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We show that it is possible to calculate the effective potential in superspace without decomposing superfields
into component fields. The most general renormalizable Lagrangian for chiral superfields is treated.

I. INTRODUCTION

The concept of superfields' is very useful in
supersymmetric theories. Feynman rules have
been written down, ' Ward-Takahashi identities de-
rived, ' and a renormalization program developed'
all using superfield notations exclusively, without
resorting to decomposition into component fields.
But so far all calculations of higher-order contri-
butions to the effective potential have been made" '
using component fields. The purpose of this paper
is to treat the problem using superfield notations
only.

In calculating one-loop contributions to the ef-
fective potential, one goes over to momentum
space' because the propagators in the shifted fields

are diagonal there and evaluation of functional
determinants becomes trivial. But this is not so
in the case of superpropagators. Since the shifted
fields depend on the anticommuting variable 8,
the superpropagators are not diagonal even in mo-
mentum space. We show in this paper that the
problem may be tackled using an ansatz by DeWitt. '

In Sec. II, we introduce the most general re-
normalizable Lagrangian for chiral superfields.
We shift the superfields and find the superpropa-
gators for the shifted fields not translationally in-
variant in (9 space. In Sec. III, we calculate the
functional determinant in superspace required for
the one-loop contribution to the effective potential
for the Lagrangian of Sec. II. Some important
formulas are collected in the Appendix.

II. ONE-LOOP CONTRIBUTIONS TO EFFECTIVE POTENTIAL FOR CHIRAL SUPERFIELDS

We shall consider the positive-chirality superfields 4),(x, 8), a=1, 2, . . . , N with their negative-chirality
counterparts 4, (x, 8), The most general action functional leading to a renormalizable theory is

S[O]=f d x( I)D))O('O=',D)O'~ )X, ,=O', ~', ,4, 4, ~ —,'g„,O,O,@,~ H.c.)), (2.1)

where m„and g,~, are symmetric in their indices.
If we do not impose any restrictions on m„and
g„„E)I.(2.1) would cover all theories involving
only chiral superfields (see Sec. III of Ref. 5). I et
us now shift the superfield e, (x, 8) by

C.(x, 8) @.(x, 8)+e.(8), (2.2)

where

4,(8) =A, + —,'8(1+i y,)8F, . (2 2)

Because of the above shift, we shall pick up ad-
ditional quadratic terms making the quadratic part
of the action functional

(2.4)

where

e,~ =m, ~+ 2g, ~,4),(8)

=M,~+ —,'8(1+jy,)8f,~,
with

M, t, =m, t, + 2g,~,A

(2.5)

(2.6)

fo~ = 2 gnacI" c .
The inverse propagator

Jt' c' --,'I'D&
~-l(@0)

has the coordinate-space representation

(2.7)

(2.6)
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(C.o,(e)6„(», e;y, e') 6„(--,'O'D)6 (x, 8;y, 8'))

(5,q(-2DD)5~(», 8;y, 8') 4,~~(8)6 (x, e;y, 8') )
(2.9)

One can invert Eq. (2.9) to obtain the propagator
S. The result is given in the Appendix.

The one-loop contribution to the effective poten-
tial is given by

Then we have

V, d'x= ——h LnDet, ——8 LnDet
e(4')

~-1(c0}
V, d'x= ——5 LnDet (2.10)

(3 3)
Using the formula Eq. (A7) for the inverse of a
chiral superfield we have

where 4' specifies the normalization point. Even
if we go over to momentum space, the deter-
minant in 8 space would remain functional.

III. EVALUATION OF FUNCTIONAL DETERMINANT

IN SUPERSPACE

First we observe that

@,0

DetS '(4') =

@0 8)-—M ' ——,'8(1+i y,)8M 'fM ' .

