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Quantum field theories on a lattice: Variational methods for arbitrary coupling strengths and
the Ising model in a transverse magnetic field*
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This paper continues our studies of quantum field theories on a lattice. %e develop techniques for
computing the low-lying spectrum of a lattice Hamiltonian using a variational approach, without recourse
either to weak- or strong-coupling expansions. Our variational methods, which are relatively simple and
straightforward, are applied to the Ising model in a transverse magnetic field as well as to a free spinless
field theory. %e demonstrate their accuracy in the vicinity of a phase transition for the Ising model by
comparing with known exact solutions.

I. INTRODUCTION

Interest in the study of non-Abelian color gauge
theories has been spurred by hopes that a funda-
mental theory of strong interactions will emerge
from that class of theories. A yrimary goal in the
study of such theories is to determine whether they
confine the quarks and gluons that are their basic
degrees of freedom. To study this question one
needs an approach that does not rely on pertur
bative methods for calculating the spectrum of low-
lying physical states. This payer is the third in a
series' concerned with the development of more
general techniques applicable to problems of this
type and to the study of specific examples in order
to gain an understanding as to how well these tech-
niques work. In particular, in payers I and II we
focused upon the problem of constructing lattice
theories unitarily equivalent to cutoff continuum
theories, and we analyzed several models in the
strong-couyling limit. In this paper we develop
straightforward and relatively simple variational
methods for finding the spectrum of a lattice Ham-
iltonian without recourse either to strong- or weak-
coupling expansions. We show that these methods—
which were described and sketched out in Section
IV D of paper I—ean be applied to calculations of
basic properties with reasonable accuracy even in
the vicinity of a phase transition.

The key to the success of any attempt to apply
variational methods to the study of systems with a
large number of degrees of freedom is the ability
to make an appropriate choice of the class of trial
states. The procedure we will describe is essen-
tially an algorithm for constructing an appropriate
class of trial functions. To demonstrate this con-
structive yrocedure we will study two soluble the-
ories —free field theory and the one-space-one-
time-dimensional Ising model with a transverse ay-
plied magnetic field. We compare our variational
calculations with known properties of the exact so-

lutions, and discuss methods for systematically
imyroving upon our results. The application of
these methods to the more interesting lattice gauge
theories remains to be done.

The idea behind our constructive ayyroach is very
simyle. ' We begin by dissecting the lattice into
small blocks containing a few sites which are cou-
pled together via the gradient terms in the Ham-
iltonian. The Hamiltonian for the resulting few de-
grees of freedom problem is diagonalized and the
degrees of freedom are "thinned" by a truncation
yrocedure which amounts to keeping only an ap-
propriate set of low-lying states. An effective
Hamiltonian is then constructed by computing the
matrix elements of the original Hamiltonian in the
space of states spanned by the lowest-lying states
in each block. The process is then repeated for
this effective Hamiltonian. At each step the cou-
pling parameters of the effective Hamiltonian
change and the basic yrocedure is repeated until we
enter either a very weak or strong coupling re-
gime. As we shall see the calculation quickly
brings the Hami1tonian to a fixed form. Formally
the "thinning" of degrees of freedom at each step is
equivalent to choosing an incomplete orthonormal
set of states spanning a subspace of the Hilbert
space. Thus, the variational problem of finding
that linear combination of states which minimizes
the expectation value of II is equivalent to the pro-
blem of diagonalizing the truncated Hamiltonian ob-
tained by restricting H to this subsyace.

II. GENERAL METHOD APPLIED TO FREE FIELD THEORY

In this section we describe our general approach
to the problem of finding the ground state and low-
est-lying excited states of a lattice field theory. To
demonstrate the general yrocedure we begin by ay-
plying it to the trivial example of the field theory of
free syinless particles on a lattice in one space and
one time dimensions. We first rewrite the free
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field Hamiltonian in terms of dimensionless ca-
nonical variables [see Eq. (3.17) of 1], i.e. ,

O0O
I0 0 I 0 0

OOO

I0 0 l 0
l

r=O r= I r=O

(+I ~ ~ ~
I l0 0 0 l 0 0 l 0 ~
l l

r= I r=O r= I

~p +~/, g + gx~ x~
g=-N

(2.1)

where A '=a is the lattice spacing, L = (2K+1)/A is
the length of the lattice in a one-space-one-time-
dimensional model, and p is the mass parameter
in units of A. The gradient operator has, for sim-
plicity, been defined in terms of nearest-neighbor
differences. The exact solution of (2.1) describes
a system of noninteracting oscillators of frequency

&u„= [p'+4 sin'(-,' 0)]'I', (2.2)

n=0, ~1,+2, . . . , +N

with ground-state energy density'

r
dk[p'+4 sin'(-,'lt)]'~'.

0

Our approximate constructive technique for sol-
ving (2.1) can be described as follows:

1. Introduce creation and annihilation operators
at each lattice site j by the standard definition

FIG. 1. Notation for a one-dimensional lattice divided
into two site blocks. The block is labeled by I, and the
site in each block by ~=0, l. Each point j along the
lattice is labeled by j=2l +&.

batively —either by weak- or strong-coupling ap-
proximation methods.

