couplings dictate
the form (28) for P& and P2 and thus we eliminate the
coupling cq2 when we impose invariance under (28) with
arbitrary z& and &+. Certain other c&& couplings will
also be eliminated, depending on our assignment
of transformation properties for the remaining scalar
fields. These remaining assignments are irrelevant for
our discussion. We use (28) as an example.
B. W. Lee, Phys. Rev. D 15, 3394 (1977).