Now

LnDet~o=-Tr —(e ' ' —e ' ')4 dS,. ~O, , ~0
s

Tre ' '=tr d'x--,'DD, x 8e ' 'x 8

(3.4)

(3.5)

= Det4'

xDet 40t -a+8 —
0 -a+D

(3.1)

=tr d'x -~DD, e '

x 5+(x 8'y 8 )I =, e=e'

= Ox d'x, (3.6)

a(e ') =MC" (=,'8-D)M .(=,'D D) .— (3.2)

Det4 is to be evaluated in positive-chirality
superspace, i.e. , the space of x and —,'(1+fy,)8,
while the second determinant is over negative-
chirality superspace. Let us write

where tr indicates trace over internal indices.
In the above equations and everywhere below,

the ie prescription is used to make the integra-
tions over s exist. Equation (3.6) tells us that the
first term in Eq. (3.3) does not contribute to V, .
Next

LnDet @0
=-TF(4'}

ff(4')
(e-IH(e+ e-gl(4+}

s

=-tr — d'x(--'O'D) (&», 8)e ~~ ~)x,e&-&x, e~e ~ &)x, e&) .
S

(3.V)

To calculate (x, 8~e ~~ ~~x, 8) we use an ansatz by DeWitt. ' Let us define

D(x, e;y, e') -=&x, 8(1/H)y, e'& =f ds(x, 8[e ~'[y, 8') =- j ds&x, e;y, 8')s&
0 0

Since

(3.8)

MO'~(8} —(-,'DD)M,
)
(=,'DD-) D(x, 8;y, 8') =5 (x, e;y, e'), (3.9)

we find (x, 8;y, 8 ~s) to satisfy the Schr'odinger equation

Me't(e} - (=,'DD)M, (--,'fyD) (x, 8;y, 8'is& = f —(x, 8;y, 8'is&, (3.10)

provided we use the normalization

&», e;y, e (s&. ,=6 (», e;y, e) (3.11)
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Let us noir make the ansatz

(x, 8;y, 8'( s}=
4 },exp(-,'8g, y, 8)exp(-,'8'l(„y, 8')

W(

x g(is)" a„(x,y; 8')+8- — ' ((„(x,y; 8') —;8(1—iy, )8Mf„(x,y;8') M 'exp i-

Using the result

-i . (x-y)'lim, exp —i = 5'(x-y)
, , (4ss)' 4s

we find that the normalization Eq. (3.11) implies

(3.12)

(3.13)

a0=~8'(1 —i y~}8'M, ()')0= — ' 8'M, fo=-1 . (3.14)

From Eq. (3.12) and the rules of multiplications for superfields' we find

(=,'OD-)M () ') ( ,"OD)(x-, -8;y', 8'i s)

},exp(-,'8)f„y,8)exp(-,'8')f„y, 8')

iy, )8(-MCfl„) M exp i-. (x-y)'
I

(3.15)

xg(is)" (Cla„-ff„)+8 ' ~„+,'8(i--
n=0

C3 acts on everything on the right. Equation (3.10) leads to

exp(-,'8$„y,8)exp(-,'8'g„y, 8')exp i-
()e) I

x Q (is)" (Cl+M(lf~)a„—i B„a„-ff„+8 ' +MM ))I)„—i 8 g„
n=0 s ~" " 2 S

+ ~8(1 —iy, )8 -M(Cl+MtM}f„+i MB„f„+Mf~a„M-'
8

,. axy(-,'el, y.(')amp(-,'8'((„y,e')azy -i ~
)4ws j'

oo

x g(is)" —a„+8 ' g„--,'8(l-iy, )8Mf„M ', (3.18)
n=0 S

where we have canceled out factors in -2ijs and
(x -y)'/4s' from both sides. Equating various
terms, we are led to the foDoeing recursion
re lati ons:

From Eq. (3.14) we find that ao) )I)„and f, are coor
dinate independent. Hence Eqs. (3.18}-(3.20) show
that a„, g„, andf„are also coordinate independent.