The general formulation of this procedure was
presented in Sec. IV D of paper I. Its application to
(2.1) will show it to be a very accurate technique.
Specifically, we begin by dividing the lattice into
blocks of two sites apiece as shown in Fig. 1 and
label each block by the variable "E." Hence, each
point of j can be written as

j = 2E+x, where x = 0, 1.
%'e then define

x,(l) = x„, p, (l) =p„,
x,(l)=x„„, p, (l) =p„„

and rewrite H as

1
(2 )~/2 ( J+ 1) '

4P~

Pg = —&( a ~g) (ug —ug) ~

(2.4) —x, (l)x, (l)}—Q x,(E+ 1)x,(l) . (2.7)

AH=+ hp. '(E)+-'P, '(E)+-'(u'+2)[x. '(E)+x,'(E)]

where m& is an arbitrary frequency. Define the
state

(2.5)

2. Divide the lattice into blocks containing sev-
eral adjacent sites and solve for the eigenstates of
H restricted to just these (two or three) lattice
sites.

3. Make a canonical transformation on the x&,P&
for each such block and choose a trial state as a
linear combination of all the states formed from
IQ) by application of the lowest, and only the low-
est, mass oscillator for each block. Compute the
Hamiltonian in this restricted set of states.

4. Repeat this process on the truncated problem
by once again coupling adjacent blocks.

5. Iterate until the successive rescaling of eigen-
frequencies leads either to a very-weak- or strong-
coupbng regime in which the remaining coupling
terms between neighboring blocks that arise from
the gradient term of (2.1) can be treated pertur-

Aff = g[2P,'(E)+-'(E '+2)x, '(E)

+-'P '(E)+-'(V'+ l)x.'(E)]

——,
' Q [x,(l+1)+x (l+1)][x (l) —x,(l)] (2.9)

Our basic approximation is to freeze out the
higher-frequency oscillators x,(l) in each block l by
choosing as our smaller space of trial states only
those states Ig) generated by applying arbitrary
powers ofp (l) and x„(l) to ~A). This amounts to re-
placing all powers of p.(l) and x,(l) by their ground-
state expectation values. Doing this we obtain a
truncated Hamiltonian

.Our next step is to define variables x, (l) and x (l)
so that the part of H made uy of operators refer-
ring to a single block / is diagonal, i.e.,

x,(l) =- [x.(l) —x, (E)]/~&, P,(l) =- [P.(E) —P, (E)]/~&,

(2.8)

x (E) -=Ixo(l)+ x, (l )J/v 2, P (E) =- [P.(l) +P, (E)]/~&

In terms of these variables H becomes

—H'"'(1) = g[-,' (y '+2)'~'+-,'p '(l)+-,' (p, '+ l)x '(l)]- —,
' gx (l)x (l+1) .

2

(2.10)
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Iterating this procedure (n+ I) times one obtains a truncated Hamiltonian of the form

H'—"'(n+ I) =Q[d +-'p (21')+-'(o2(n+1)x 2(I')]-Q x (I'+1)x (I')
~t n+I

(2.11)

d„., =2d„+-2'(P2+3/2")"2, d, =-0

~(n) = [p2+(~2)" '1'~2, for n~ 1

~.= (2)",

(2.12)

and I' denotes the variable for the (n+1)th iterated
block. Clearly, for large n, H'"'(n+ I) becomes a
Hamiltonian for which the last, or gradient term,
is multiplied by a factor of 1/2". Hence, it can be
treated as a small perturbation on the single-site
terms which describe oscillators of mass - p. . In
this way we see that the n-~ limit evidently des-
cribes a theory of particles of "ma,ss" p with
ground-state energy density (henceforth expressed
in units of A)

1
e, (p, ') =- lim „d„. (2.13)

The prediction of the mass p. of the single-particle
states for this system is exactly correct. It is
easy to see from (2.11) that for p, 2» l, the ground-
state energy approaches the exact value of e,(p2
»1) =( —,

'
)p, in accord with (2.3), whereas for p2=0,

e,(0) = 0.6'I, which is a reasonably good approxi-
mation to the exact result e,(0)=2/v—= 0.64 in the
p'= 0 limit. This general idea of grouping lattice
sites into blocks then thinning out the number of
states per block is the foundation of our method. '

The same technique can also be applied just as
readily if the nearest-neighbor approximation to
the gradient operator on the lattice is replaced by
the form constructed in I [see (3.10)], which makes
the lattice and cutoff versions of the free field the-
ory isomoryhie. This introduces long-range inter-
actions [see Eqs. (3.10)-(3.12) in I.], viz. , the grad-
1ent term becomes

(2.14)

with

D (j }= v2/3 for j = 0

for jw0
2(-)' (2.15)

in the N- ~ limit. In place of (2.2) and (2.3) we ob-
tain the exact cutoff frequencies

(~
2 + )P)1/ 2

and ground-state energy density

dk(g'+ k')'~2.1
2m

In this case we can also apply the truncation pro-
cedure just described even though the gradient op-
erator couples distant lattice sites. The results as
derived in the appendix are similar to what we
found above for (2.1). The correct single-particle
mass is found, as is also the ground-state energy
for p2»1. In the massless limit we calculate i (0)
= 0.84, which is larger than the exact result e, = v/4
= 0.785 by 7/o.

Evidently this simple procedure of diagonalizing
the two-site Hamiltonian and keeping only the states
generated by the lowest "mass" oscillators can be
further improved on. In the next section we apply
this technique to a spin lattice problem which dif-
fers from (2.1}in that there are only a finite num-
ber of eigenstates at each lattice site. We study
the accuracy of this method in this example by
comparing with known exact solutions of the model,
and we improve its accuracy by a simple general-
ization of the variational procedure in See. IV.

III. TRANSVERSE ISING MODFI„:
A SIMPLE TRUNCATION PROCEDURE

We begin this section by considering the one-
space-one-time Ising model in a transverse mag-
netic field and adopting an intuitive and simple
truncation procedure. This is an interesting ex-
amyle for testing our method for three reasons:

1. The known exact solution of this model ex-
hibits a phase transition so we can measure the
predictions of our method against the exactly com-
puted critical indices and transition temperature.

