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Interaction of isovector scalar mesons with simple sources*
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A variational procedure using coherent states is shown to be superior to previous methods for treating the

interaction of charged or isovector mesons with a static source. The technique is then applied to interaction

with a Schrodinger field.

I. INTRODUCTION

Since perturbation theory is irrelevant to strong-
coupling field theories and relativistic field theo-
ries have divergences that prevent consistent treat-
ment by other than perturbation methods, theoreti-
cal consideration of strong coupling has largely
been in terms of noncovariant models. For neutral
Bose fields, the case of interaction with a static
source has a very simple solution', interaction with
a recoiling source is not simple and has been wide-
ly treated. ' 4 When the Bose field is charged, even
the static source is complicated' ', nonstatic
models have hardly been considered.

In Ref. 5, the charged field interaction with a
static source was treated by a canonical transfor-
mation method that seems not to be useful for non-
static sources. Reference V obtained the same re-
sults as Ref. 5 by a self-consistent field method
and treated isovector, as well as charged, Bose
fields. The connection between the self-consistent
field method and the more powerful method of co-
herent states has been elaborated in Ref. 3; in
particular, it was shown that coherent-state meth-
ods are useful with nonstatic sources.

In this paper, coherent states are used as the
basic tool for treating both static and nonstatic
sources interacting with an isovector scalar field.
Section II describes a natural set of coherent states
for variational calculations in the case of a static
source. The trial states have the advantage of be-
ing eigenstates of the isospin operators T' and T, ;
in the self-consistent field' treatment the trial
states were not isospin eigenstates. In Sec. II it
is shown that for weak coupling the coherent state
gives an energy that is three times as good as the
self-consistent field energy; for strong coupling
both methods give the same energy.

Besides the natural coherent state of Sec. II, a
special coherent state can be constructed to be an
eigenstate of all the appropriate annihilation oper-
ators. Section III shows that the same energies
are obtained with this state in the strong- and
weak- coupling limits.

The same coherent-state technique can then be
used for nonstatic sources by applying the general

method described in Ref. 3; details are given in
Sec. IV. The final section contains a few remarks.

II. STATIC SOURCE

The Hamiltonian is, as in Ref. 7,
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v ~ a~=~ ~ a~0 of

u)(k) = (k'+ m')' i'-.
The function W(k) is the form factor of the static
source; if 8' is spherically symmetric, as here,
only s-wave mesons interact with the source.

From the point of view of coherent states, it is
natural to use the trial vector
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where
~ 2, m ) is the bare source state, an eigen-

vector of T' and T, . Since v ~ a is invariant under
isorotations, it commutes with T and T, ; the state

b)zzhzas T =-,', T, =m. The function b(k) is the
variational "wave function of the isovector field";
it is chosen so as to minimize the energy functional
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{},&-,', }m;blel-,', m;b&.
,(-;,m;bl-,', m;b&,

(2.4)

can be replaced by its asymptotic value 8 ',
while g(B) is approximately l. Since E is propor-
tional to 8 ', it is small and

( }=J I ( }I'

d, (B)=(I+B)es+sinhB,

(2 5)

s((} f(((=*((}(((}+a((}(((a}—m((}((((}}}a(,

F{b]= a{b}-g,(B),

g.(B)=d!(B)/d.(B) . (2.6)

[Note that the neutral scalar case can be written
in the same form with d,(B)=es and g, (B)=1.]
Now the function b that minimizes F{b}is easily
seen to be

w(b)
(d(b)+ aj(B) '

j (B)= g,'(B)/g, (-B)
(2.V)

3o that the equations to be solved are mostly simp-
ly expressed in terms of

The algebra is given in the Appendix. The result
ls

,(—,', m;b ) ,', m—;b),=d,(B),

,&-,', m;b~z~-,', m;b&. = a{b}d;(B),

!w(b)!'
sc B 2 ~(b) t

!w(b)!' -„
(d(b)

(2.12)

This is the same as the result of Ref. 7 for strong
enough coupling, and is also equal to the result
for an isoscalar Bose field.

(n+2)!

III. SPECIAL COHERENT STATE

The coherent state of the previous section has
the property that the meson hole state

a(%) lk, m;b&. (3.1)

has components orthogonal to the coherent state.
This is unlike the static isoscalar scalar case,
vrhere the meson hole state is a multiple of the co-
herent state. Meson hole states are a nuisance in
higher approximations; it is useful to define a
special coherent state that has no meson hole
states. Despite the fact that the operators v ~ a(f!)
for various Q do not commute, it is possible to
find a simultaneous eigenstate of the r a(Q) oper-
ators. I et the power series d(x) be defined by

Z =a{b}j(B) (2.8)

!W(k)!'dk
[(d(k)+K]' '

(2.9)

e" sinhx
x x' (3 2)

where the numbers K„are defined in the Appendix.
Then the state

Qnce 8 and K are determined by solving Eqs.
(2.9), then the energy in this approximation is
given by

Z = Kg, (B)/j (B)- (2.10)

First consider wreak coupling. For S' small
enough, both K and B are small; j (B) can be re-
placed by j(0)=2, g,(B) by g,(0) = 3, and

(-' m ()=-d(r ) (((}a'(ed% (-' m}

is easily seen to be an eigenstate of r a(q).

r ' a(q)
~

—,m; b) = b(q) ~-', m; b&.

Then, algebra as before gives

&-' m b~-' m b&=d(B)

(3.3)

(3 4)

Z — 3 !W")!'dk
&u(b)

(2.11) (-,', m;b ~ff )-,', m; b&

This is just the result of second-order perturba-
tion theory. It is three times the result of Ref.
'l for weak coupling. (It can be verified that for
charged mesons the coherent-state result is tv&ice
the result of Refs. 5 and V.)

