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SU(2)-flavor Schwinger model on the lattice
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Hamiltonian lattice perturbation methods are used to study the (1+ 1)-dimensional, SU(2)-flavor Abelian

gauge model. For a model with coupling constant g and fermion mass m, two distinct vacuum regions

characterized by the magnitude of m/g are found. Expansions about the Ising-type vacuum corresponding to
large m/g are carried out to order 1/g a ' (a = lattice spacing) and improved using Fade approximants. The
results compare favorably qualitatively and quantitatively with recent studies of the weak-coupling limit of
the continuum theory. Expansions to order 1/g a about the Heisenberg antiferromagnetlike vacuum

corresponding to small m/g agree qualitatively with known results for the strong-coupling limit of the
continuum theory.

I. INTRODUCTION

Recently, Banks, Susskind, and Kogut' have
used lattice perturbation theory methods to study
(1+1)-dimensional Abelian gauge theories (massive
Schwinger model). Strong-coupling expansions
for the theory's mass spectrum were computed
to second order in y = 1/g'a~ (a = lattice spacing,

g = coupling constant), improved via Pads approx-
imants, and extrapolated to the continuum, a-0,
limit. In general, good agreement between these
calculations and exact results for the continuum
Schwinger model was obtained. The success of
the procedure is not surprising since the con-
tinuum theory of free massive (mass-g'/v) me-
sons can be described in terms of quark-antiquark
pairs bound by gauge strings, ' and it is precisely
this idea that is embodied in the lattice methods.

It is, therefore, an instructive exercise to util-
ize the same approach to study the (1+1)-dimen-
sional, SU(2)-flavor, Abelian gauge theory since
certain features of the continuum mass spectrum
are not readily comprehensible using the same
string picture. Specifically, Coleman' has found
that the I quantum numbers of the lowest-lying
bound sta. tes above the vacuum are

1+ 0 1+ 0++

in the weak-coupling (m»g) limit, but

y
-+ p++

7

in the strong-coupling (g»nz) limit. In the latter
limit, all other bound states are O((g/m)'i') more
massive than the first two.

My intent in this paper is to report the results
of Hamiltonian lattice gauge perturbation calcula-
tions of the low-lying bound states in both the
strong- and weak-coupling limits for the SU(2)-
flavor, massive Schwinger model. Except for a
few modifications, included in the discussion of

Sec. II, the procedure followed is identical to that
of Banks et al. In Sec. III, the effect of the mod-
ifications on the details of the calculations is ex-
plained. Two phases with distinct vacuums —one
equivalent to the ground state of an Ising model,
the other equivalent to the ground state of a Hei-
senber g antif er romagnet —are shown to exist,
characterized by the magnitude of m/g. Expan-
sions about the two vacuums and determination
of the respective low-lying bound-state spectra
are discussed in Secs. IV and V. It is demon-
strated that in the weak-coupling limit the bound-
state spectrum calculated through order 1/g'as
has quantum numbers

IPG j -+ 0++ y+ — 0++
7

and the mass splittings are in both qualitative and

quantitative agreement with Coleman's weak-cou-
pling predictions for the continuum theory. Ex-
pansions about the strong-coupling vacuum through
order 1/g'a~ (calculated using known results for
the Heisenberg antiferromagnetic chain) imply
the low-lying bound-state spectrum is

yPC y
-+ 0++

)

with all other bound states having much greater
mass. The results agree qualitatively with Cole-
man's strong-coupling limit predictions for the
continuum theory. Although two vacuum phases
exist in the lattice theory, the implications for
the continuum model are not clear.

II. SU(2)-FLAVOR MODEL ON THE LATTICE

The.first step in the lattice procedure is to form-
ulate the SU(2)-flavor, massive Schwinger Ham-
iltonian on a spatial lattice. A staggered lattice
of spacing a is employed on which, for each type
of fermion, a one-component fermion field P (n)
(o =p, n representing the two flavors of fermion
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in the theory) is defined at each lattice site n.
P (n) satisfies the anticommutation relations

[0'(n) 4 (m)} =6. [4 (n} 0 (m}}=0,

(2.1a)

[Q„(n), Q],(m)} =0, [Q„(n), f~(m}}=0. (2.1b)

