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Following the example provided by the ordinary derivative and vector Yang-Mills fields, we give an
argument which demonstrates that spinor superfields may be combined with the fermionic components of the
invariant superspace gradient in order to define a fermionic, supersymmetric Yang-Mills covariant derivative.
Additionally, it is shown that this fermionic, covariant gradient is the "square root" of a bosonic covariant
gradient. Thus, it is possible to define a "supercovariant derivative" in superspace. We also discuss some
general aspects of supersymmetric, Yang-Mills theories.

I. INTRODUCTION AND SUMMARY

The spinor superfield has not been studied very
extensively thus far. In the work of Adjei Rnd

Akyeampong, R Lagrangian fox' the lnterRetlon of
a ehiral, spinor superfield with a chiral, scalar
superfieldwas examined. Itwas found that that La-
grangian is nonrenormalizable. As far as we are
aware, this is the only work that has been done in
this direction.

In supersymmetric theox'ies, there exists R dif-
ferential operator known as the covariant deriva-
tive. ID order to avoid confusion, we will hence-
forth refer to this opex'atox" as the fermionic com-
ponents of the invariant supergradient or, more
succinctly, the fermionic gradient. This deriva-
tive transforms as a relativistic spinor under the
Lorentz gx'oup. This suggests that perhaps the
spinor superfield may be able to play R role that
is analogous to that played by gauge vector fields
in ordinary theories. We shall see that in exact
analogy with the covariant derivative of usual Yang-
Mlns theories one may define R supercoverlant
derivative" in the fermionic sector of superspace.
More remarkably, the existence of this fexmionic
Yang-Mills covariantized derivative implies the ex-
istence of a bosonic Yang-Mills covariantized de-
rivative. The truly remarkable feature about this
relation is that it does not require the introduction
of independent vector superfields for the bosonic
components of the supercovariant derivative.

The organization of this paper is as follows. In
See. II, we give a brief discussion of supersym-
metry and introduce several important operators.
In See. III, we recall some very familiar results
from ordinary gauge theories. In Sec. IV, we pre-
sent our argument, which is guided by the experi-
ence gained from the usual Yang-Mills-type the-
ory. Here we introduce the "supex covariant de-
rivative, " which will allow for local invariances

in a manifestly supersymmetric manner. %e also
use this operator to deduce the form of the pure
gauge Lagrangian for the spinor superfields. %e
present an example for the interaction of the gauge
superfields with matter superfields. The final
section is a discussion of Yang-Mills invariance
in both ordinary space and superspace. %e show
here a possible connection between this work and
earlier works on Yang-Mills invariance and super-
symmetry.

An important question we shall not addxess hexe
is whether the example given is renormalizable.
This we shall do in a future paper. There is a hint
that our example may be renormalizable. It has
been observed" that in supersymmetrie theories,
Rs in ordinary theories, the presence of coupling
constants which possess dimensions which are
positive powers of inverse mass usually indicates
nonrenormalizability. Our example contains no
such coupling constants.

ir. SUPERSYMMETRIC GZOMFTRV

By starting from a pseudogeometrie viewpoint,
we may think of the supersymmetric group of
VVess and Zumino3 arising from an extended space-
time (X}which has elements which are of the form

where x" are the usual coordinates of spacetime
and 19 are, in the simplest instance, the coordi-
nates ln R foul -dlmenslonal fermlonle spRee The
coordinates 8 Rntieommute among themselves,
commute with the bosonie coordinates, and are
further restricted to transform as a Majorana,
Dirac spinor under the Lorentz group. If we choose
a representation where charge conjugation is
equivalent to the complex conjugation of a Dirac
spinor, then the fermionic coordinates are real.
As a result of these requirements, the generators
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of Lorentz transformations on the extended space-
time are given by

gin from the simplest of gauge theories, quantum
electrodynamics. In this theory, by the minimal-
coupling prescription, we introduce a covariant
derivative via the definition

(o"') „=(fk-[r",y']) .,

(LaB)u —f(qavgS qBPga)

9
)fan g g8t

The supersymmetric generators of supertransla-
tions are given by

In writing this expression, we have asserted that
(y')™acts as a metric for the fermionic coordi-
nates in much the same way as g„, does for the
bosonic coordinates. We have also redefined com-
plex conjugation so that in addition to its usual ac-
tion (i--i), it also reverses the order of all pro-
ducts of fermionic factors. This last statement is im-
portant since it ensures that the real extended space-
time will be mapped into a real extended spacetime
under the action of exp(icS), where e, like 8, is a
real, anticommuting spinor.