2. There are only a finite number of states for
the syin degree of freedom at each lattice site in
common with theories of spin- —,

' particles such as
quar ks.

3. The simple truncation yrocedure for thinning
the degrees of freedom to be discussed in this sec-
tion is very different from the free field case since
there are just two eigenstates at each lattice site
instead of an infinite sequence of oscillator states.

The explicit form of the Hamiltonian for this
model is written in terms of the usual Pauli mat-
rices

1
[2 &.o.(j)l —g [n.o.(j+ I) o.(j)l. (3.1)

1

Before studying (3.1) for arbitrary constants e, and
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FIG. 2. One and two kinklike excitations on the lattice.
These, rather than single-particle-like excitations,
are the low-lying configurations in the "weak-coupling"
limit, &p j&p 0, of Eq. (3.1).

&, let us make some observations about limiting
cases. In the strong-coupling limit, n, /eo-0, (3.1)
describes an assembly of noninteracting spins that
all line up with spin down in the nondegenerate
ground state

(3.2)

of energy density (in units of A) 8,(n, /e, -0)=-~e,.
The particlelike excitations lie+ &0 above the ground
state for each site excited to the spin-up configu-
ration, (0')&.

In the opposite, or weak-coupling extreme, e,/
&,-0, the eigenstates

(3.3)

(3.4)

diagonalize the Hamiltonian. The ground state is
doubly degenerate, since it is formed as a product
of states (3.3) at each site, or all states (3.4) at
each site. For each "wall" between two adjacent
sites, one formed as (3.3) and the other reversed
as (3.4), there is an excitation of +2K, units of en-
ergy. In this extreme the excitations are kinklike
as illustrated by Fig. 2. These low-lying excit-
ations in the weak-coupling limit correspond to col-
lective "kink" states rather than single-particle ex-
citations.

From a study of the exact H in (3.1) it is known'

that a second-order phase transition occurs be-
tween the nondegenerate ground state (3.2) and the
degenerate configurations (3.3) and (3.4). The tran-
sition occurs when &p 2&p The behavior of the or-
der parameter, or "magnetization, " in this model
is given by

a suitable trial state by the iterative procedure of
coupling small spin blocks, or boxes, containing
neighboring lattice sites, diagonalizing the "box"
Hamiltonian, and dropping all but a subset of the
low-lying eigenstates with which to form a block
basis for the truncated Hamiltonian. We then it-
erate the procedure. The simplest application of
this procedure to (3.1) is to form blocks containing
just two lattice sites and 2'= 4 eigenstates which we
d termine exactly. We then discard two of these
eigenstates retaining just the lowest two states
which will be mixed together when we add back in
the terms in (3.1) linking different boxes. In terms
of these two states we construct a new effective
truncated Hamiltonian of the same form and con-
tinue the iterative process. We can think of this
procedure as successively eliminating higher-mo-
mentum states from the problem. Hence the series
of truncated Hamiltonians describes the physics of
low- momentum states alone.

To begin, we note that within one block of two ad-
jacent sites in (3.1) there are four independent
states which we denote by

I
44&,

I
&0&,

I
44&, and

tt&, where
I

~~& =
I

~&~ I4&2, etc. The problem of
diagonalizing the two-site Hamiltonian reduces sim-
ply to one of diagonalizing two 2 && 2 matrices, since
Itt& mixes only with Itf&, and I0t& with Ikt&. The
eigenstates and eigenvalues are simply found and
are given in Table I. Step (i) of our general pro-
cedure will be to choose this set of four eigenstates
as the new orthonormal system which we will use to
construct a basis for H. Step (ii), the thinning-out
procedure, is simply accomplished by retaining
only the two lowest-energy states in Table I for
each box when we add back the terms linking dif-
ferent boxes in (3.1). It is reasonable to expect
that the most important part of the true ground
state will be in the subspace spanned by these two
states in each box. In order to implement this ap-
proximation we need only construct the truncated
or effective Hamiltonian for this choice of trial
states and see if we can solve it.

To compute H'"' we label each two-site box by an
integer "P" and divide the Hamiltonian into two
parts, H, and H, . H, contains only those terms in
(3.1) which refer to single boxes and H, contains
the remaining interaction terms in (3.1) which cou-
ple sites in adjacent boxes, i.e. ,

(3.6)

(erg=0 for ' &1.
2&0

(3 5)

Keeping these exact results in mind, let us now

apply our iterative variational procedure to (3.1)
for arbitrary coupling (e,/&, ). Again, we construct

where o,(p, e) operates on the spin in box p and at
site a = 0, 1 within each box. In keeping with our
approximation of retaining only the two lowest
states in each box, the truncated H,'"' can be writ-
ten as a sum of 2 && 2 matrices operating on the two
states we keep for each box. In particular, refer-
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TABLE I. The eigenstates and eigenvalues for the turbo-site spin problem.

1
(I ») +(2tI »)) '—=

I t ))
(1+g 02)&/2

(I »)+ I »)) =-
I t'))

-k{}+no )2 &/2

Energy
relative to
10%'est state

«0 +&o ) -&02 t/2

(I») It()) +&0

+ ( 2+ ~ 2)f/2

k 2+g 2)l/2+~

2 ~ 2)i/2

[(~ 2+ g 2)i/2 ~g/~

ring to Table I we see that H', "' can be written as

l(
ff(trt !

~ 2+~2 j/2

(3 'I)

(pt(p+ I) lo„(p+1,0)l(II0(p+I)& = (,),/, ,

(3.14}

which is identical with (3.12). It follows from this
that for "j"in the pth box, and for both cases e=O
and l,

The eigenstates of (3.V} can be written as yroducts
over boxes of the two lowest eigenstates in Table I,

(tp) y I +Go
(2)

[2(1 2)]1/2 ar(P)

(3.15)
l e.)