It is related to the two-component lattice field
]})„(n)via

even )
y„odd )

(2.2)
evenl even)

( ~

=Q~ n) for n
odd / odd )

The Dirac Hamiltonian expressed in terms of

P (n) is

dimensional spin chain problem by using a set of
transformations derived from a set first found

by Jordan and Wigner. 4 The transformations used
in Ref. 1 for the U(1) model satisfy the anticom-
mutation relations of Eq. (2.1a), but cannot satis-
fy the additional relations of Eq. (2.1b) necessary
for the SU(2) model. One solution is to modify
the Jordan-Wigner transformation for the two
fermion case as follows:

(2.4a)

(2.4b)

The generalization of the transformation for N
fermions is (c(=1, . . . , N)

H = —P [ Q ~(n) (]))(n +1) —p~(n+l)$~(n)

+(]))~ (n)p„(n+1) —P~(n+1)p„(n)]

+mP (-1)"[ P~ (n)d)~(n}+ Pt (n)(f)„(n}]. (2.3)

From this expression, the one-dimensional ferm-
ion problem may be rewritten in terms of a one-

xa, (n) ~ ~ ~ a, (n)a (n) . (2 6)

The extra o, (n)'s that appear in the new trans-
formations provide some additional complexity in
the formalism. The Dirac Hamiltonian, (2.3), for
example, becomes

H =
2

+[a~(n)a„(n)a~(n+1)-a~(n+1}a„(n)a~(n)+a'„(n)a~ (n+l)a„(n+1) —a„'(n+1)a~ (n+1)a„(n)]

+m$ (-1)"[ —,'(1+a~ (n)}+—,
' (1+a„(n))]. (2.6)

U(n, n + I ) = e"& "("]= e'e& "], A (n) —=A'(n} (2.7)

where g is the coupling constant, is defined on the
link joining lattice points n and n+1. To simplif'y
the Hamiltonian and the space of states, the class
of gauges withA'=0 is chosen; the electric field
is, therefore, A and satisfies the canonical com-
mutation relations

[A(n), A(n)] = i(1/a)f)„ (2.8)

or, rewriting the commutation relations in terms
of L(n) =A(n)/g,

[e(n), L(m)] =f f)„ (2.9)

The eigenvalues of L(m) are quantized in integrals
steps 0, +1, . . . , and the operator can be repre-
sented on a space [)1)} such that

L~f)=f~f) (2.10a)

For the one-flavor model the corresponding ex-
pression is a function only of a (n) and a'(n).

The introduction of the gauge field into the theory
parallels closely the U(l) case. The gauge field

and

e']e&"] ~I&=~ I~1&. (2.10b)

The physically relevant states are drawn from the
space of gauge-invariant states. The local gauge
invariance of the physical sector of the theory
is defined by

G(n)((})=0,

where

(2.11a)

G(n) = —,/[A(n +m, -m) —]})~~(n)(})~(n)

—]})„(n)]})„(n) + constant] . (2.11b)

This constraint is analogous to the condition
& ~ E =p~+pz, where p~ and p~ are the color den-
sities of the gauge and Fermi fields, respectively,
and the constant represents the vacuum charge
density.

Since the gauge contribution is unchanged from
Ref. 1, the total Hamiltonian becomes
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H =-,'-g'ap L'(n) + —p [( v~(»)v„(»)v~ (n+1)e' "' —H.c.)+(a+(n)a~ (n+1)o'„(n+1)e'e&"' —H.c.) ]
Ff n

+mQ (-1)"[-,'(1+v~ (n)) +-,'-(1+v„(n))]. (2.12)

A renormalized operator,

2
., a =0„+y'~'V, (2.13)

where

H =g L'(n), (2.14a)

V = i+ [( v~ (n)v„(n)a~ (» + 1)e' ~ "~ —H.c.) + (v„'(n)v~ (n + 1)a„(n + 1)e' ~ "' —H.c.)]
n

+-,'p y '~'Q (-1)"(vp (n)+v„(n)),

it. =2m/g'a and y =1/g'a',

(2.14b)

(2.14c)

is more convenient for the perturbation expansions. For y«1, or large g ~ a, one can treat xV as a per-
turbation on II, . The magnitude of m/g may be varied independently from this limit.

