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A "superposition" of static, cylindrically symmetric solutions of the Einstein-Maxwell field
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The already unified field theory of Rainich, Misner, and Wheeler is used to examine the solution of a
geometry which is locally a static cylindrically symmetric geometry but whose global properties preclude this

interpretation. It is shown that this geometry can be interpreted as a "superposition" of two static

cylindrically symmetric universes. In particular, the fields found are those exterior to a line of current with

mass and interior to a coaxial solenoidal current. Physically reasonable sources are shown to exist.

I. INTRODUCTION

The solution of the Einstein-Maxwell problem
with a static cylindrically symmetric line element
has previously been investigated using the already
unif ied field theory of Rainich, Misner, and Wheeler
(RMW). ' ~ Discarding solutions which require mag-
netic monopoles or magnetic currents, there are
only three possible static cylindrical solutions:

I. Case I consists of a magnetic field about the
axis of symmetry. Thus it corresponds to the field
exterior to a line current. If the magnetic field is
nonzero there must be mass along the axis.

II. Case II consists of a magnetic or electric (or
combination) field parallel to the symmetry axis.
It can be subdivided into either an electric or mag-
netic field but any superposition is also included
as a solution. There may or may not be mass
along the axis.

A. Case IIA is a magnetic field parallel to the
symmetry axis. Physically it could correspond to
the field interior to a solenoidal current whose axis
is the symmetry axis. However, there may be no

apparent source of the magnetic field at finite dis-
tances. If so and if there is no mass along the
symmetry axis we have what is termed a magnetic
geon.

B. Case IIB is an electric field parallel to the
symmetry axis. Physically it could correspond to
the field interior to a parallel-plate capacitor.
Again an electric geon exists.

III. Case III consists of an electric field perpen-
dicular to the symmetry axis. Thus it corresponds
to the field exterior to a line of charge.

It was surprising to me that fields produced by su-
perpositions of the sources for cases I, II, or III
were not static cylindrically symmetric. I have
therefore set out on a search for the proper me-
trics to use to find the "superposition" of the fields
of static cylindrical symmetry. I will use the RMW
theory as a tool to be certain that all possible
Einstein-Maxwell source-free solutions are found.

In this paper I will investigate a line element
which, as it turns out, produces an electromag-
netic field which can be interpreted as a super-
position of the sources of cases I and IIA. Al-
though arguments are presented to suggest that this
is the proper interpretation of the line element, I
use the RMW theory to deduce the physical inter-
pretation of the fields and sources. It is believed
that such an approach contains only a "symmetry"
assumption and hence the solutions found are the
most general for that symmetry.

However, when using an explicit coordinate sys-
tem we must be careful to distinguish localsymme-
try from global symmetry. In particular I will use
a coordinate system where the three spacelike co-
ordinates can be interpreted as a space distance
(p) perpendicular to the symmetry axis, an angle
(p) about the symmetry axis, and a, distance (z)
along the symmetry axis. The solution I find cor-
responds to a P -directed magnetic field and a z-
directed magnetic field. It is always possible to
locally define P'= g'(P, z) and z'= z'(g, z) such that
the P' or z' axis lies along the direction of the to-
tal magnetic field. However, it is no longer pos-
sible to interpret ~It

' as an angle so the overall glo-
bal symmetry becomes hidden. This was also in-
dicated in cases I and II where the metric of either
can be obtained from the other by interchanging
the metric component associated with the angular
direction with that associated with the axial direc-
tion.

In the next section I summarize the RMW formal-
ism and apply it to the metric form to be studied.
Without actually solving any of the field equations
I am able to determine what electromagnetic fields
and what sources are present. This shows the ad-
vantage of the RMW method as a calculational tool
over the normal Einstein-Maxwell approach. I
find that the physical field present is a pure mag-
netic field lying in a surface defined by being at a
constant distance from the symmetry axis, i.e. ,
the P, z surface of the preceding paragraph.

Section III relates the solution of the problem to
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the known solutions of cases I and II. I find that
since the problem is locally the same as that of
cases I and II, I am able to express the solutions
in terms of cases I and II and a single parameter.
This parameter, which can be interpreted as a con-
stant angle, gives us a u'seful measure of the relative
strengths of the magnetic field in the z and P direc-
tions. As this angle is adjusted from 0 to((/2 the na-
ture of the universe changes from pure case I to pure
case I to pure case IIA.

Section IV discusses the motion of test particles.
I show that this motion can be analyzed in terms of
the already known motions of cases I and IIA. The
final section discusses a source model which could
give rise to the fields considered.