(3.8)

(2+ 1) =
[ ( pw]1/2 & (p21+)
2 j+Qo )

l4 ( )&=0 P (1 +a 2)1/2 (3.9)

Hence the interaction (3.6) can now be reexpressed
in terms of the truncated basis (3.8) by evaluating
its matrix elements for flipping one "spin" in each
of two adjacent boxes. To compute this we take the
matrix element of o,(p, 1) between the states

Thus we have reduced the problem of finding the
best upper bound which one can obtain by choosing
trial states from the set of states spanned by for-
ming all possible tensor products of the lowest two
states in Table I, to the problem of diagonalizing a
new Hamiltonian, O'"'. Since our truncation pro-
cedure retained just two states per box we again
have a spin form for the truncated Hamiltonian.
H'"' has exactly the same form as the original
Hamiltonian but different coefficients:

The actual computation is quite trivial:

(3.10) 1 0 1 0)H(tr) g & (p) 1

0 1 0-lj

&.(»'}lt. (p)& =
1 ~ ./. (I «&+a. I&»)2 (3 ") fo 11t 0 ll

I(p) l(p + 1) (3 18)
Oj 1 0/

(1+a,)
((I t(p) lor(pt 1) le0(p)&= {

',),/, ~

Similarly {~ 2+ ~ 2)1/2
(3.17}

(1 (p+ I 0) l40(p+ I)& =
1 2 1/2 ( l

~~&+a
l
~t&)

0

(3.13)
n0(1+ a,)'
2(1+a,')
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At this point we face one of two possibilities.
Either the values of E, and &, are such that we can
treat the resulting effective Hamiltonian H'~'~(1) by
perturbation theory for e, /D, & 1 or e, /D, &1, or we
may reyeat the same procedure that we just went
through, but this time combining neighboring pairs
of blocks p in the Hamiltonian H'"' and thereby in-
cluding additional interaction terms in a new basis
to which we again apply the same state-thinning
steps as in (3.6) to (3.16). One readily sees in the
comparison of (3.16) with the original (3.1) that
each successive restriction of our class of trial-
wave functions by this procedure leads us to a new
effective Hamiltonian of the same form as the or-
iginal Hamiltonian, and with the coefficients of the
effective Hamiltonian given by (3.17) in terms of the
coefficients found in the preceding step of the cal-
culation.

The general result is that after "n" successive
truncations our variational problem reduces to the
yroblem of diagonalizing the effective lattice Ham-
iltonian

where

/I 0) f 1 0
I

+-.'~„l
io Ilq (0 -I p

/01(01)
"41 O, (I 0/(, „) (3.18)

e„„=[e„(1—a„') —&„(I—a„)']/(I+a„'),

(1+a„)'
(I+a )

(3.19)

e „(1—a„') + &„(I+ a„)'
n+1 2(l +g 2)

d„„»c,+ 2d„, do
——Oe

Clearly, each step of our iteration procedure in-
cludes additional interaction terms between adja-
cent lattice sites in H', "'(n), leaving fewer in the
remaining H, (n). This is illustrated in Fig. 3. It is
hoped that, as in the free field theory example of
the preceding section, at some state of this process
one of the H„'"'s will prove to have a ratio of e„/&„
which is solvable or can be handled in perturbation
theory. We borrow from Wilson and KadanofP and
call the process of generating a new effective Ham-
iltonian from the one which was obtained in a pre-
vious step a renormalization- grouy transformation.
The recursion relations given by (3.18) and (3.19),
which define the parameters in H„'"' obtained from

I ~ ~ I ~ ~ I ~ ~ I ~ ~
I I I

I Hp(0) I I

I

I

Hp( I ) I

I ~l
H~(Z)

I ~ ~ I ~ ~
I ~ I ~

I

I

I

I

I ~ ~ I ~ ~ I ~ ~ I ~ ~ I

I I I

I

I I

I

I I

I
I

I I

I

I

I

I

~l
H2(4)

FIG. 3. Interaction terms between adjacent lattice
sites are indicated together with the iteration order, n,
in which they are included in B2(&) in Eq. (3.6) .

(3.20)

The Hamiltonian (3.1) depends only on the ratio
(e/&) up to a scale factor; hence (3.19) gives y„„
as a function of y„alone:

2 [(1+ y„')' ' —I ]{I—2y„[(1+ y ') ' ~ ' —y ))
[1+(1+y„')'~' —y„]'

=F(y.).
We need only study the function defined by

(3.21)

(3.22)

in order to see if y„=e„/4„ increases or decreases
with each iteration and see what it looks like for all

successive iterations, will be referred to—for want
of a better name —as renormalization-group equa-
tions.

Analyzing the renormalization-group equations.
In the preceding discussion we reduced the problem
of constructing a set of

l g„}'s by means of a, suc-
cessive thinning-out process to the equivalent yro-
blem of computing a series of renormalization-
grouy transformations on the coefficients of an ef-
fective Hamiltonian. In order to extract all of the
information contained in (3.18) and (3.19) the re-
cursion relations must be studied numerically.
However, there are several points which can be un-
derstood directly. First, we note that both
(Co=0, &o arbitrary) and (eo arbitrary, no=0) are
fixed points of the renormalization-group trans-
formation since in either case E„=&, and &„=&,for
all "n." In fact, we have already seen that both of
these cases can be solved exactly; and it is easy to
convince oneself that our algorithm for constructing
the ground-state wave function constructs the exact
eigenstate for these two limiting cases. Second, we
observe that a great deal of information can be ex-
tracted without comyletely solving the renormal-
ization-group equations if we know whether the ra-
tio e„/&„ increases or decreases with successive
iterations.