III. VACUUM TRANSITION 1bE=y L=O V V L=O-II 0
(3.1)

The first lattice perturbation calculations con-
cern the determination of the zero-energy or vacu-
um state. The vacuum of the unperturbed Ham-
iltonian Q, is enormously degenerate since flux-
less states have unperturbed energy eigenvalue

p 0 independent of the fe r mion conf igurat ion .
To determine the vacuum, degenerate perturbation
theory is applied and the perturbation is diagonal-
ized in the degenerate subspace. When the fermion
bare mass is set equal to zero, the lowest-order
nonzero contribution is

where
~

L = 0) is a, fluxless state with an arbitrary
spin configuration. We choose the vacuum to be
the fluxless spin state that minimizes bE.

With two spins (P and n type) defined for each
lattice site, four possible spin configurations-
(in), (out), (up), and (down) (see Fig. 1)—are
possible at each site. A fluxless spin state may
be written as a linear combination of "basis" states
with one of the four spin configurations set for
each lattice site, e.g. ,

~
(site 1; (in) ), (site 2, (up) ), . . . , (site N —1;(in) ), (site N; (out) ) )

for a periodic spin chain of N links.
Using the translation and isospin symmetries

that the vacuum is expected to possess, it is pos-
sible to prove that all fluxless spin states having
these symmetries that also lie in the gauge-in-
variant (physical) sector can be written as either
a. linear combination of vacuum basis states with
only (in) or (out) configurations set for each lat-
tice site or as a single basis state with only (up)
or (down) configurations set for each site (e.g. ,

the example basis state above cannot be a vacuum
basis state because it contains both (up) and (out)
configurations):

Translational invariance in the continuum theor y
is equivalent to invariance under translations by
two spacings on the lattice, just as in Ref. 1. The
current density for the third component of isospin,
j,'(x), has the form on the lattice

j,'(n) = —,'(o~ (n) -cr„(n)j;
this operator has eigenvalues +—,

' (-—,') for (out)
((in)) configurations and zero for (up) and (down)
configurations. The charge current density, on
the other hand, has the form

(3.2a)

p spins

n spins

t t

t

(a ) ( t)) (c) (4)
FIG. 1. For the SU(2)-flavor model, there are four

spin configurations possible at each site: (a) (in), (b)
(out), (c) (up), and (d) (down) .

j'(n) =-,'(a, (n)+v„(n)), (3.2b)

which has eigenvalue +2 (-—', ) for (up) ((down)) con-
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figurations and zero for (in) and (out) configura-
tions. Since the vacuum of the lattice theory has
total charge zero and total isospin zero, (3.2a) and
(3.2b) imply that each vacuum basis state must
have an equal number of (in) and (out) sites and
an equal number of (up) and (down) sites. Since
the vacuum of the lattice theory has to be trans-
lation invariant, for every vacuum basis state in
the linear combination of basis states that form
the vacuum that has a specific configuration at
site k, there must be another vacuum basis state
in the linear combination (possibly the same basis

state) which has the same configuration at sites
k+2, +4, . . . , +(N —2). For the vacuum to be locally
gauge invariant, all vacuum basis states must have
the same charge density at each lattice site in
order that a single choice of the constant in (2.11b)
is sufficient to guarantee that G(n}(vacuum) =0.
Therefore, for a vacuum to have basis states with
any sites of nonzero charge density ((up) or (down)
configurations) and to be translation invariant,
total charge zero, and locally gauge invariant, it
must be one of two (trivial) linear combinations
of basis states:

( (site 1; (up) ), (site 2; (down) ), (site 3; (up) ), . . . , (site N; (down) ) )

~(site 1;(down)), (site 2;(up)}, (site 3;(down)), . . . , (site N;(up))).

A mixture of the two vacuums is not even an allowed vacuum because it is not gauge invariant. Qtherwise
the vacuum must be a linear combination of vacuum basis states with (out) or (in) configurations at each
lattice site. Local gauge invariance places no constraint on this vacuum since each site has zero charge
density. Thus, the vacuum is either in a subspace with (up) or (down) configurations at each lattice site
or in a subspace with (in) or (out) configurations at each site of the vacuum basis states. Q.E.D.

