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It is possible for a classical field theory to have two homogeneous stable equilibrium states with different

energy densities. In the quantum version of the theory, the state of higher energy density becomes unstable

through barrier penetration. In the first paper in this series, it was argued that the relevant quantity to
study was a decay probability per unit time per unit volume, I /V = Ae '"[1+O(A)], and the theory of
the coefficient 8 was given. This paper gives the theory of the coefficient A.

I. INTRODUCTION

Consider a particle moving in a potential of the
form shown in Fig. 1. The classical version of
this system possesses a stable equilibrium state
in which the particle is at rest at x= 0; however,
quantum corrections render this state unstable;
it is a false ground state.

A similar situation can arise in field theory.
Consider the theory of a single scalar field with
nonderivative self-interactions,

z =-,'s.ys'y U(y),

where U is as shown in Fig. 2. The classical
theory possesses two spatially homogeneous sta-
ble equilibrium states, P=P. and p=P; however,
quantum corrections render the first of these un-
unstable; it is a false vacuum.

This is the second of a sequence of papers deal-
ing with the decay of such false vacuums. In the
first paper, ' it was argued that the relevant quanti-
ty to compute was a decay probability per unit
time per unit volume, 1'/V, and that, in the small-
y limit, this quantity was given by an expression
of the form

the detailed form of U. Reference 1 dealt exclu-
sively with the theory of the coefficient B; this
paper deals with the theory of the coefficient A.

Our method of analysis is based on functional
integration. ' In Sec. II, we show how this method
can be used to analyze the false ground state of a
particle in a potential; in Sec. QI, we extend the
analysis to field theory. Much of our discussion
applies to a general renormalizable field theory;
however, at the end we focus on the special case
of small energy-density difference between the
true and false vacuum. Even in this special case,
we are not able to obtain a closed-form expression
for A; we are stymied by an obdurate functional
determinant. However, we are able to analyze the
ultraviolet divergences of A, and to show that they
are removed by the usual renormalizations of per-
turbation theory.

II. A SIMPLE CASE

In this section we restrict ourselves to a par-
ticle of unit mass moving in one spatial dimension
under the influence of a potential V(x). Our fund-
amental tool will be the Euclidean (imaginary time)
version of Feynman's3 sum over histories:

1'/V = Ae [1+O(h')], (1.2)
(2 1)

where A and B are coefficients which depend on

J
U

= X

4 /

FIG. 1. Potential energy as a function of position for
a particle problem with a false (unstable) ground state.

FIG. 2. Potential energy density as a function of field
strength for a scalar field theory with a false (unstable)
vacuum.
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Both sides of this equation require explanation:
On the left- hand side, Ix,) and Ix&& are position

eigenstates, H is the Hamiltonian, and T is a pos-
itive number. The left-hand side of Eq. (2.1) is
of interest because, if we expand in a complete
set of energy eigenstates,

(2.2)

then

d'X.
„,,"+V (x)x„=~„x„. (2.9)

Then, in the small-h limit, the integral becomes
a product of Gaussians, and we find

( ale
"rin lx, &=we '"'&"gz '&'[ly0(k)]

eigenfunctions of the second variational derivative
of S at x,

(xyIe "r "IX;&=pe s"r "(xyIn&(nIxg&. (2.3}

Thus, the leading term in this expression for
large T tells us the energy and wave function of
the lowest-lying energy eigenstate.

On the right-hand side, N is a normalization
factor, S is the Euclidean action4

(2.4)

and [dx] denotes integration over all functions x(f),
obeying the boundary conditions, x(-T/2) =x, and

x(T/2) =x&. To be more specific, if x is any func-
tion obeying the boundary conditions, then a gener-
al function obeying the boundary conditions can be
written as

x(t) = x(f) + Q c„x„(t), (2.6)

(2.6a,)

where the x„'s are a complete set of real orthonor-
mal functions vanishing at the boundaries,

=De '~' "(det[-8 '+ V"(x)]j ' '

& [1+O(I)] . (2.10)

(Of course, we are tacitly assuming here that all
the eigenvalues are positive. We shall shortly see
what to do when this is not the case.} If there are
several stationary points, in general one has to
sum over all of them.

Equation (2.8) is the equation of motion for a
particle of unit mass moving in a potential minus
V. Thus,

d 2

(2.11)

is a constant of the motion. This can be used to
determine the qualitative features of the solutions
of Eq. (2.8) by inspection.