Following Salam and Strathdee, ~ we may also
introduce the supersymmetric covariant derivative
via the definition

o'=(r')' & -&-'(&e)'

and verify that it satisfies the relations

(S' D j=0,
D'D =fl(A')'™+.'(y')™(DD)-

and contracting it with itself. %'ith these defini-
tions we observe that the identities

[Du»u] =«&uu ~

-i(L"") 8„A~I
(10a)

(10b)

are valid.
If we now consider some non-Abelian group, ' we

introduce a multiplet of vector gauge fields which
transform as the adjoint representation of the
group. The covariant derivative in Eq. (V) is re-
defined so that

D~=~~+&~v

It is natural to introduce a vector field since the
operator g„ transforms as a vector under the
Lorentz group. With this definition of the covari-
ant derivative, we can ensure the existence of a
local invariance under redefinition of the phase of
the electron field. The well-known transformation
is given by

g,
' =exp [ieA(x)] Q, ,

Av Au suA(x)~

where A(x) is an arbitrary local function. Next,
we need an expression for the kinetic energy of the
gauge fields„, which is invariant under the gauge
transformation. This is done by defining the field
strength tensor

where

If we restrict ourselves to the Poincare group
and the supertransl. ations, ' then we find a Lie al-
gebra which closes. In addition to the usual com-
mutators of the generators of the Poincare group,
we need the following relations:

[S',p„]=0,
[M"' S'] =--,'(o ~S)',

(gl gm] (+ufo )f ~m

III. RESULTS FROM ORDINARY GAUGE THEORIES

We would like to recall some results from other
theories which possess gauge invariances. We be-

where T, is some representation of the group. In
analogy with Eq. (10), we find

[Du ~ Du] = V~u ~pu ~

E'q„=&qA'„-B„A'q —gf', A „A',

(12a)

IV. GAUGE SPINOR SUPERFIELDS

We can easily see that the covariant derivative
of supersymmetry txansforms like a Dirac spinor
under the Lorentz gxoup, for we find the relation

[Maa Dj] 1( aeD)1

is satisfied. Thus, if we think about the covariant
derivative, D, as being a projection of a super-
space gradient, S/SX", onto the fermion sector of

i(I.q„) ~(s-„A's-2gf'u, A aA'q), (12b)

where f'„are the totally antisymmetric structure
constants of some Lie algebra.
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superspace and the ordinary derivative, 8„, the
projection onto the boson sector, then, in the case
where superfields' possess some internal sym-
metry, it does not seem unreasonable to add to the
super gradient the quantity

v~=lG'p, 2(r'A') ]T.
to form a supercovariant gradient

3
&,v= w +&~v~ ~

BX

(14)

(16)

E u
=

4 (Doe A +~&f n A &v

F l1 Ill v —Dm Qo& 1
6

v
A 9 III I gf Q A b Ill GcU

2 j)c y

p. =ep ~ -S. u-&f ac 0 v0 ~,

(21)

In Eq. (14) the multiplet of spinor superfields,
A'(X), must transform as the adjoint represen-
tation of the internal-symmetry group, The vec-
tor superfields G'„are defined by the equation

Gc — i & {Dy All + lgyc Ab Ac) (16)

A'-A' —2Db4' —gf '~, 54 A',

where 5@' is an infinitesimal multiplet of scalar
superfields. Under this transformation, the vector
superfields 6'„change as

(18)

which justifies the identification made in Eq. (16).
Next, we need to construct the Lagrangian for the
gauge-spinor superfield. To this end we need to
employ the generalized Lie bracket. This Lie
bracket is defined by the relation

[A, B/I= AB —(-I)"~ eBA, -

where n„= (0, 1) depending on whether' is a Hose
or Fermi operator. Using this operator on the
supercovariant gradient, we arrive at

6&~t &NB*'; =fg(R»)'; -(6{1' )(&L)';

where we have used the following definitions:

The quantities T, have their usual meanings. We
may require that the spinor superfields are con-
strained to be real. With our conventions, this
implies that the vector superfields are also real.
A Prio, in Eq. (14) we could assume that the vec-
tor superfields are independent of the spinor super-
field. We will have to justify Eq. (16) below. The
analogy between Eqs. (11) and (14) is more striking
if we recall that an arbitrary spinor superfield
contains a spinor superfieM which is the covariant
derivative of a scalar superfield. By thinking of
this as the analog of the transformation of the pho-
ton field in Eq. (8), we are led to require that the
Lagrangian for the gauge, spinor superfields be
invariant under the transformation

(i(y'y") „ tf I. =X, M=m, X=n
(6g'») =-

~
t, O otherwise.