To study this we define
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)) R(y)

y =(«~)

FIG. 4. R(y) in Eq. (3.22) is plotted schematically vs
y = &/4 showing the three fixed points at y = 0, 2.553, and

y. R(y) is plotted schematically in Fig. 4, and its
general shape yields the following useful infor-
mation. A "fixed point" of the transformation oc-
curs at values of & and & which reproduce them-
selves under the renormalization- group trans-
formation, i.e. , for R(y) =R(e/&) =0. There is al-
so a fixed point if e/n= ~ and R(~) &0 so that this
value cannot be reduced. Hence Fig. 4. shows that
there are three fixed points for our transformation,
namely e/a =0, e/&= ~, and e/&=2. 55348456. . . .
Actually the condition R(y) = 0 only requires that the
ratio (u/a) is unchanged by the iteration, and so the
Hamiltonian may change by an overall scale factor
at such a point if &„„=X&„and &„„=X&„. As we
have already seen y=0 and y=~ are true fixed
points of (3.18) and (3.19). A more careful analysis
shows that y, = 2.55. . . is a point at which the Ham-
iltonian is reproduced uy to a scale factor X(y,),
which is another critical constant of the theory.

There is additional qualitative information which
can be extracted from R(y). In particular, R(y) &0
imylies that the ratio (e/&) =y decreases for that
iteration and so the new (e'/&') lies to the left of
the y we started with. Since, as shown in Fig. 4,
R(y) is negative for all y&y, we see that if we start
at any point in this range, successive iterations of
our truncation procedure will drive us to a form
for the effective Hamiltonian which we have studied
in weak-coupling perturbation theory. On the other
hand, for y &y, successive iterations drive us to
y=~ since, in this case, R(y)&0. This implies
e/»& 1, which is the strong-couyling limit of the
Hamiltonian which we have also studied. ' Hence
those theories described by (3.1) for which the in-
itial y&y, are theories with a degenerate ground
state and spontaneously broken symmetry. On the
other hand, for y &y, we have a unique ground
state. Clearly, y, is the point at which the nature
of the ground state changes, and so y, is the cri-
tical Point of this theory.

The result y, = 2.55348. . . which is obtained from
our simple procedure is not far from the exact

(3.24}

Hence in successive transformations we find that

/0 I)
[o (j)]tutu truce — { c &/n

I

&I oj
/0 I )

=(:.')"'i .) (3.25)

We conclude therefore that if &„-=lim„„&„, the
order parameter for a theory such that y, = zc/&c
&y, is given by

(3.26)

Explicit numerical iteration of (3.18) and (3.19)
gives the following form as a very good fit to the
order parameter:

(3.27)

with y, =2.55348456. . . . The agreement of (3.27)

transition point y,'""= 2. The fixed points y =0 and

y = ~ are the stable fixed points of this renormal-
ization-group transformation, and the fixed point at
y = y, is an unstable fixed point. The fact that at
y = y, the Hamiltonian continues to reproduce itself
up to a scale factor says that at this critical point
the physics going on at different length scales is
essentially the same.

There is still more information to be gleaned
from the recursion relations in (3.18)-(3.21}. In
particular, these relations allow us to compute &„
and &„ separately. If one examines the result of it-
erating (3.18)-(3.21) one finds that for initial val-
ues, e,/nc & y„ the successive renormalization-
group transformations lead to lim„„&„=0 and

lim„„n„=n„(ec/&,) 00, whereas for (e,/nc) &y„
lim„„e„=C„(ec/nc) uc0 and lim„„n„=0.

We can also calculate the order yarameter (o,(j))
which can have a nonvanishing ground-state expec-
tation value when y &y, and the ground state is dou-
bly degenerate. At each step of the iteration o„(j)
will connect the two lowest states in Table I with
one another since g„ flips the spin it one site.
Therefore we need only calculate

»m &4" Ia.(~) I|("&
=- &o (j)& (3.23)

N~ ao

Going back to the discussion leading to (3.19) we
see that because o„'"'(j) is a purely off-diagonal 2
x 2 matrix, calculating Q "c'I&r„(j}Ig',"'& is the same
as computing

/0 I)
hi|st truce ( + 1)

[2(i+a n)]~In ( I 0 j



1776 DRE I, L, WEINSTEIN, AND YANKIELOWICZ

IV. A MORE SOPHISTICATED ALGORITHM

The key point to be made in this section is that
our variational technique can be systematically im-
proved upon and the procedure for implementing
this methodically is not much more difficult than
the original naive procedure.

We will find that we can significantly imyrove the
critical exponent (by a factor of 2) while moving the
critical point only very slightly further away from
the exact value. We also make a dramatic im-
provement in the general behavior of the ground-
state ener y. In particular, we find that h„(y)pos-
sesses a singularity in its second derivative at the
critical point —a result which cannot be obtained
from the preceding more naive calculation.