As a simple example, let us consider the poten-
tial shown in Fig. 3(a), and let us choose x, =x&=0.
It is obvious from Fig. 3(b) that the only solution
obeying the boundary conditions is x=0. For this
solution, S=0. If we define &u' to be V (0), then a
standard computation' shows that for large T

x„(+T/2) =0. (2.6b)
1/2

Pf[det( S 2+ (g2)]-~~~= e-~»~
mh

(2.12)

Then the measure [dx] is defined by

[dx]= P(21rri) ' 'dc„. (2.7)

(This measure differs in normalization from the
measure defined by Feynman;' this is why we need
the normalization constant N. However, as we
shall see, we shall never need an explicit formula
for N )

The right-hand side of Eq. (2.1) is of interest
because it can readily be evaluated in the semi-
classical (small-5) limit. In this case the func-
tional integral is dominated by the stationary points
of S. For simplicity, let us assume for the mo-
ment that there is only one such stationary point,
which we denote by x,

Of course, this gives the correct semiclassical
shift in the ground-state energy, k&u/2.

Let us now turn to the potential of Fig. 1. We
still choose x, = x&=0. We can see from Fig. 4
that there are now nontrivial solutions of Eq. (2.8):
The particle can begin at the top of the hill, bounce
off the potential wall on the right, and return to the
top of the hill. Since we will ultimately be inter-

„V

5S d'x
+ V'(xg =0,M' dP

(2.8) (b)

where the prime denotes differentiation with re-
spect to x. Further, let us choose the x„'s to be

FIG. 3. (a) potential energy as a function of position
for a particle problem with a true ground state. (b) The
same thing, upside down.
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)i -V We can now do the summation:

=X
1/2

exp(-&oT/2+Ke ~"T) . (2.16)
gK

Thus, the inclusion of multibounce configurations
in the functional integral has modified our estimate
of the ground-state energy:

FIG. 4. The graph in Fig. 1 turned upside down. E, = (h&u/2 —tlKe ~")[1+O(tf)] . (2.17)

B= dtdx dt2 (2.13a)

ested only in the form of the functional integral for
very large T, we will focus our attention on the
limiting form of such motions for infinite T. We
call this limiting form "the bounce. "

The bounce has E =0. Thus, if we denote S for
the bounce by B, then

(The added term is very small in magnitude for
small 0; it would be completely uninteresting were
it not that K has an imaginary part, as we shall
shortly see.)

Now let us .turn to the evaluation of K. We must
study Eq. (2.9) with x a single bounce. Because of
time translation invariance, this equation neces-
sarily possesses an eigenfunction of eigenvalue
zero,

x, =B 'I dx/dt. (2.18)

dx 2y x &/2

0
(2.13b)

e AT/2K (2.14)

where K is defined by demanding that this expres-
sion give the right answer for one bounce. We will
evaluate K shortly.

(3) Finally, we must integrate over the locations
of the centers:

T/2 t~ ~n 1
dt dt2 dt„= T"/n! .

-T /2 %T /2 -T /2
(2.15)

where o is the second zero of V. (See Fig. 4.)
We define "the center of the bounce" as the point

where dx/dt = 0. By time translation invariance,
the center of the bounce can be anywhere along the
t axis. For very large T, a bounce centered any-
where in the interval of integration is an approxi-
mate stationary point of the functional integrand.
So also are n widely separated bounces, with cen-
ters at t„. , t„, where T/2 & t, & t,» t, & —T/
2. We propose to evaluate the functional integral
by summing over all these configurations.

First we will assemble the factors that go into
this expression; then we will do the summation.

(1) For n bounces, S is nB. This takes care of
the exponential of the action.

(2) Now for the determinant: The bounces are
separated by vast regions in which x=0. Thus we
can evaluate the determinant as a product of con-
tributions from large time intervals surrounding
each bounce and even larger time intervals con-
taining the vacant regions between the bounces. In
this way we obtain

dx = (dx/dt) dt = xidci .
Thus

(2vR) '~ dc, =(B/2vh)'~ dt.

(2.19)

(2.20)

To summarize': In evaluating the determinant, we
should not include the zero eigenvalue, but we
should include in K a factor of (B/2mb)'t'.

We now come to a sticky point: dx/dt has a
zero; thus x, has a node and is not the eigenfunc-
tion of lowest eigenvalue. The nodeless eigenfunc-
tion, x„must have a lower eigenvalue, that is to
say, a negative eigenvalue. Thus the bounce is not
a minimum of the action but a saddle point, and
the Gaussian integral over the expansion coeffi-
cient c0 diverges.