The term proportional to S~ on the right-hand
side of Eq. (20) might be called the "anomalous
term. " It is anomalous in the sense that it does
not have an analog in Eqs. (10) and (12). Hut the
presence of such a term has an interesting inter-
pretation within the context of differential geome-
try. Such a term can arise from the fact that we
are describing superspace in terms of a noncom-
muting coordinate basis and therefore the com-
ponents of the invariant superspace gradient are
the directional derivatives of such a basis.

There are no nonzero scalars which may be
formed from (R»),. Therefore we may form a
quadratic and take the trace over the internal ele-
ments to obtain

aR KLR k1N~ab ~

Therefore we may take as the gauge Lagrangian
the expression

&s-s. = ADD)'(n'ri"'»'16. ~&""",
where A" ""is the most general constant tensor
such that cCgaUge is invariant. Thus, we have con-
structed a manifestly supersymmetric Lagrangian
for the gauge-spinor superfields. As can be seen,
there remains quite a bit of ambiguity in this equa-
tion. We expect, however, that the requirement of
renormalizability will place further restrictions on
the arbitrary supertensor. We may note that the
various sectors of the superfield strength tensor
E» F', and 6'„„have dimensionalities of d+&,
@+I, and d+ &, respectively, where d= & is the
dimensionality of the spinor superfield in units of
mass. Therefore, various sectors of A must dif-
fer by powers of inverse mass. Thus, we may ar-
gue that A must be chosen so that regauge is propor-
tional only to the square of the fermion-fermion
sector of the superfield strength tensor. So we
may assume that

z,',„„=—,'(DD)'{E'„,E."')c,
is the form of the gauge Lagrangian.
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However, when this expression is expanded in

terms of component fields, it is found not to con-
tain a term which may be interpreted as the kinetic
energy of a vector gauge field. Thus, by following
the procedure which leads to a gauge theory in or-
dinary Minkowski space, we have not, as yet, a
complete gauge Lagrangian. On the other hand, the
expansion of the quantity

g",,„„=—,'(DD)'[G'„G,") (25)

is found to contain the kinetic-energy term of a,

gauge vector field, but it is not invariant under a
gauge transformation. Under an infinitesimal

gauge transformation this quantity is changed by an

amount

,'( f)—D—)'( 'G„s)'(54.) f (26)

Therefore in order to have a Lagrangian which is
gauge invariant, we must add an additional term to Eq.
(25). This additional term should have the same
dimensionality as Eq. (25). We note that in Eqs.
(24) and (25) two powers of the fermionic gradient
act on the gauge superfield. We also know from
Eq. (5) that two powers of the fermionic derivative
may be combined to yield the bosonic derivative.
This suggests that we may try to add Eq. (25} a
term which is linear in ~„. The simplest such
term is of the form

exp[+go(X)], (32)

where &(X) = &'(X-)T, Usin. g chiral matter super-
fields permits the gauge and matter superfields to
be coupled:

—,'(DD)'(4, exp[gv]C, +4 exp[-gv J4 ) . (33)

We will return to this point at the end of the next
section. It remains to be seen whether our linear
approach will prove as useful in model building as
the nonlinear one. We are presently studying this
question.

to some representation of the group.
Thus, formally at least, it appears that we have

a solution to the problem of implementing Yang-
Mills invariance for nonchiral superfields. The
gauge-spinor superfields allow the Yang-Mills
transformation of the gauge superfields to be real-
ized linearly in a manner that is consistent with

global supersymmetry. In previous wdrks done on
supersymmetry and Yang-Mills invariance by Sa-
lam and Strathdee' and Ferrara. and Zumino, ' the
Yang-Mills transformation of the gauge superfield
is implemented nonlinearly with respect to the
supermultiplet, by introducing the gauge fields as
components of a multiplet of real pseudoscalar
superfields, v'(X}. This allows the definition of
two "phase factors" via the equations

—,'(DD}'(A'P'A'} & (27) V. YANG-MILLS BASIS VECTORS AND SUPERSYMMETRY

Thus, it is clear that the expression

@au))e = gaDD) (G )) Gg ~'
8 & g&aj (29)

will change by pure divergences under a gauge
transformation. But this is exactly the manner in
which a supersymmetric Lagrangian transforms
under a fermionic translation. Therefore, the
gauge Lagrangian for the spinor superfield is

(3o)

Using either the bosonic or fermionic sectors of
the "supercovariant derivative" we may couple the
gauge fields to matter superfields, provided that
the pure kinetic terms for the matter superfields
are only expressable with the use of fermionic
and/or bosonic components of the invariant super-
gradient. An example of an interacting model is
provided by