Iterating the recursion relations, ere have

(x-y)"e„a,= (x-y)"S„g,=(x-y)"s„f,=0,
(3.1V}

(s+ 1)a„+g+(x-y)" &q a„„=-(0+MM )a„+ff„,
(3.18)

a„) (
1)„MM~ -f )" i'ao )

-f' M'M j ~f, ~

(MM~)" $0 .

(3.21)

(3.22)

(n+ 1)(()„+),+ (x -y)"&„g„~,= -(0+MM~))))„,
(3.19)

(n+ l)f„„+(x-y)" 8„f„„,= (0+M~M}f„+f~a-
(3.20)

Using Eq. (3.14) we find

n

(3.23)
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' 8'(M'lft)"M,(-1) l-iy,
(3.24}

where

(MM" -f
x'& "& =(x')"=

I

It -ft MtM) (3.26)

n

(3.26)

This completes the determination of (x, 8;y, 8'!s}
and hence D(x, 8;y, 8'). We are interested in the
trace, so we put x=y and 8= 0' and obtain

OQ n

(», 8; x, 8!s}=,g (is)", (—,'8(l —iy, )8[x„'~"I +MX0, '~" ~M ' —2(MMt)" ]+ 8-independent terms),
4ws ' „ , nt

(3.27)

where the 8-independent part would drop out when
we integrate over superspace, i.e. , fd'x(=,'VD)
Note that X»' ",X»' "~ are ÃxN matrices in the
space of the indices a, b=1, 2, .. . , N.

Using

tr(MX ""&M-'}=trX '~"&

o
tr(MM') =-,'tr!

& o MtM)
we find

(3.28}

(3.29)

00 l n

X 6)'x ~S= 2 iS"
t

trXy +&»
n =0

(MM~ -f )
- - (MMt—z

t, Itrexp -'
I& t t &~I

t -t exp -tl&
o &-

S d X.

(3.30)

Observe that the minus sign for the fermion part comes out automatically. From Eq. (3.30) it is clear
that iff=0, then the trace of (x, 8;x, 8!s}would disappear. Hence, by selecting C' such that f=0 for this,
we shall have LnDetH(4') =0. Then

H(4') "ds -i
LnDet -, = -tr —,[exp(-iX's) —exp(-i Y 's)],

H(C'), s (4ws)'
(3.31)

where X' is defined by E|l. (3.26) and

t'MM' O )
!Y'=

0 MtM)

is the fermion part of the (mass)' matrix.
By using

1 d4 ip's
(4ws)' (2w)'

we can put our result in the familiar form

(3.32}

(3.33)

V, = —5,tr d'p —(exp[-i(-p'+ X')s] -exp[-z(-p'+ Y')s])

i 1= ——g, d 'ptr[ln(-p'+ X'}—ln(-p'+ l")] .
2 (2w)'

(3.34)

This result can also be obtained by the explicit method "using component fields. We include a brief de-
rivation.

In terms of component fields the quadratic part of the shifted Lagrangian is
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+ M,b 2~, +b —~, 2 ~b + b ~ + ~ 2 ~b + ++b+

= g(Aaa Faa A, F )
ab

0

AI, b

A,*

F*, (zo" 8„5,

b

-M„) (g,
' 'fI

(3.35)
zo&s„8.,~ lq, )

a"p„-M
-M 0"p

i 1
V, = ——fi ), d p ln

P' 0 f M

0 1 M 0

where for the fermion part we have used two-component notations and fT" = (1,o),
Then the one-loop contribution to the effective potential is given by'

ft M~ P'0
0 0

s = (s„-i).