We are in trouble. We should be, for we have
been foolish: We have tried to compute an eigen-
value that is not in the spectrum of the Hamilton-
ian, the energy of an unstable state. This is a
quantity that can be defined only by analytic con-
tinuation. We shall now perform such a continua-
tion and save our computation.

To keep things as simple as possible, let us con-
sider not an integral over all function space, but
an integral over some path in function space para-
metrized by a real variable, z,

[The normalization factor comes from Eg. (2.13a).]
Were we to integrate over the corresponding ex-
pansion coefficient, c„ this would lead to a disas-
ter in the determinant. Fortunately, we have al-
ready done this integration, in the guise of evaluat-
ing the integrals over time translations of the
bounce in Eq. (2.15):
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FIG. 5. Some functions along a path in f'unction space
parametrized by a real variable z.

FIG. 7. Distortion of the contour of integration in the
complex z plane needed as one passes analytically from
the situation shown in Fig. 6(b) to that shown in Fig.
6(a) .

dz 2m@ -'"e ""'" (2.21)

a line of constant imaginary part of S. The in-
tegral thus acquires an imaginary part; in the
steepest-descent approximation,

where S(z) is the action along the path. The func-
tions along this path are sketched in Fig. 5. We
have chosen the path to include the two important
functions that occur in the real problem: s'=0, at
z=0, and the bounce, at z= j.. Furthermore, we
have chosen our path such that the tangent vector
to the path at z =1 is xo. Thus the bounce is a
maximum of S(z), as is shown in Fig. 6(a). (S goes
to minus infinity as z goes to infinity because the
functions spend more and more time in the region
beyond the turning point, where V is negative. )

If x=0 were the absolute minimum of V, that is
to say, if V were as in Fig. 3(a), we would have,
for the same path, the situation shown in Fig. 6(b).
In this case, we would have no divergence in the
integral (2.21). Now let us suppose we analytically
change V in somb way such that we go from this
situation back to the one of interest. To keep the
integral convergent, we must distort the right-
hand portion of the contour of integration into the
complex plane. How we distort it depends on the
details of the analytic passage from one potential
to the other. In Fig. 7, we have assumed that it
is distorted into the upper half plane. Following
the standard procedure of the method of steepest
descents, we have led the contour along the real
axis to z = 1 (the saddle point) and then out along

1+4~
ImJ =Im dz(2«K} "Smz s&'&1

1

X (1/2) Ss' (s 1)2/5Xg

=-'8 "'i"iS"(1) i
'i' (2.22)

dx g ~/~
one bouace

'~z "(a/2vg-} ridet [ S 2+ V-(zq]i- '.
(2.23)

Note the factor of &, this arises because we are
integrating over only half of the Gaussian peak.

(If we had passed from one potential to the other
in the conjugate manner, the contour would have
been distorted into the lower half plane, and we
would have obtained the opposite sign for the im-
aginary part of the integral. This is just a reflec-
tion of the well-known fact that what sign you get
for the imaginary part of the energy of an unstable
state depends on how you do your analytic contin-
uation. )

Boldly extending this analysis from a one-dimen-
sional integral to an integral over a function space,
we find that the one-bounce contribution to the
functional integral is given by

i&S ), S
where det' indicates that the zero eigenvalue is to
be omitted when computing the determinant.

Comparing this to the definition of E, we find

= Z =Z /2 g), &, det'[-s, '+ V'(x)]
det(- s,'+ &u'}

(2.24)

Hence, the decay probability per unit time of the
unstable state is given by

(a) (b)

FIG. 6. (a) Euclidean action as a function of the path
parameter for the path shown in Fig. 5 and the potential
shown in Fig. l. (b) The same for the potential shown in
Fig. 3.

r= 21~,/g
-sin det'[-s, '+ V (z)]

det(- s,'+ &d')

x [1+0(8)]. (2.26)
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For one-dimensional quantum mechanics, it is
possible to evaluate functional determinants such
as those occurring above in closed form. We have
done this, to check that Eq. (2.25) agrees with the
prediction obtained (so very much more easily) by
the standard methods of wave mechanics. How-
ever, for our purposes here, we prefer to stop
with Eq. (2.24), because this is the expression
that generalizes immediately to quantum field
theory.

