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Free Nambu strings in space-time are the two-dimensional sheet analog of one-dimensional curves which
are timelike or spacelike geodesics. It is pointed out that there is also a sheet analog of one-dimensional

curves which are null geodesics.

In the flat Minkowski space-time of special re-
lativity theory, with metric g„„=diag(-1, -1, -1, 1),
consider the two action or variational principles

(la}

—,
' x'du = 0,

for x'w 0, (2a.)

where X is a function of tt which depends on the
parametrization. The left side of (2a) is meaning-
ful only for .~' c0. Thus the variational principle
(la) gives only timelike and spacelike geodesics.
It does not determine the parameter u, as is also
obvious from the invariance of (x-')'~'du under
changes of the parameter u'=u'(u).

The Euler-Lagrange equations for (1b} are

d &(-'x')
—= x=0.

de ~X
(2b)

for a, smooth curve x(u), where n& is the mass.
The two end points are to be held fixed, i.e. ,
5x(u*) = 5x(u**)= 0. We have suppressed space-
time indices, so that x, x = dx/du, &/sx respectively
stand for x', x'= dx'/du, 8/Sx", and 2 =x'x,
=g,.x"x"; more generally we shall use scalar-
product notation, A ~ 8 =A "B„=g„„A~B"for two
vectors A and B. It is well known that both v aria-
tional principles (1) give geodesics, but there is an
important difference:

The Euler-Lagrange equations for (la) are'

m — . =-m —[(x2) ' 'x]=0 =.x'=Xx,d s(x')'~' d

dA ~X QB

which has the geodesic as its world line'; u is then
unique to within an additive constant, du'/du = 1.
In the non-null cases, this is done by writing the
first integral in the form x'= ~~n', where nt is
the mass of the particle; then x= rndx/ds for the
timelike case, where s is the Minkowski arc length
or proper time along the geodesic, and x= indx/d&
for the spacelike (or tachyon} case with dr-'= -ds'
&0. It would thus appear that the variational
principle (1b) is superior to (la), since it is both
simpler and more general.

Nambu and others' have proposed massless
strings with tension as classical models, whose
quantized states are identified with mesonic reso-
nances which mediate the hadronic interactions.
Mandelstam' has shown that the Veneziano ampli-
tudes' can be obtained by breaking and joining open
strings.

The history of a classical string is a sheet'in
space-time, which can be described by x= x(u')
=x(u', u'), where u' and u' are two parameters.
Latin indices will be used throughout to label the
two parameters; they range and sum over 1 and 2.
We shall use the notation x, = Sx/Su' and 8/Bu' will
denote the partial-derivative operator along a pa-
rameter curve on the sheet. An element of the
sheet is characterized by the bivector (skew-
symmetric tensor), crdu'du', where o'= x, n, x,

xlx2 x x1 and stands for

t7'" = (&x"/&u')(&x"/&u'} —(sx"/s1p)(sx"/&u') .

Consider the two action or variational principles

( )

They have the first integral x'= constant. Thus the
variational principle (1b) gives all three classes
of geodesics, timelike, spacelike, and null (for

positive, negative, or zero). It restricts n to
be an affine parameter' which is unique to within
linear transformations, du'/du = constant. We can
always choose the affine parameter so that x is
the 4-momentum of a free massive particle, a free
tachyon, or a free particle of zero rest mass,

—,'o'du'du' = 0, (3b)

for a smooth string, where o'= --,'o ""o„„and g
is the tension. The initial and final curves C* and
C** (Fig. 1) are to be held fixed, i.e., Ox=0 for
x on C* or C**. Equations (3a) and (3b) are the
two-dimensional analogs of (la) and (1b), respec-
tively.

We first consider the simpler case of a closed
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(o)

C

ferred class, which we shall call the class of
affine Parameters In. the non-null cases, the af-
fine parameters are unique to within parameter
transformations with a constant Jacobian,
8(«",«")/8(«' «') = constant.