Since the two subspaces cannot mix to form the vacuum, the perturbation can be diagonalized separately
in the (in)-(out) and (up)-(down) subspaces and the state of minimum energy determined. Inserting the
spin expression for the kinetic energy, (2.14b), into the perturbation Hamiltonian, (3.1), one finds

4E = -y L = 0 -i 0~ (n)o„n)o~ n+1)e' "' —H.c.)
yl

+ (v„'(n)a (n+I}v„(n+1}e'o'"~—H.c.}]~ (same operator} L =0 (3.3a}

=yg ( L =0)[-1+~or, (n}v~ (n+1)+—,
'

v(n) v(n+1)

+ 2o r', (n }a „(rr )ar, (n + 1 }cr„'(n + 1 ) + 2v~ (n }cr „' (n }v~ (n + 1 )v„(n + 1 )] ~
L = 0) . (3.3b)

If
~
L = 0) is restricted to the (up)-(down) sub-

space, the last two terms of (3.3b) contribute zero.
Equation (3.3b) may then be reexpressed in terms
of a new spin operator,

v,'(n} =-,'(v~ (n) +v„(rr)}, (3.4)

which has eigenvalue v,'(n} = 2 (-—,') for (up) ((down))
configurations at site n and which has the prop-
erties of a z-component Pauli spin operator. In
terms of o,', (3.3b) has the form

&E =y L=O -1+40' n}o,' n+1) L=0 . 3 5)
n

The problem of minimizing nE in the (up)-(down)
subspace corresponds, therefore, to finding the
ground state of an Ising spin chain (for this reason,
the (up)-(down) subspace will henceforth be des-
ignated as the Ising subspace). The solution is
well known; there exist two degenerate vacuums
(related by translations of one lattice spacing) with
alternating cr' =+1 and a'= -1 [see for example

v,"(n) = —,'(a~ (n) —a„(rr}),

a'"(rr) =a,"(n}=a,'(n}a„(n),

(3.6a)

(3.6b)

where these operators have the properties of Pauli
spin--,' matrices and o,"(n) =-,' (-—,') if the configura-
tion is (in) ((out)) on site n. In terms of or",

Fig. 2(a)]. The two solutions have exactly the two

(up)-(down) configurations shown above to be
gauge invariant, total isospin zero, and total
charge zero. The existence of two solutions cor-
responds to spontaneous breaking of discrete chiral
symmetry on the lattice, as was the case for the
one-flavor Abelian gauge model. ' The energy den-
sity for the Ising ground state is E,/N =-2y, where
N is the number of lattice links.

If ~L=0) is in the (in)-(out) subspace, the last
two terms in relation (3.3b) are a nonzero con-
tribution. Equation (3.3b) may then be rewritten
in t er ms of t he spin operators
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Heisenberg

(Symm. )
,'a = const.

Ising

(SSB)

FIG. 2. Vacuum spin configuration for N =4 link chain
for (a) Ising and (b) Heisenberg subspaces. The latter is
a linear combination of N .'/[(-N) .'j vacuum basis states.

(3.3b) has the for m

M =,'r, yQ (-1)"—,', ( o~ (n) +o„(n)), (3.8)
(m,/g)

3/4

where the fa,ctor of y has been factored so that,
along the lines of o =[(m/g)/y'~'] =-constant, the
lowest-order contribution is of the same order
as the kinetic energy contribution. Since (3.8) is
of the form 2og„(-1)"o,' (n), M contributes E,/N
= +~ for the Ising vacuums (depending on whether
(up) or (down) configurations are on even-num-
bered sites) and contributes E,/cV = 0 for the Hei-
senberg vacuum.

The sum of the mass and kinetic energy contri-
butions to order y is

E,/N = (an —2)y (3.9a)

~E = L =0 -1+4cr "(n+1) o "(n) L =0 . 3 7)
n

The problem of minimizing hE in the (in)-(out)
subspace corresponds, therefore, to finding the
ground state of a Heisenberg antiferromagnetic
spin chain (the (in)-(out) subspace will therefore
be designated as the Heisenberg subspace). The
determination of the vacuum for a Heisenberg
antiferromagnet is considerably more complicated
tha, n the comparable problem for the Ising chain.
Bethe and, later, Hulthhn' ' first solved the prob-
lem and found the vacuum to be a linear combina-
tion of all vacuum basis states containing an equal
number of o,"=+1 and o," = -1 sites [see for ex-
ample, Fig. 2(b)]. The vacuum is nondegenerate,
and so is symmetric under discrete chiral trans-
formations. The energy density is a function of
N, the number of lattice sites, and as N —~ the
limit is E,/N = -(41n2) y = -2.77y.'