To begin, let us note that there are in fact two
distinctly different pieces to our algorithm, both
susceptible to change and improvement. First, we
committed ourselves to grouping lattice sites into
boxes containing two sites each. We then con-
structed "box states" and thinned out our complete
set by throwing away two out of the foux possible
states per box. One simple way to generalize this
approach would be by grouping sites into larger
boxes and by keeping more states. However, for
now let us assume that this part of our procedure
will be left unmodified, so that successive trun-
cations of our space of trial wave functions shall
always lead to an effective Hamiltonian of the same
form as the original one. Instead we turn to the
question of improving upon our algorithn~ for throw-

ing away states.
There are four states for a two-site box and these

may be divided into two classes:
~

i0&,
~

0t& and

~

4f&,
~

t 0&, which are even and odd eigenstates, re-
spectively, of the unitary transformation

, . m
U = exp i —go, (j) (4 1)

under which the Hamiltonian (3.1) is invariant.
Whatever truncation procedure we employ in sel-
ecting just two of these four states in thinning the
degrees of freedom, we will want to choose one
state from each of these two classes. This is be-

with the exact result [see (3.5)]

(o„&,„„,( y) = [1 —(-.' y)' j'""
is not too bad considering the simplicity of this cal-
culation and the crudity of our approximation.

We now can ask what it takes to do better, par-
ticularly for the critical index, bymodifyingour
truncation algorithm. In the next section we show
how a simple modification of our general approach
does in fact produce a. significant improvement in
these results.

cause the box-box interaction terms being seq-
uentially added to H'"' by our iterative procedure
link only the even and odd states under U to one an-
other, i.e. , o„(j) flips one spin only and is odd un-
der U. The question is which state to choose from
each class.

In order not to destroy the reflection symmetry
of the theory we choose for the odd eigenstate under
U the symmetric combination identical with Table I,

~4, &= ~ (~&&&+ ~&&&). (4.2)

For the even eigenstate we generalize the con-
struction in the preceding section by writing

~
i/J g = [I, , /, ( [

4 4& + a (6, &)
~

0 0& ) . (4.3)

Equation (4.3) has the same form as before, but we
shall now choose the coefficient a(&, n) variationally
by minimizing the ground-state energy after a fixed
(large) number of iterations rather than by simply
diagonalizing the 2 && 2 box Hamiltonian in each suc-
cessive step. This procedure is computationally
feasible as a result of an important observation by
Pearson of Fermilab, who noted that on the
basis of (3.19) we can choose a(e, n) as a function
of the ratio (e/n) alone. This is equivalent to the
statement that the overall scale of the Hamiltonian
does not matter for our analysis.

Using (4.2) and (4.3) we can carry out the renor-
malization-grouy transformation and repeat pre-
cisely the same steps leading to the earlier result
(3.18) and (3.19) with one single difference. The
coefficient a(e/&) is now no longer given after the
nth iteration as expressed in (3.19), but a„(&„/n„)
remains free to be determined variationally by
minimizing the ground-state eigenvalue of the ef-
fective truncated lattice Hamiltonian after a suit-
able number of iterations.

In order to give a more explicit formulation of
this idea we note from the last of Eqs. (3.19) that
the term in the Hamiltonian proportional to d„„in-
creases by a power of 2 for each iteration in con-
trast to the behavior of E„and &„. Hence, for N

sufficiently large this term swamps the remainder
of the Hamiltonian. This divergence in the coef-
ficient of the unit matrix is just the renormal-
ization-group transformation's way of telling us
that translation invariance of the ground state im-
plies that its energy is proportional to the volume
of the lattice times a finite number, S„which is
the ground-state energy density. Since each yoint
of the effective Nth lattice is 2" points in the or-
iginal lattice, the energy density is the limit



16 QUANTUM FIELD THEORIES ON A LATTICE:. . . l777
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Exact—.—Variational
Renorm. Group

—l.4
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l
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I

—I.8

-2.0

y =(e/6)

FIG. 5. Comparison of the ground-state energy density
as a function of y for the exact calculation and for our
approximate variational calculation using (4.5).

FIG. 6. Comparison of the order parameter «„(yj) vs
y for the exact and approximate variational calculations.

3 jo. This is a significant improvement over the
naive calculation. In Fig. 6 we compare our com-
putation of the order parameter (ag with the exact
answer. As shown, the critical value of e/& —= 2.75,
which is somewhat further from the exact value of
2 than we found via our naive calculation that gave
2.55. The critical index, however, is improved by
a factor of =2 as seen from the accurate power-law
fit to (og:

or, from (3.19),

c„8,= lim (4.4)

In order to actually implement this procedure we
perform a straightforward numerical calculation
using a simple variational guess for a(e/&) that
meets its known limiting values for &/&-0 and

A convenient parametrization in terms of two
parameters p and u is

( ( )
w ) —tanh[(e'/IL)p —I]

I ( 5)
4 1 —tanh( —I)

This choice automatically satisfies the limits ex-
plored in Sec. III:

a-1 for c/&-0,
a —0 for &/& —~.

We then minimize the ground-state energy density
(4.4} by varying the two free parameters p and u in

(4.5} and iterating to N= 100 which gives us h, to
an accuracy of roughly one part in 2"'.

In Fig. 5 we show a comparison of our calculation
of the ground-state energy density to the exact an-
swer. Values of e/n smaller than 1 and greater
than 4 are suppressed because for these regions
agreement is much better than one part in 10'. Ex-
amination of these curves shows that our worst dis-
agreement with the exact answer is on the order of

CU

C)

CU

I

—Exact
—.—Variational

Renorrn.
Group

FIG. 7. Comparison of singularities in the second
derivative of the ground-state energy density vs y for
the exact and approximate variational calculations.

Finally we also see in Fig. 7 that our relatively
simple variational approach reproduces the sing-
ularity in s'(ground-state energy density) jsy'
which occurs at the critical point. This is quite a
subtle property of the theory which was missed by
our original naive renormalization- group procedure
described in Sec. III.