I.et us now consider the case of open strings
[E g. 1(1)l

Ill Rddltlon 'to tile equations of Illotloll (4) wlllcll
hold in the interior of the sheet, the variational
principles (3) also give boundary conditions which
hold at the free ends of the open string:

FIG. 1. Strings; (a) closed string; Q) open string. y(0').-'"'&r ~ x = 0, for x on C or C',

a» x=0, for x on C or C',
(6R)

(61)

string [Fig. 1(a)]. Its sheet has the cylindrical
topology 8' && R, and fc in Eqs. (3) must be inter-
preted as an integration $ around the cylinder.

The Euler-Lagrange equations for (Sa) are the
well-known string equations

2-Irl er, [-(rr') 'r'e"o x,]=0, (4a)

where &"= —c"= 1, e"= &22 = 0 and o ~ x denotes
the space-time vector o„„x",= 0 „„sx"/8«' The. left-
hand side of (4R) is 1116Rlllllgflll 0Illy fol Ir 0 0.
Thus the variational principle (Sa) gives only time-
like (&x'&0) and spacelike or tachyon (rr'& 0) (Ref.
8) strings. It does not determine the parameters
u', as is also obvious from the invariance of
(rr')' 'd«'d«' under changes of the parameters «"
=«"(«', «').

The Euler-Lagrange equations for (3b) are

8 8('rr ') 8
, (-~"cr x,}= 0 .

Using the identity x, [8(-,'0')/sx, ]-=6',o', which is
6Rslly established Eq. {41)Illlplles

0 = x ~ (8/8«')[8 (—,
' g')/8x, ]

= (8/8«')1x ~ [8(~2rr ')/8x, ]j —[8(2rr )/8x, ] ' (8x,/8«)
= 8(rr')/8«' —8(-,'o')/8«'

= 8(-'cl) /8«'.

Thus (4b) implies 0'= constant. When this con-
stant is nonzero, we see immediately that (4b)
implies (4a), so that the variational principle (3b)
gives the timelike and spacelike strings (for o'
positive or negative).

However, (41) also gives a new Nird class of
strings when

(6)

We shall call them null st~ings, in analogy to null
geode sics.

It is also easy to see that the variational prin-
ciple {3b) restricts the parameters «' to a pre-

where the parametric equations of C and C' are
respectively x= x («) and x=x'(«'), and where
x= dx /d« for x on C and x= dx'/d«' for x on C'.
This is easily seen by performing the first varia-
tlolls ill Eqs. (3) Rlld Rpplylllg Stokes 8 tlleol'6111.
If the parametrization («', «') is smooth, i.e., if
x» x, are independent, finite, and continuous on
the whole sheet, including the boundaries C', then
Eqs. (6) llllply tllRt x RIld 0' Rl'6 llotll llllll 0I1 C Rlld
C+ ~

x'=0, for x on C or C',

a'=0, for x on C or C'.
(7)

(8)

'The case of an open null string is completely
straightforward. The action principle is given by
Eq. (Sb); the equations of motion are (4b)„with
subsidiary conditions o'= 0 which hold both in the
interior of the sheet [Eq. (5)] and at its free edges
C Rlld C [Eq. (8)]' f1nally C Rlld C are llull
lines [Eq. (7)] and, as we shall show shortly, are
in fact null, geodesics.

The case of an open string which is not null is a
bit more complicated. If we use the variational
principle (3a) and general smooth parameters «',
then at first sight Eq. (6a) seems to be self-con-
tradictory, because 0 x=0 implies 0'=0 and
thus (cr') 'r'=~. This difficulty is avoided by in-
terpreting the left-hand side of (6a) as a limit as
x approaches the boundary C' from the interior of
the sheet; then (6a) implies (61), (7), and (8). If
we use the variational principle (3b) for affine pa-
rameters u', then o'= const' 0 in the interior con-
ti'Rdlc'ts rr = 0 oil C [Eq. (8}]. Tllls 18 RgRlll

avoided by choosing judicious affine parameters
and interpreting the left-hand side of (6b) as a
limit; then (61) can be satisfied, Ir'= const' 0 in
the interior of the sheet and on C', and x'= 0 on
C'. Thus Eqs. (61) and (V) are valid. However,
the affine parameters are no longer smooth on C',
so that Eq. (8) does not apply. Let us illustrate
this behavior by a well-known example:

A string of length 2 rotates rigidly and uniformly
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about its midpoint in the x'x' plane. The corre-
sponding sheet is given by x= (r cost, rsint, 0, t),
with -1~x~1 and -~&t&~. Choose u'=t, and
u=u'= t on the boundary C', given by x=+1. First
choose u' = ~; the parameters u' are then nonaffine.
In the interior of the sheet (-1&r & 1) the equa-
tions of motion (4a) are satisfied, and o'= x,'
=(1 —r'), (o') 't'o x =(1 r2)'t'(cost sint 0 0).
thus in the limit as x -'+ 1 and x, -x, a' = x2 = 0
Rnd (o') 't'a ~ x=0 on C'. Next choose u'
= (2 p) '[r(l —r')'t'+ sin "r], so that dr/du'
= tI(l —r') ' ', the parameters u' are then affine.
In the interior of the sheet (-1& r & 1) the equa-
tions of motion (4b) are satisfied, and o'= tI',
x,'=(1 —r'), o x, = tt(l —r')' t'(cost, sint, 0, 0) and

x, = tI(l —r ') ' '(cost, sint, 0, 0); thus in the limit
as r-~1 and x, -x, 0'= p, ', x'=0, 0 ~ x=0 on C',
but x, —~, so that the affine parameters u', u' are
not smooth on C'.

The equations of motion (4) and, for open strings,
the boundary conditions {6) imply that the vector

(9a)

is conserved, in the sense that the integral is inde-
pendent of the choice of the curve C which circles
the closed sheet [Fig. 1{a}]or runs from C to C'
for open sheets [Fig. 1(b)].

For the a,ction principle (3a), the vector P, given
by Eq. (9a}, is the 4-momentum of the string. For
tbe action prlnclple (Sb) we can always choose 'tile

affine parameters u' so that P, given by Eq. (91),
is the 4-momentum of the string. In the non-null
cases, comparison of Eqs. (9a) and (91) shows that
this is done by writing the first integral of the
equations of motion (41) in the form

(10)

where p. is the tension, and the pl.us sign applies
to timelike sheets, while the minus sign applies to
spacelike sheets. It is clear that, in the non-null
cases, the affine parameters are unique to within
parameter transformatlons with a Unit Jacoblany
S{u" u")/S(u' u') =1

%e shall now study the geometrical characteriza-
tion of nuB strings, which satisfy Eqs. (41) and

(61) and have tbe first integral o-' = 0.
A submanifold of space-time is cal.led a &gull

submapgifold if, at every one of its points, it is
tangent to the null cone with vertex at that point.
Equival. ently, a, nuH submanifold is characterized
by the property that, at every one of its points,
the tangent space contains exactly one null direc-
tion N (N' =0} Rnd independent spacelike directions
S (S' &0} orthogonal to N (S N) = 0); it follows that

every tangential, direction other than A' is also
spacelike and orthogonal to g, since it must be of
the form ZaS+ pN, with the a's not Rll zero. Thus
a null submanifold determines a unique congruence
of null curves in it, the curves which have the
null directions N as tangents. If these null curves
are geodesics, then the submanifold is cal.led a
geodesic null subnsanifold.

It is well known that every nul. l hypersurface is
geodesic. ' This is not true for nuB sheets, as
the following example shows: Choose a curve y
in the x'x' plane which is not a straight line; let
a particle move along y with the speed of light;
its world line I" is then a nongeodesic null curve
in the x'x'x' space; displace I' along the x' direc-
tion; then I' sweeps out a null sheet which is not
geodesic.