III. FALSE VACUUMS

ization of the eigenfunctions.
By the spherical symmetry of the bounce

d x &„Q&„Q=—5„„dx 8„$8„$. (3.2)

The bounce is a stationary point of S under general
variations. Thus, in particular, S is stationary
under infinitesimal scale transformations,

(3.3}

Hence,

A. Preliminary remarks

We wish to consider the theory of a single scalar
field, f, in four-dimensional space-time. The
Euclidean action is

0= 5S= — d4x B„~It)&„+4U

Thus, if we denote S(Q) by B,

8 = q d4x Bq|II) 8~$ .

(3.4)

(3.5)

S= d4~ —,'a„ye„y+ U y (3.1)

B. Zero eigenv'alues

In the one-dimensional problem of Sec. II, the
second variational derivative of the action at the
bounce had one eigenfunction of eigenvalue zero,
x„proportional to dX/dt. Now, in four dimen-
sions, there are four such eigenfunctions, Q„,
proportional to 8„f. We must determine the con-
stant of proportionality, that is to say, the normal-

Here p, ranges from 1 to 4, the summation over
repeated indices is implied, and U is some func-
tion of P. (For renormalizable theories, U is a
quartic polynomial. ) Furthermore, we assume
that U has two relative minima, P, and P, of
which only the second is an absolute minimum, and
we add a constant to U such that U(P,) = 0. (See
Fig. 2.) p = p. is a false vacuum, analogous to
the false ground state, x=0, of Sec. II.

For a theory of this kind, the bounce, p(x), was
found in the first paper in this series. f is a
spherically symmetric [O(4)-invariant] function of

x, going monotonically to P, as x goes to infinity.
P is a stationary point of the action and is unique,
except, of course, that its center can be anywhere
in Euclidean four-space.

Thus, the situation is much like that of Sec. II,
with three exceptions: (1) In particle mechanics,
we had only one infinitesimal translation, and thus
one zero eigenvalue, to worry about; here we have
four. (2} Whenever we study a relativistic field
theory, we must deal with ultraviolet divergences.
(3) It was critical in the analysis of Sec. II that the
second variations. derivative of the action at the
bounce had one and only one negative eigenvalue.
Is the same true here V We will deal with these
three problems in the order in which we have
stated them.

Thus, for each zero eigenvalue we have the same
normalization as in the one-dimensional case [Eq.
(2.13a}].

Let us assume for the moment that no qualita-
tively new problems are introduced by renormal-
ization or by negative eigenvalues. ' If this is so,
then we can obtain the formula for the decay width
of the false vacuum by a straightforward trans-
scription of the analysis of Sec. II. The only dif-
ference is that we have four factors of (B/2vk)' '
instead of one, and that, in integrating over the
center of the bounce, we pick up a factor of VT,
where V is the volume of three-space, instead of
just a factor of T. Thus,

B2 s )„det'[- 82+ U"(Q)]
4v'h' det[-9'+ U" (Q,)]

x [1+O(h)]. (3.6)

C. Renormalization

Until now we have been working implicitly with
the action expressed in terms of unrenormalized
fields, masses and coupling constants. We must
now recast all of our formulas in terms of the re-
normalized versions of these quantities. We begin

where, as before, det' denotes the determinant
computed with the zero eigenvalues omitted, and
a'= Bpa

As a mild consistency check, let us verify that
this expression has the right dimensions. Both
B and I have the dimensions of action. The dif-
ferential operators have the dimensions of 1/
length', as do their eigenvalues. Since four eigen-
values are omitted from det', the ratio det'/det
has the dimensions of (length)'. Thus the total
expression has the dimensions of 1/length', just
right for a decay probability per unit time per unit
volume.
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with S itself:

+gg nS(n)

n+1
(3.7}

Here S„is the renormalized action, a functional
of exactly the same form as S, but with all unre-
normalized quantities replaced by their renormal-
ized counterparts. S'"' is the action induced by the
standard renormalization counterterms computed
from the sum of all n-loop graphs. In order to
avoid excessive clutter in our equations, we will
redefine f to be the renormalized field, U to be
the polynomial that occurs in S„,f to be the bounce
as computed from Ss, and B to be Ss(P}.