When ~n 10, the mass contribution to the per-
turbation Hamiltonian, V, is of the form

FIG. 3. Phase transition as a function of y =1/g a4

and ~/g is presented. n =(m/g)/(y ) = 0.77 defines
the transition line (to first order in y) between the Ising
and Heisenberg subspaces.

for the Ising vacuums, and

E,/N = ( —2.77)y (3.9b)

for the Heisenberg vacuum. The real vacuum is
the state with minimum E„which is determined

total

by the magnitude of a. . Specifically, for +&0.77,
or large m/g, the real vacuum is the spontaneous
symmetry-breaking Ising vacuum, while for a
&0.77, or small m/g-, the real vacuum is the Hei-
senberg vacuum. Figure 3 is a graphical repre-
sentation of the transition. These results have
been confirmed for spin chains of 4, 6, and 8 links

by explicitly computing E, for all possible spin0 total
configurations as a function of ~.

Results of the strong-coupling expansions in
each of the vacuum regions are presented in Secs
IV and V.

IV. WEAK-COUPLING (m ))g) LIMIT

For the Ising vacuum, each lattice site has a
configuration with P- and n-type spins parallel
[ Figs. 1(c) and 1(d)]. Since a fermion-antifermion
pair cannot be created on a single site of this kind,
a gauge-invariant excited state above the vacuum
must contain at least one flux link. The simplest
gauge-invariant excited state is formed by creating
a fermion on one site, an antifermion on a neigh-
boring site, and a, flux link connecting the two.

More precisely, the low-lying states (at zero
momentum) are generated by invariant operators
with definite isospin and parity. For example,
the lowest-lying bound-state multiplet has iso-
spin 1. andoddtotalparity (even spatial parity), so
the most local lattice construction on the Ising
vacuum is
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Ir, =r, I=)pa= —~ )=- P(;( ) „( ), ) r) '""' „( ri;) ~ r) „( ). "'"') rrr r.' ). (4))
n

The other low-lying bound-state multiplets may be
guessed similarly; they are listed in Table I ~

With the bound states determined, the calcula-
tion proceeds exactly as in Ref. 1 with three ex-
ceptions. Firstly, the o 's that appear throughout
the formalism introduce extra negative signs into
the calculation. Secondly, several new types of
diagrams appear in the expansion. Thirdly, al-
though the theory is manifestly SU(2) isospin sym-
metric, the diagrams that contribute to the I =1
elements of a given multiplet are significantly
different from those that contribute to the I = 0
element.

The last two points are illustrated by Figs. 4

and 5, where the diagrammatic conventions used
are the same as those in Ref. 1. Because p- and
n-type spins exist on the same lattice site, dia-
grams such as 4(b), 4(d), 4(e), 4(f), 5(c), and

5(h) are possible for the SU(2) problem. Note
particularly that in diagrams such as 5(c) and 5(h)
the intermediate state has a gauge field link L =2

so that the II„eigenvalue is 4+4'.. Comparing
diagrams in Figs. 4 and 5, one observes that both
the disconnected bubble diagrams and the inter-
action diagrams differ significantly for members
of the same isomultiplet. Nevertheless, it would
be a disaster if the results were not isospin sym-
metric; this, therefore, offers an important con-
sistency check on the calculated results.

Otherwise, to complete the calculations as in
Ref. 1, the energy of the vacuum and four lowest-
lying bound states can be computed and the ex-
pansion for the masses can be found by subtracting
the vacuum contribution and multiplying by g/'2y')'».