8,„„+/&AD)'{yfy [(S'(y )„D') +M, ]4)j, (31)

where 4 is a complex scalar superfield belonging

We may subject this to the gauge transformation,
and we find it is changed by the amount below plus
two pure divergence terms:

(28}

In ordinary Yang-Mills theories, we have a set
of gauge fields, A&(x), and set of generators, T„
which belong to some representation of a compact,
semisimple Lie algebra. At each point in space-
time, we associate a set of internal basis vectors,
ez(x), which are given by the expression

x

y'(y) -=Iexp -~y dy"A'„)y)y
0

(34)

Now we may perform the differentiation indicated
in Eq. (29} and substitute the result into Eq. (30) to
find

Dg ~p +sgA p Ta 3 (37)

which is the usual expression for the covariant de-
rivative in a Yang-Mills theory. Now we make the

where we have explicitly exhibited the matrix in-
dices i and I. That we should recognize this as the
set of basis vectors for the internal space is made
plausible by observing that if we define a connec-
tion I;& in the usual manner,

de'I = dx"F„,e'~, (35)

the equation below then follows:

9 = dx" D„e'~

(36)
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observation that the internal-basis-vector concept
easily generalizes in a flat, Fermi-Bose super-
space. Indeed, we may replace Eq. (34) by the ex-
pression

X
e',(X) = exp ig-(-,'d6 A'+dx" G'„)T,

0 I

(38)

where X is somepoint in the superspace. Here we
can see that it is crucial that both spinor and vec-
tor superfields are present in order to define the
supersymmetric generalization of the line integral.

Equation (38) is reminiscent of the phase factor
in Eq. (33). It appears that we may make some
identification between V' and the supersymmetric
line integral. The fact that chiral superfields cou-
ple to the basis vectors is analogous to the cou-
pling of ordinary spinors to the vierbein fields of a
gravitational theory. Thus, chiral scalar super-
fields may be viewed as Yang-Mills spinors.

It is obvious that the internal basis vectors are
nothing but Yang's gauge phase factors. 9 This in
turn implies that the usual supersymmetric "phase
factors" discussed in the previous section may
also be identified as a supersymmetric version of
the Yang gauge phase factor for chiral theories.

This viewpoint suggests a whole class of super-
symmetric, chiral gauge models which have not,
as yet, been explored. One could consider a chiral
model where the matter superfields are chiral
spinor superfields. The gauge superfields may
couple to these matter superfields through the
chiral, gauge vector superfields. An example of
such a model is given by

2 = —,'Tr((DD)'(v"v„+vt'vt„))

+-,'(DD)fe [iy "(6„+v~)-M, ]4}
+H.c. , (39)

where for simplicity we have used the notation of
Salam and Strathdee. ' In this expression, 4, and

are independent chiral spinor superfields which
belong to a representation of the group. An inter-
esting point about such a model is that it easily ad-
mits the existence of a conserved fermion number.
It would also be of some interest to see if this
model is renormalizable in view of the model of
Adjei and Akyeampong. ' It is clear that the free
propagator for the chiral spinor superfield here
is just the Dirac propagator. This is to be com-
pared with the propagator for the aforementioned
model. Therefore, naively, we might suspect that
the model of Eq. (39) may be renormalizable.

Note added in P~oof. At the completion of this
work, we were informed by Dr. V. I. Ogievetskii
and Dr. E. Sokachev that similar conclusions were
reached about the spinor superfield by them (Zh.

Eksp. Teor. Fiz. Pis'ma Red. 23, 66 (1976) [JETP
Lett. 23, 58 (1976)]). We thank these authors for
bringing this work to our attention.
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APPENDIX A: REPRESENTATION AND CONVENTIONS

We use a representation of the Dirac matrices
where

y"—=(o'Sa, i&Sa', io So, iISo'),
1

'Y —= &

g( &pvp~y 'Y 'Y 'Y =iy Y y Y =& S&

Then the full set of Dirac matrices is given by 1,
y", o"", y'y", and y'. In this representation we
find

diag(q"" ) =(-1,1, 1, 1) .
Under Hermitian conjugation, we find

yPl qW~y&'

(yv")' = g ~""'(yw"')
pf

( pv)t g qpp'qvv'( p'v')

For this representation, we have an orthogonality
relation,

—,
' Tr(I'„Fs) = 5„s,

if we restrict 0"' so that p, ~ p. This in turn im-
plies a completeness relation given by

(1)',(1)', =!Q(1',)', (F„')', .