= ——h, d'ptr[ln(-p'+ X') —ln(-p'+ Y')]
2 (2v)'

(3.36)

where p" = (p', -p).
Now returning to Eq. (3.34) let us discuss the normalization of the effective potential in the one-loop ap-

proximation. Including appropriate wave-function renormalization counterterms (no mass and coupling-
constant renormalization counterterms required'4), we have

V,„, (A, F) =-F",F, + [-F,(1f, m+, Aa+kg, aA Aa, ) +H. c.)+ Z,aF,*Fa

+
84

., [tr(X'lnX'] —tr(Y'ln1") —tr(f f+ff )(lnA'+-, )]+0(A') .h (3.37)

We shall adopt the normalization

=-5b . (3.38)

To retain generality, we leave e, and 5, arbitrary. Then

Z, = „,g,* g, (lnA' —,') —W,
87l'

(3.39)

where

a b

All infinite terms in O(h) drop out and we have

(3.40)

V„,„(A,F) = (-5,a
—W„)FaFa+ [-F,(P., +m, aAa+g, a, Aa A,) + H.c.) +, [tr(X'lnX') —tr(Y lnY')]+ O(k ') .64''

(3.41)

If we define p. 'by

, Tr(ftf+ff t)lng'= W„F,*F, (3.42)

then we may write
X Y2

Vf'f(A, F) = F,F, + [-F,(A, +m, a-Aff +g,a, AffA, ) + H.c.]+, tr X ln —, —tr Y'ln —, + O(8')
64m

(3.43)
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The physical potential V«(A} is obtained by eliminating the auxiliary fields, F, , using
996 66

-Ea —Ra+ma~ A~+ga~, A~ Ac

in Eq. (3.43).'"
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APPENDIX

The propagator satisfies the equation

( a,'(8) )yD5„—

)
'—, (D,",(*, 6;y, y') D', (*,9;y, y') (5,(, 8;y, y')5„

);,'DD5, c C—8,ct(0) I,Sc,'(x, 0;y, 8') S~, (x, 0;y, 0') I, 0

Firstly, we find

D,,'(, 8;y, 9') = —(-,1 ( DD)D=(',*I!;y,",8'),,
ac

S,' (x, 0;y, 8') = — — (-—,
' VD)B, (x, 0;y, 0') .1

ac

Using these, we obtain

0

5 (x, 0;y, 0')5.,j (A1)

(A2)

(A3)

4'(0) —(--,' O'D) ,t ,(--,
' O'D) ;;(x, 0;y, 0') = 5, (x, 0;y, 0')6„ ,

ac
(A4)

4't(0) —(--,' 8 D) , (=,' 8D) u, , (x,'0;y, 0') = 5 (x, 0;y, 0'}5.,
-ac

(A5)

We define the inverse of the supe."field 4)(x, 0} (for generality, consider it to be a matrix in some internal
space) by

45 '(x, 0)48(x, 0) =1 .
Using the rule of multiplication for chiral superfields, we find

e-'(x, 0) = exp(--,'0 )1,0){A-'(x)—0A-'(x)q(x)A-'(x)

+ aV(1+ 1'y5)0[-A (x)F(x)A (x)+A '(X))C) (x)A '(x))j)(x)A (x)])

Putting C(x, 0) =4'(0) we obtain Eq. (3.4).
One can easily solve Egs. (A4) and (A5) for B"and S . We just quote the results:
6"(x, 0;y, 0') = exp(--,'8 g„y,0)exp(--,'0'f(',y,0')

(A6)

where

X [D 'M~a0'(1+iy, )0' —D 'f (H+MMt) '] —0 ' 0'(CI +MtM) 'Mt

—,'9(1 ly, )8(-Mt(tt MMt) 'fD '981 9'(1 ~ ty, )6' M D ']
I

5'(* — ),

(x, 0;y, 8') = exp( —,
' 0$,y, 0)exp(-,' 8'$, y, 0')

[D 'Ma 0'(1 —(, y }O' —D f(H+MtM) ] —8 '0'(6+MM~) 'lf'y' '
2

~ —,'6(1 —y,)9(-M( M M) 'f D" 'M —', 9'(1 —ty, )6' MD )

I
I!'( —y),

(A8)

(Ao)

D = (CI+M iM ) f(C!+MM t ) 'f-
and D is its transpose.

(A10}
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