The results of calculations of the mass of the
four lowest-lying bound states for m»g are shown
in Table II. In column I, the ratio 2y' 'm„,„„„/g
is shown to second order in the expansion param-
eter y =1/g'a' (where the mass term has been
added to the unperturbed Hamiltonian since m»gj.
Although not listed separately in the table, ex-
pansions for the I, =1 and I, =0 members of I =1

TABLE I. Spin creation operators for the four lowest-lying isospin multiplets in the weak-
coupling (large m/g) limit.

State State creation operators

I PG 1-+

I3 = 1 —r'Q [ar+, (n)a„(n)a& (n+1)e' " a„(n+1)+ a&+(n+1)a„(n)e 'o(")]
n

I, =O ~ Q [(a& (n)a„(n)a&(n+1)e' }+a& (n+1)a„(n)a& (n)e '~})
n

—(o„+(n)o& (n ~1)o„(n-]-1)e' " + o„'(n]-1)op (n+1)o„(n)e ' ")]P3

I3 ———1 (Q [a„'(n)a& (n r-1)e' '"}+—a„'(n '1)a„(n)a& (n r 1)e ' ")a& (n)]
n

IPG 1+-

I3 =1 —(Q [a& (n)a„(n)a& (n+1)e' "}a„(n ' 1)—a& (n+1)a„(n)e ' "}J

—g [(a&+(n)a„{n)a~(n+1)e' " &(no+1) (n—a) &(na)e
' )

n

—(o„( )op ( +1)o„(n+1)e' ~ —o„(n 1)cyp3(n+1)a„(n)e ' ~)]

IPC p--

»Q [a+(n)a), (n+1)e' —a„+( +—1n)a„(n)a& (n+1)e '
a& (n)]

n

~+[(a& (n)a„(n)a)) (n+ 1)e'e~}+ a& (n+ 1)a„(n!a& (n)e 'e+})1

+~(T„(n)r& ('n+1)o (n+1)e' (")+ o (n+1)(T& (n+1)o'-(n)e-ie(n))

IPG p++ g [(a& (n}a„(n)a& (n+1)e' ("}—a& (n+1)a„(n)o& (n)e e~))
n

+ (o„(n)(T& (n+1)(r„(n+1)e' —&„(n+1)o& (n+1)o„(n)e ' " )]
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I

I

I

I

I

I

I

I+ () f(r
I

I I + s

(a)
(a) (b) (c)

+
I

(c)

(e)

(e)

I

I

l

I

I

(
I

FIG. 4. The diagrams that contribute to order y to the
mass spectrum for the I =1, I3=3. state. Notation
similar to Ref. 1 is used; solid lines represent p spins,
dotted lines represent n spins, and wiggly lines repre-
sent gauge links. Arrows distinguish particles (t) from
antiparticles (h).

FIG. 5. The diagrams that contribute to order y to
the mass spectrum of the I =1 ', I 3=0 state.

multiplets were calculated independently and found
to give identical results. In column II, the (I, I)
Pads approximants' to these expansions are pro-
vided.

The results of the Pads approximants for several
values of m/g are graphed in Fig. 6 as a function
of y. The conclusion to be drawn from the figure
is that, throughout the range of m/g, the mass

spectrum for a wide range of y is

I =vacuum, 1 ', 0 1' 0'' ~ ~ ~ .

The splitting between the pairs of states with op-
posite parity is much greater than the splitting
between states of the same parity. The only dia-
grams to lowest order that split two states of the

TABLE II. Results of lattice calculations in the weak-coupling (large m/g) limit for masses of low-lying multiplets.
Column I contains expansion to second order and column II shows (1,1) Pade approximations, where y=x2= 1/g4a4.

IPC 2y rrl botlftg/g

0

0+ +

{1+2&) (4+4')+(8p +36&+34)y (1+2p)(1 2 p) 2(4+4 p)+ (8 p + 28 p + 28)y

3(1+2p) (4+4 p)+(8 p +132p+130)y
3(1+2p) 2(4+4 p)+ (8 p2+60 p+ 58)y

(1+2p)

(3+2p) (4+4 p) (1+2p) 2(4 p+ 10)+y(64 p4+ 800@3+2720p2+ 3528@+1548) l

(3+2 p) (4+4 p) (1+2@)2(4 p, + 10) +y(64 @4+736 @~+2336p2+2808p+1148)~

& {1+2p)