One can carry these methods further, in parti-
cular, by working with larger blocks comprising
three or more sites and/or by retaining more
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states in the process of thinning the degrees of
freedom, and by introducing more detailed trial
functions than (4.5) with more than two parameters.
A program of such calculations using more com-
plex algorithms in our renormalization- group vari-
ational approach is in progress. ' Those calcu-
lations already completed further improve the ag-
reement between our results and the known exact
solution and will be reported later. Having already
demonstrated the power of this approach for de-
ducing the basic features of a theory that cannot be
studied perturbatively, we are at this time pri-
marily interested in extending its application to
fermions (e.g. , quark theories) and gauge models
as well as to higher-dimensional lattices. '

V. SUMMARY AND FUTURE DIRECTIONS

ples of simple forms for R(y) are given in Figs.
8(a)—8(c) and lead to different conclusions about
the theories they are assumed to characterize.

In Fig. 8(a) we see that R(y) ~ 0 for all values of
0 =y =". If a theory has this form for R(y) we can
conclude two things. First, the points y = 0 and

y = ~ are the only fixed points of the theory. The
Hamiltonian at y = 0, i.e. , zero coupling constant,
is a "free field theory, " and can presumably be
solved exactly. The y = ~ Hamiltonian becomes
the single- site Schrodinger problem with neglect
of the gradient terms. Second, we observe that
if we start at some finite value of y successive
iterations drive us to larger value of y, i.e.
R(y) &0. Eventually after a finite number of itera-
tions our problem can be studied by treating the
gradient terms a.s a, perturbation on the single-site

In this paper we have demonstrated how one can
study —by variational methods and without recourse
to perturbation expansions —a lattice field theory
formulated by imposing momentum and volume cut-
offs on a local continuum field theory. Our prin-
cipal goal was to show that the problem of finding
a good basis for constructing such trial-wave func-
tions can be converted to a. renormalization-group
calculation in which the renormalization group it-
self is to be determined by means of the variational
procedure. In effect, the only choices needed for
such a calculation are the way in which to group
single sites into blocks of sites and the assumption
of how many states to keep at each truncation.
Having constructed this equivalent renormalization-
group transformation, we then study what happens
to the form of the truncated or effective Hamil-
tonian as we successively thin out our family of
linear trial-wave functions. P. s we saw in the two

specific examples of the Ising model and free field
theory, the key first point to understand in these
transformations is what happens to the strength of
the gradient (site-site recoupling) terms relative
to the potential (single-site) terms in the Hami-
tonlan.

More generally, it proves useful to study the
function R(y) which gives the change in the ratio
of the potential to the gradient terms after a finite
number of iterations, since, as we saw in our
specific examples, one can learn a great deal
about qualitative features of a theory from this
information alone. Suppose for illustrative pur-
poses„we assume that there is only one single-
site, or potential, coupling constant in a theory.
Then, defi. ning y to be the ratio of the strength of
the single-site coupling to the gradient term, we
can plot the general form of the function R(y)
= (change of y in finite number of iterations) as de-
fined in (3.22), viz. , R(y„) =y„„—y„. A few exam-

|R(y)

(0)

J(R(y )

Y

(b)

JiR(y)

(c)

Y

FIG. 8. These figures show different behaviors for
A(y), the ratio of the single-site (binding) to the gradient
(kinetic energy) terms in the Hamiltonian with successive
steps of iteration, i.e., R(y~) =—yfI+&-y~ vsy~ =(&/&)~. In

(a) R(y) monotonically increases corresponding to a theory
whose long wavelength (low-energy) behavior is given by
the strong-coupling limit y ~ but whose short-distance
behavior starting at y «1 is asymptotically free. In (b)
R(y) is monotonically decreasing corresponding to a
theory that is asymptotically free at low energy and
large distances, i.e. , infrared stable. (c) Describes a
theory with a finite critical point such that one is driven
to strong- or weak-coupling limits depending on whether
the bare coupling is yo &y or yo &y& respectively.
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terms .Hence, in any theory for which R(y) &0 we
can conclude that the low-energy (or long-wave-
length) physics is described by an effectively
strong-coupling constant Hamiltonian. It follows
from this discussion that the mass gap in such a
theory will be given by calculating the gap between
the first two eigenstates of the effective single-
site Schrodinger problem. The gap is thus a func-
tion of the effective single-site coupling g„, where
the subscript denotes the many itex'ations N» 1 to
reach the strong-coupling behavior. In general,
since the scale of H is set by the cutoff A, this
means that the lowest mass gap in the theory will
be =Ag„. However, the scale of physical masses
should be negligible with respect to the maximum
momentum A if we are to retain practical I orentz
invariance for the low-lying eigenstates in spite of
our cutoff procedure. Therefore we are only in-
terested in theories for which g„«& I, or in other
words, g„A finite (and perhaps =I GeV).

Generally the Hamiltonian at a fixed point repro-
duces itself up to a scale factor p, and after N

iterations the overall scale of II~ is Ap". Since
this should be finite (=I GeV) this suggests that the
question of the practical relativistic invariance of
a theory for which R(y) behaves as in Fig. 8(a) can
be settled by computing the scale parameter p in
the y =0 limit. If we find p & l then we can take the
cutoff A —~ and still keep the masses of the lowest
states finite if we choose the original bare coupling
constant g, to tend appropriately to zero as a func-
tion of increasing A. This is an example of a
theory whose short-distance behavior is "free" but
whose long wavelength behavior is not.

If we next look at R(y) for Fig. 8(b) we come up
with the opposite conclusion. If R(y)&0 each suc-
cessive set of N iterations will make it smaller.
Hence the large wavelength or low-energy physics
of this theory is given by weak-coupling perturba-
tion theory, whereas the single-site or short-dis-
tance behavior is governed by a strong-coupling
constant.