We shall now show that the history of a null string
is a geodesic null sheet and that, converse1y, every
geodesic null sheet satisfies the string equations
(41) It fo. llows immediately that the free ends of
an open null string move along null geodesics.

Consider a null sheet, the history of a nuU.

string, with the integral of the motion o'=0. This
imp1. ies that 0 may be written in the form o = S~N
=SW-NS, where S'&0, N'=0, and S.N=O.

Any tangent vector S' to the null sheet, that is not
in the direction of N, is of the form S' = nS+ PW,
with n 10. Thus S' is spacelike since S"= a'S'
&0, and orthogonal to g since S' X=O. Also,
0 ~ S'= -nS'X is a nonzero null vector and a N=O.

Let the null sheet be given by x=x{u', u'), where
u' are affine parameters. Since x, and x, are in-
dependent, at least one of them is spacelike, say
x, so that x,'&0. I et the one-parameter family
of null curves on the null sheet be given by
g(u', u') = constant, with p, wO. Define tbe tangen-
tial null vector field 8 by a' x, = P,N; along each of
the null curves x(u) on the nuB sheet, define the
parameter u by x =W, where the overdot denotes
d/du. Since x=x,AI+x,u' and x= (Q ) 'o x
= (P,) 'x, x,x, —(P,) 'x, 'x„' comparison of the coef-
ficients of x, shows that iP = -(@,) 'x, 'oO. We have
0 = {T x = o x u'+ o x u' and 0 = ft) = p,u'+ {t),u; j.t
follows that o .x, = P+ and that o x = P+.

We can now compute -(8/su')(q"o. x,) = (s/
su'}(E &j&+) = E' pt RN/&u' =N, @,-N, @, -
= (0,/A')(N2A'+ NP') = (P,/A' )N. Thus the equations
of motion (41) state precisely that

N=O.

This proves that the null curves are geodesic, that
u is an affine parameter along each null geodesic,
and that the history of a null string is a geodesic
null sheet.

For null strings we have a stronger conserva-
tion law than Eq. (9b). Not only is the total 4-mo-



mentum P conserved, but the el,ement of 4-mo-
mentum between two neighboring null geodesics,

dP=O' dx=e x du'=NP du'=XdQ (12)

Null Geodesics

4 s const.
Null Geodesic,
aff ine parameter u

6=0, t x'=0, x=0,
x =N, dP =bldg.

(12)

(14)

R remains to be shown that affine parameters u'
can be found so that the equations of motion (4b)
are satisfied and dP=o dx, with 0=x,~x,. This
is done by choosing the special affine coordinates
u'=Q, u'= f, (-x")du, where the integration is

is also conserved. This can also be seen from the
fact that an infinitesimal strip of a geodesic null
sheet bounded by two neighboring null geodesics
can be regarded as the history of an infinitesimal
open null string with the boundary conditions (6b)
satisfied at its ends.

%e shall therefore regard a null string as being
characterized both by the geodesic null sheet which
gives its history, and by the distribution of 4-mo-
mentum dP along its length. This is illustrated
in Fig. 2(a).

The general null string can be obtained by the
construction illustrated in Fig. 2(b). Choose a
spacelike curve C with parameter P, x=x(P), and
along C choose a field of null vectors iV(p) ortho-
gonal to C, so that N'=0 and N ~ (dx/dP) =0. Con-
struct the null geodesics with N as tangents, and
along each null geodesic choose an affine param-
eter u which is zero on C and such that N = sx/Su
on C. The x'esulting geodesic null sheet has points
x=x(P, u). Using the notation that a prime denotes
S/Sp, and an overdot denotes s/su, we have

= Ndg

C: )( = r(pj

FIG. 2. The nu11 string.

along a null geodesic u' = Q = const. For a null
string with a given distribution of 4-momentum,
the affine parameters are unique to within pa-
rameter transformations with a unit Jacobian,
S(u" u")/&(u' u') = 1

This concludes our analysis of classical null
strings. It is hoped that their quantization will
contribute to our understanding of elementary par-
ticles.