The renormalization counterterms serve to re-
move all ultraviolet divergences from all one-
particle-irreducible Green's functions. Equiva-
lently, they serve to remove all ultraviolet diver-
gences from the effective action, y(@), the gener-
ating functional of these Green's functions. To
one-loop order, the effective action is given by'

e""= exp[S„(y)/a+ S"'(y)]

x(det[-s'+ U"(p)])' '. (3.8)

p-/+K'"'+O(52}. (3.9)

Then

S(@)-S„(y)+h d'x "@'"+KS"'(@)+O(R')4 &Sz (i)

= B+KS"'(y) + O(h ') (3.10)

because the bounce is a stationary point of S„.
Similar reasoning applies to Q .

Thus, we arrive at the renormalized version of
Eg. (3.6),

It wi11 be important to us shortly that the right-
hand side of this equation is free of ultraviolet
divergences for arbitrary P.'

Now let us imagine computing I'/V iteratively,
first treating S~ as if it were the total action, and

then taking account of the effect of the renormali-
zation counterterms perturbatively. To the order
to which we are working, the only counterterm we
need consider is S"'.

The first thing we must realize is that the re-
normalization counterterms may destroy our con-
vention that S(p.}vanishes. We can take care of
this problem trivially by replacing S(P) in Eq. (3.6)
by the difference S(p}—S(P.}.

Secondly, adding new terms to SR will change the
stationary points of S. In particular, it will change
the bounce. Let us write

2
1'/V =4,I, exp[-B/I —S"'(P) + S"'(P,)]

x det'[-S'+U (4)]
det[-s'+ U (p )]

(3.11)

As a good renormalized expression should be, this
is free of ultraviolet divergences; each determi-
nant is paired with an exponential of S"', just as
in Eq. (3.8). (That one of our factors is a primed
determinant is irrelevant; omitting any finite num-
ber of eigenvalues has no effect on the ultraviolet
divergence. )

D. Negative eigenvalues

We now investigate the operator

-s'+ U (4). (3.12)

X.g(P) ~g /P'" (3.13)

where p is the four-dimension radial variable, then
the eigenvalue equation becomes

2 + 2 +U (p) Xny—
-

X„gX„g. (3.14)
d' 8j(j+ 1)+ 3

Aside from the coefficient of the centrifugal po-
tential, this is identical in form to the familiar
three-dimensional radial Schrodinger equation and
can be analyzed by familiar methods. The eigen-
functions of zero eigenvalue transform according
to j= 2. Furthermore, since Q is a monotone in-
creasing function of p, the radial part of these
eigenfunctions is free of nodes. Thus, there are
no negative eigenvalues with j&, and there is at
least one negative eigenvalue with j=0.

The question is: Are there more than one'F For,
if there are, we will have to modify our formulas
drastically; the whole analysis of Sec. II was based
on the existence of one ahd only one negative eigen-
value. Regrettably, we have been able to settle
this point only in the limit of small energy-density
difference ~,between the true and false vacuum. In
this case, there is indeed only one negative eigen-
value, as we shall now show.

In the first paper in this series, it was shown
that, in the limit of small c,

A(p) =f(p -It), (3.15}

This operator is rotationally invariant, and thus
its eigenfunctions are, in their angular depen-
dence, four-dimensional scalar spherical harmon-
ics. We denote these functions by Y'z„„where
j is 0, —,', 1, .. . , and m and m' independently range
from -j to j by integer steps. We remind the read-
er that these functions transform according to the
representation DU'~' of SO(4) = SO(3) x SO(3); thus
j=0 is a scalar, j=& is a vector, etc. If we write
the eigenfunction as
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where R was a number inversely proportional to
e, and f was a function independent of c, such that

(3.16)

operator,

~ + U (f(x)).
d2

(3.18)

~i(i+1)+3
nj n 4R2 (3.17)

where ~„ is a number independent of j. Further-
more, as R goes to infinity, ~„goes to the nth
eigenvalue of the one-dimensional Schrodinger

Thus, in this limit, the bounce looks like a large
four-dimensional spherical bubble of true vacuum
separated by a thin wall from a sea of false vac-
uum.

In this situation, because both U" (P,) and U" (g )
are positive, the only possible eigenfunctions of
negative eigenvalue are those that are bound to the
bubble wall. For such eigenfunctions (if they ex-
ist), the centrifugal potential in Eq. (3.14) can
reasonably be approximated by a constant, and

We already know that, for j=&, the lowest eigen-
value is zero. Equation (3.17) tells us that, cor-
responding to this, there is a negative eigenvalue,
minus 3/2R', for j=0. However, every other
eigenvalue for j=-, must have a positive limit as
R goes to infinity. Thus, for large R, none of
these can correspond to negative eigenvalues for
j= 0. This completes the argument.
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