Figure 8(c) tells us that the two different cases
can occur depending upon the starting value for
y, i.e. , whether y, &y, or y, &y, . This is just the
form of R(y) calculated for our Ising model in Fig.
4 and one can refer back to the exact solution of
this theory' to see how an effectively relativistic
theory emerges.

The use of the function R(y) to catalog types of
theox'ies has its analog in the study of the renor-
ma, lization-group equations in momentum space,
where one encounters the well-known 8(g) function
in tex ms of which the asymptotic behaviors of field
theories are described. Both functions, p(g) and

R(y), describe the change in coupling constant
(g or y) as we change the scale of distance in the

FIG. 9. Standard renormalization-group results for
the P(k, } function corresponding to asymptotically free
(a) and infrared-stable (b) theories.

» l ~I»»l» l»
I D(I) I D(I) l
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I D(e)
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I

I

I
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FIG. 10. Pattern of coupling of different lattice sites
using the long-range gradient as defined in Eqs. (2.1+
and (2.15).

theory. The two functions are complementary to
one another in that we have introduced R(y) here in
coordinate space, whereas 9(g) normally appears
in the momentum-space analysis of the renormali-
zation-group equations. In our renormalization-
group procedure on a lattice we build larger and
lax"ger blocks at each state of the calculation so
that we are studying the behavior of the theory at
lower and lower momenta. %hen working in mo-
mentum space one normally studies the renor-
malization-group equations by scaling up the xno-

menta to higher and higher values at each stage,
and correspondingly to smaller and smaller values
of the underlying lattice spacing. In our approach
Fig. 8(a) describes a theory which is asymptotically
free (high moments) and Fig. 8(b) describes one
that is infrared-stable. The P function has just the
complementary behavior as illustrated by Figs. 9
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for asymptotically free and infrared- stable theo-
ries.

In our preceding papers' we have systematically
studied strong-coupling limiting behavior for lattice
theories. Their relevance is clear in the light of
the above discussion. Our next task i,s to apply our
variational renormalization-group approach to fer-
mion and gauge models and to verify in particular
if asymptotically free color gauge theories satisfy
the folklore based on continuum perturbation theo-

ry, i.e. , asymptotic freedom at short distances
and color confinement at large distances.
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APPENDIX

%'e sketch here the procedure of Sec. II applied to the free fieM Hamiltonian transcribed to a lattice using
(2.14) and (2.15) for the gradient. In place of (2.1) we have

(Al)H=A Q (2pq'+ —2[p' +D( 0)]xq'] +A Q D(j, —j,)xq xq .
j dj &/2

Dividing the lattice into two-site blocks and repeating the steps leading from (2.V} to (2.10) we transform
(Al) into

—H'"'(1) = Q8[ '+D(o) —D(1)]"'+9 '(I)+2[v'+D(0)+D(1)]x '(I))

+gQ Q Q D(2~+x„~ r, )x,(l)-x (I+p). (A2)
p&1 Fd) ~ 1

We can now iterate this procedure as we did following (2.10). The ground-state energy is built up following
the pattern indicated in Fig. 10—i.e. ,

So(p ) =(2[@.'+D(0) —D(l)]' '32+(2Q'+D(0}+D(l) —~[D(l)+2D(2)+D(3)]]'~')/2'

+(-,'-Q'+D(0)+D(1)+ —,'[D(l)+2D(2)+D(3)]
—(I/2') [D(1)+ 2D(2) + 3D(3) + 4D(4) + 3D(5}+2D(6) + D(7)]j'~'/2' +. ~ ~ (A3)

The numerically summed series (A3) leads to the values quoted in the text.
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Equation (2.3) is the exact continuum cutoff theor'y re-
sult for p, »x and is reduced by a factor of 8/x2=0. 8

from the exact result as p 0 because of the approxima-
tion of the gradient operator by nearest-neighbor
differences. In I the lattice gradient leading to an ex-
act free-particle dispersion relation, u&=(p2+A2) ~,
was introduced and can be used here also as we shall
describe shortly.

As is generally known the Ising model Hamiltonian re-
presents an approxi. mation to the Q field theory in one
space and one time dimensions if we are far into the
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spontaneously broken symmetry region with strong
coupling. To show this we write this theory on the
lattice in terms of dimensionless canonical variables
and using the nearest-neighbor gradient:

—H = Q [2p, 2+Ao(x 2-f02)2+~(x„-x ()2].
j="N

The lowest two eigenlevels of the single-site Schro-
dinger problem (neglecting the gradient term) lie deep
in the potential well if the zero-point energy is very
small compared with the height of the center bump, i.e. ,

(a) A, ~/2j «A, y 4

These two low-lying levels are, respectively, sym-
metric and antisymmetric under reflection. The en-
ergy gap between them is proportional to the tunneling
between the two minima in the double-bottomed poten-
tial Ap(xg -f p ) at ~ j p.

Since condition (a) means that there is very little
tunneling this gap is very small —i.e. ,

(b) A$ ~p -A.
p j pe p p ((A.

if A p f p3» 1 . When conditions (a) and (b) are satisfied
we can neglect higher excitations at each lattice site.
The two states retained correspond to the spin-down
and spin-up configurations in the Ising model (3.1).
The gradient term induces mixing between the symme-

tric and antisymmetric solutions which is approximate-
ly given by

(c) (symjx, .
j antisym) jp .

When this mixing is comparable to the gap separating
the levels —i.e. , for

1/2j "Xp f p
t/2

the gradient term is comparable to the single-site
terms and we can make neither a weak- nor strong-
coupling limiting approximation. Condition (d) requires
j p «1, Ap»1, consistentwith A

' j 3»1.
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