2 2 -4 p —16 12 4

1+2 p (1+2 p) 3 (4+4 p) (1+2 p ) 2
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FIG. 6. Plots of 2y ~~~/g as a function of y for
various values of m/g. The weak-coupling limit cor-
responds to the highest set of curves. Note changes in
scale of the ordinate. Basic structure and splittings of
the mass spectrum are the same for all values of m jg
but are difficult to determine graphically (although not
numerically) for large m/g.

same parity are of the form of Fig. 5(d) or 5(e).
These diagrams are the lattice analogy of the Feyn-
man annihilation diagrams of the continuum theory.
Furthermore, the annihilation diagrams on the
lattice lead to a smaller splitting in the Pads ap-
proximants for the total parity P =+pair than for
the total parity P = -pair. These results are in
complete accord with all of Coleman's results
in Ref. 3 for the weak-coupling limit of the con-
tinuum theory.

the strong-coupling limit is considerably more
difficult than that for the weak-coupling limit
owing to the complexity of the Heisenberg vacuum.
To make matters worse, to calculate the bound-
state spectrum in the strong-coupling limit to
order y, one must understand the excitations of
the spin chain as well as the vacuum. Fortunately,
pioneering work on the lowest-lying excited states
of the Heisenberg ant if err omagnetic chain has
already been done by des Cloizeaux and Pearson. '
Using an extension of the methods of Hulthdn and
Bethe, they found the lowest-lying spin v ave states to
to be a spin-1 triplet corresponding to an isotriplet
multiplet for the SU(2)-flavor Schwinger model.
The I, =1 member of the multiplet, for example,
corresponds to a p-k pair on the same site created
by flipping v' = -1 sites to 0' =+1. The triplet's
energy {above the vacuum level} was found to be
proportional to (1/a)~sinpn~, where p is the total
momentum of the states. As a-0, the energy to
lowest order is proportiona. l to p and the lattice
states are massless. Since the states correspond
to the fermion and antifermion on the same site,
the state can only have even spatial parity or odd
total parity. Thus, as Coleman finds in Ref. 2,
the lattice theory in the strong-coupling limit
(m-0) has only one (nearly) massless isotriplet
state with I~~ = 1-'.

Coleman also finds a low-lying state with Ip
=0" in his strong-coupling analysis. In Bethe "s

analysis of the Heisenberg spin chain, he proposes
that in addition to a spin-1 triplet there exists
bound states of the spin-1 excitations. ' Recent
calculations by Endo and Ishikawa" imply that only
one bound state with spin 0 exists below the two
spin-1 wave spectrum. Such a state, which is
a parity-even bound state of two I = 1 ' waves
must be I =O'+. All other bound states created
from the Heisenberg vacuum have at least one
flux link and much greater mass.

VI. DISCUSSION

V. STRONG-COUPLING (m &&g) LIMIT

In the Heisenberg vacuum, each lattice site has
a configuration with antiparallel p- and n-type
spine [see Figs. 1(a) and (b)]. Gauge-invariant
configurations of fermion-antifermion pairs which
contain no flux links (HO=0) can be made on single
lattice sites of this type. Gauge-invariant states
consisting of a fermion-antifermion pair on neigh-
boring sites connected by a flux link are also pos-
sible but such states have &,=1 rather than 0,=0.

The calculation of the bound-state spectrum for

These calculations demonstrate that only small
technical alterations from the methods used for
the U(1) Schwinger model are necessary to carry
out high-order strong-coupling calculations for
the (1+1)-dimensional SU(2)-flavor Abelian gauge
model. However, examination of the vacuum of
the lattice theory reveals the existence of two
vacuum phases characterized by the magnitude
of m jg. Expansion about each vacuum results in
excellent qualitative agreement with conclusions
for the continuum theory in both the weak- and
strong-coupling limits. Quantitative agreement
also exists in the weak-coupling limit, but higher-
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order perturbation calculations will be necessary
in the strong-coupling limit to quantitatively com-
pare lattice results to continuum theory. Whether
or not present agreement implies that the con-
tinuum theory has a phase transition from a spon-
taneous chiral-symmetry-breaking sector to a
chiral-symmetry-preserving sector is not clear.
These and related questions are currently being
studied.
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