The following generalizations are possible:
All our results are valid for an n-dimensional

fl.at space-time with normal-hyperbolic signature,
i.e., with metric g,„=diag(-. 1, -1, . . . , -1,+1), if
the term "sheet" denotes a two-dimentional sub-
manifold and the term "hypersurface" an (n —1)-
dimensional submanifold.

Our results are easily extended to systems of
strings with interactions. An example- of this are
Nambu-Kalb-Ramond strings with interactions
given by a Fokker-type action principle. " The
action principles (3) are replaced by

du A =0»

C C
du'du' du'du'A = 0.

ca

c+ c+
Lxm5 p, o' ' 'du'du'+

& ee

c+ c+
Lame ~0'du'du'+ —,'ee (15b)

Here the strings of the system are described by
x=x(u', u'), x=x(u', u~), . . . , tensions p, ll, . . . ,
and coupbng constants e, e, . . . , and Z denotes
a summation over the strings of the system. The
interaction function A is a I.orentz-invariant func-
tion of the form A=A(x-x;x„x,;x„x,) which is
assumed to be homogeneous of degree one in each
of the variables x„x„x,and x„ it may also be
assumed» without loss of genex'allty» to be sym-
metric in the two strings, i.e., A(x -x;x»x, ;x»x,)
=A(x-x;x„x,;x„x,). The variations 6x, 5x, . . . ,
are to have finite support, but are otherwise ar-
bitrary; aftex such a variation is performed,
"Lim" in Eels. (15) denotes that the limit is to be

taken as all initial curves C~, C~, . . . recede to the
infinite past, and all final curves C**,C~*, . . .
recede to the infinite future. It can be shown that
the equations of motion obtained from the action
principle (15b) have first integrals o'= constant
for each string, and that for non-null strings (o2

40) tile 1dentlficatlon o =+p. ellsul'es the ec[ulval. -
ence of (15a) and (15b). However, the action prin-
ciple (15b) also admits null strings for which o'
—0. Expressions can be obtained for the total
4-momentum P of the system, which is a general-
ization of Eels. (9), and for the total angular mo-
mentum of the system about an event 0, which is
described by a bivector 1.«&, P and L«) are con-



served as a consequence of the equations of mo-
tion.

Except for Egs. (9) and (15), all our results can
be generalized immediately to the curved space-
times of general relativity theoxy and to general
coordinates x", by using a metric tensor field

g, „(x) of normal-hyperbolic signature and replacing
partial derivatives s/&u' by absolute (or covariant)
derivatives D/&u' along the parameter curves.
Thus, for example, o' is defined by o'
= -~„g„zo""o ~, and the Euler-I. agrange equa-
tions (4b) are replaced by

-=s, (-~"o„~",) =0. (17)

The expressions (16) and the first expression (17)
are vectors, which agree at the origin of geodesic
(or Riemannian) coordinates, " and hence agree in
all coordinate systems; this proves that Egs. (17)
are the equations of motion fox the action prin-
ciple (Sb).

Note Added. Lagrange principles, such as (1b)
and (Sb), which are not invariant under arbitrary
reparametrization, may lead to difficulties if one
attempts a Hamiltonian formulation which is a
prerequisite for quantization. An altexnative ap-
proach for the quantization of a massless system
is to staxt with a massive system and then let the
masses tend to zero. This has been studied by
Bardeen, Bars, Hanson, and Peccei, "and is also
discussed in the Tbilisi review article by Nielsen. "
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/Deceased.
'A, =B is understood to mean that A. implies g3, that j9

implies A, and that both A and g are true.
2The term "affine parameter u along a geodesic" is de-

fined precisely by the fact that the equation of the
geodesic has its simplest form de//dg~=0. In the non-
nuO cases, it is essentially the arc length to within a
constant factor.
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