For strong coupling, B becomes large and j (B) 8= b k 'lk.

5 k 'dkd' 8 (3 5)

8'* k 5 k + b~ k %' k dkd 8,
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Minimization with respect to f&(k) gives

W(k)
g(B)(o(f)) +g'(B)E '

{{&(k)i W(k) i

[g(B)«) (k) +g'(B)K]~ '

) W(k} I

[g(B) (~)+g'(B}Jf]' '

g(B) =d'(B)/~(B).

Now the weak-coupling case occurs for 8-0,
g(B)- —,', and gives

--3 ~ ("~'dk
{{)(k)

In strong coupling, g = I and

i W(a) I'„-
{{&(k)

(3.6)

(3.7}

(3.8)

)){a&=f~&(a&~* "'ai.

Then

g; b,f ~%; b,f) =D(y —%) =D~(y -%)Ds(y —x),

Ds(%}=d(B(%)), (4.5}

))(%, f=~'"'If()i&1'd)i,

with {f(B)given by Eq. (2.5). Simila»y,

g; h,fje ux; 5,/} =A(y —x},

&(&) =&{))(&))Ii(*)—J [&"()))}(k

+ p*(k, -%)f)(x)]dk + {f'(B(%))a,(%),

(4.6)

Both results are as in the previous section, but
Eq. (3.4) is very usetul for going to higher order
approximations.

IV. NONSTATIC SOURCE

lf g(p) is (the Fourier transform of) a Fermi
field with isospin &, the general nonstatic Hamil-
tonian is

(pp k a~ k a) k dk

g + p, a, k +5', p a', -k

x i'(p)~ t({{)i((i ()

k&dpi'

t-{):I-

+ p& p pdp. (4.1)

(4.3)

The low momentum-transfer approximat;ion to a
local relativistic theory' gives

gM
[16+ (p-0)]'" ((p+4)/3) '

and the corresponding Hamiltonian for the igoscal-
ar case is discussed in Hef. 8.

The localized special coherent state appropriate
to the Hamiltonian of Eq. (4.1) is

'(x& =f ~(}))r()i)J(i)~""d)i,

a, ( )=J (a)){{a)~*e"'uic,

{)(K,x) = I (){&)—if+k)f'(p)f({))e"")&'(C,p)d)it{(i.

i W(0, k) /2

(o(k) +e(-k)
For strong coupling, the localized-state func-

tional ELB~

(4.6)

F A(0)/D(0),

can be used:

FL8 =g(B)a,(0)+ t(0)

p* k, 0 5 k + b* k p k, 0 dk.

(4.9)

[Note that in the case d(B) =d'(B) =ca, the func
tions A(x) and D(x) go over into the corresponding
functions for the isoscalar case. ']

As in Refs. 3 and 8, the weak-coupling approxi-
mation is obtained by taking/(p) to be constant
in the translated-localized-state (TLS) energy
functional

y

fA(x)dx

fD(%)d%
'

the result is the same as second-order perturba-
tion theory, namely,

Ref. 3 gives a general discussion of the plane-
wave phase factors in Eq. (4.3). Now the algebra
of the Append~ again applies. Let

Thus, the procedure of the preceding section gives
for strong coupling
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This is the same functional of f that was obtained
for the isoscalar field; some properties are con-
sidered in Ref. 8.

V. REMARKS

(a) Isoscalar pseudoscalarcase H.ere the Ham-
iltonian is written

H = co k a~ k a k dk

—db) (W (k) (k) ~ e(k)be(k))b ~ kdk;

the coherent state has the Bose part

(P(b)=e*p dbb f kb(k) '(k)dk].

then

7 ~ X~ ~ A'=-~-A'~ X+&'.X+3m,
At 'Xr'At=& At(At X+ Y),

X(r ~ At)nI-,', m&

tt- j.
= p (-)t(& At)t(2At x+ 3Y)(r At)" ' k

I
—,'km)

f =0

=K„Y(r eAt)"-'I —.', m&,

I' n, n even
K„=g (-}t(2n —2j + 1)= i

j=0 ~. n+2, n odd

&-,', tn
I

e' "e' "
I

—,', m&

It is left to the reader as a not completely trivial
exercise to show that E(Is. (2.4)-(2.13) hold in
this case, and also the corresponding results for
the special coherent state and for the nonstatic
source. The isovector pseudoscalar case is more
complicated.

(b) Many Particle -sources In cont. rast to the
isoscalar scalar case, where the source is mere-
ly a density, the isovector field depends on the iso-
spin coupling of the sources. A source with zero
isospin density has no interaction; others are less
tractable.

(c) Meson scattering and isobars. In contrast to
the mean field treatment of Ref. 'l, where approx-
imate state vectors and energies for the lowest
state of every isospin were computed, the present
treatment has only produced an approximation for
the lowest T =-,' state. In the coherent-state treat-
ment, higher-isospin states and meson scattering
are closely linked. Their treatment will be con-
sidered in a subsequent paper.

= g ( 2, m
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APPENDIX
T.A, (d(k)a (k) ~ a(k)dk = r ~ U,

At = b(k)a t (k)dk U,.= (d k b* k a,. k dk,

so that
(~, m

I
e'" u(k)at(k) ~ a{k)dke'"

I ~, m)

Let

[At, Att ] = B5(~,

B= Ib(k)I'dk .
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n=l /=0 (n! )'
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