We may use this to derive the following Fierz re-
arrangement matrix:

8 V T A P

1 -1 1 1 1 S

-4 -2 0 -2 4 V

-4 6 0 -2 0 6 T

4 -2 0 -2 -4„111-11P
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S(»34)=-(0i 4)(4~4.}
1 (»34) -=(y, y" y, )(S,y, y. ),
~(1234)-=2(41& 42)(43&I 044)1

A (»34) =(P,y'y" 4.)(0,y'y „P.),
P(»34) -=(q,y'q. )(V.y'y, ).

Note that the minus sign preceding the matrix is
the consequence of the anticommutivity of p„g„
g„and g~. Furthermore, the sum on g and p in
the tensor, T, is unrestricted.

Under charge-conjugation, time-reversal, and

parity transformations, we define the following
transformations for a Dirac field g(t, x):

0'(&, x) = (-y') [0(~,x)]' =8*(f,x),

g (t, x) =y'y'P*(-t, x),
y~(t, x}=iy'y(i, —x) .

%ith these conventions, ere find that

(i, x) =iy'g(-t, -x).
Additionally, the matrices y', y y'y", and y'y'
are antisymmetric, vrhile yoy" and yoo"' are sym-
metric.

APPENDIX B: COMPONENTS OF THE SUPERFIELDS

The spinor superfield multiplet A'(8, x) may be
vrritten in the form

A'(8, x) =2y'(x) +~'(x) 8+-,'88' "(x)

'8y'-8 -(y'n" (x})+-'8y'y" 8 ( iy'0-),'(x)}

+~88P'(x)8+ ~(88)'x"(x),
where a is an internal index. If we ignore this
momentarily, then me see that this superfield
contains a Harita-Schminger field +~, four Dirac
fields p, g', q', and v', and two sixteen-compo-
nent matrix fields ~ and P. These matrix fields
may also be expanded:

(y(x) =s(x} iy"v„-(x) +i ,'a"'t„„(x)+-y'y"a„(x) +iy'p(x),

p(x) =S(x) - iy" [V„(x)+S„s(x) +8't„„(x)]+i-,'o"' [r„,(x) —S„v„(x)+S,v„(x) +e„„,s "a"(x)]

+y'y" [8„(x)+s„p(x) +-',e„„s 8 "f s&(x)]+iy'[6'(x) +8"a„(x)].

So, additionally the spinor superfields contain hvo

scalars, hvo vectors, bvo antisymmetric tensors,
two axial vectors, and bvo pseudoscalars. %ith
our conventions, the reality of the spinor super-
field implies that Rll boson components are real and

that all fermion components are Majorana fields.
Furthermore, it may be convenient to express

some of the fermion components as linear com-
binations of other fermion fields:

where A& is an axial-vector multiplet, A', E', and
D' are multiplets of scalar fields, G' is a multiplet
of R pseudoscalar field, Rnd Q Rnct X Rre multi-
plets of Dirac fields. Once again, the reality of
the boson components Rnd the Majorana properties
of the fermion components are fixed by the require-
ment that the scalar superfield be real.

%ith these expansions, ere may express the
transformation law of Eq. (17) in terms of the
component fields. In particular, for the fermion
fields p' and the vector fields v'„we find

x' =x'+i/i'+2s~t)'~+i2gq'.
The scalar superfield may be expanded in corn-

ponent form as

4'(8, x) =A'(x) +8y'(x) +-,'88m'(x) +i-,'8y'8G (x)

+-,'8y "y"8A'„(x) +-,"888''(x) + —„(88)'D'(x),

v'q v'q —8„A-' gf'„A v'-„i&f'„5g y pQ-'.

The first of these implies that there are gauges
vrhere p' vanishes, and in such a gauge the second
of these transformation lms reduces to the usual
transformation law of a Yang-Mills vector field.

*This work is supported in part through funds provided by
EB,DA under Contract No. EY-76-C-02-3069. *000.

S. A Adjei and D. A. Akyeampong, Nuovo Cimento
26A, 84 (1975).

W. Lang and J. Ness, Nucl. Phys. 881, 249 {1974).
3J. Wess and 8. Zumino, Nucl. Phys. 870, 39 (1973).
4A. Salam and J. Strathdee, Phys. Lett. 518, 353 (1974).
~This is a subgroup of a larger supersymmetric group.

A discussion of this larger group is given by L. Cor-

min, Y. Ne eman, and S. Sternberg, Hev. Mod. Phys.
47, 573 (1975).

6C. N. Yang and B. C. Mills, Phys. Bev. 96, 191 (1954).
TA. Salam and J. Strathdee, Nucl. Phys. 876, 477

(1974).
S. Ferrara and 8. Zumino, Nucl. Phys. 879, 413
(1974).

~C. N. Yang, Phys. Hev. Lett. 33, 445 (1974).