1 1
R( v

—2g~P= -2T~v= -4~( e~v i

ea, ~ + +a~, o + ~ct. a

(o„„~f~„+2i(-g)' 'c„„(&f

(2.1)

(2.2)

(2.3)

f „ is the antisymmetric electromagnetic field
which in a local Minkowski frame is determined
by f»=E„, f»=H„et .;c&„„ is the completely an-
tisymmetric Levi-Civita tensor density and g is
detg„„. In the presence of an electromagnetic-
charge-current vector j", Eq. (2.2) can be written
in the integral form

~ (d d(x'"', x'"&)

II. RAINICH„MISNER, AND N"HEELER SOLUTIONS FOR
A LOCALLY STATIC CYLINDRICALLY SYMMETRIC

METRIC

The Einstein-Maxwell equations for a combined
gravitational and electromagnetic field in the ab-
sence of electromagnetic sources are'

(2.6)

R oA "=—'8 R~~& "
t (2.7)

e„„—Q.„„=0, (2.8)

a —= (-g)'~'e „„R~"'"R"/R P~~ (2.9)

(2.10)

R„"k„=pk„, 8„"l„=pl„,

~„„=p-'"[I„)'„l„I„+i(g-)'~'e„„„P-"I']e«.

(2.11)

(2.12}

With w chosen in this way and 9 an arbitrary
function of the coordinates, (2.1) is satisfied. If
and only if (2.8) is satisfied, 6) can be chosen up
to a constant by a line integral' of n„so that the
resultant ro satisfies (2.2). If there are null fields
present the complexion can still be satisfactorily
handled as has been shown by Geroeh. '

The sources given by Eq. (2.4) are expressed
in a more obvious form by using what is termed
the physical components of the field. Let X~

l be
an orthonormal tetrad with X~«& timelike and future
pointing. From f 8 the invariants

Equation (2.10) must be true for any timelike vec-
tor &(". Actually, the geometrical theory (2.6)-
(2.10) is equivalent to the usual theory (2.1)-(2.3)
only for non-null fields, i.e. , fields for which
8 ~R ~ do not vanish. I will only deal with non-null
fields in this paper.

If Eqs. (2.6) and (2.7) are valid, it ca.n be shown
that there are two null eigenvectors, k„and l„of
R„„normalized such that k„l"= pt where p'
= &R ~R ~. e„„can be determined from k„and l„
as follows:

f (nB) fw( (o) ((&) (2.13)
I

~
~

~ ~a~
I

t t
(~ )

~ ~( g)(&2e j (f(x("& x( & x( &) (2 4)

The integral on the left-hand side is a surface in-
tegral taken over a closed 2-dimensional surface.
If the surface is described by the parameters p, ,
RIll p2 we have

s(x(e) x(s))
d(x'" ', x'"') = ' dp,d &(,~(v„v,)

The integral on the right-hand side of(2.4) is the
volume integral over the 3-dimensional volume en-
closed by the surface over which the left-hand side
was integrated.

The theory described by (2.1), (2.2), and (2.3) is
equivalent to a purely geometrical theory for which
the following equations are valid':

are formed. These invariants are referred to as
physical components.

Then the source of the fields is given by

source= — t E(1.)I,J"d,V
t&3

E R)F. M) „„M"Z"d,V. (2.14)

d, V is an invariant element of area, d, V is an in-
variant element of volume, V, is the two-surface
bounding V„V„M, and X in order form a right-
handed orthonormal tetrad, L is a unit vector
orthogonal to V„and E(N) is +1 (-1) if N is space-
like (timelike). J" is the current 4-vector and

f„@"1Pis the physical field (2.13}.
I take as the line element of distance
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F2 —e & 2&( dt2+ dp ) + p2e"2&d(t)

+ e'"'"dz'+ 2Ppe "d@dz

= g] y( N + dp ) +g»dQ' +g33dz' + 2g»d(jt)dz

(2.15)
-~& t=x'& ~, 0 —Q=x'&2m,
-~&z=x'&~ 0 —p=x &~

where y, P, p, , and P are functions of p alone. Al-
though a local rotation in the (t) -z plane would di-
agonalize this metric, I will not do such a rota-
tion since we could no longer interpret p as an
angle. We know the solutions of this problem
when P =—0 (static cylindrically symmetric) when

P can be interpreted as an angle. What I want
then, is to keep our coordinate system fixed and
see what effect the function P has. This is what I
meant earlier by the distinction between local
"symmetry" and global "symmetry. " I will show
in the next section that the local symmetry enables
me to present an exact solution to this metric.

A calculation of R"„for the line element of the
form (2.15) shows that all R"„=0 for p. 4 v except
R', and R', . Thus Eqs. (2.6) (2.7) give

R +R' = O=R' +R'

(R',)' = (R',)'(1+6), n = R',R',/(R', )', (2.16)

The fields, f„„,and the sources are calculated
from (2.11) and (2.14). To avoid magnetic mono-
poles I choose 0=0 and hence

f12 f13 ( )(gll/g22) ( g22g33 g23

x IR' I'~2m

So

f&„&——(1+Bg„/g„) I
R

(2.19)

where

[f/(2vp-)]e23 ", (2.20)

f/2v = (g„g„)"'(1+Bg„/g»)IR', I"'l (2.21)

is found from Eq. (2.14).
Since 0= 0 we must have n, = 0 as the only phys-

ically acceptable solution. Thus the physical fields
and sources are a "sum" of case I and case IIA.
Obviously, as P(p)-0, B- Oand the solution re-
duces to case I.

(b) R 0 R 2( 1 + &) The analogs of Eq (2 15)
are

and a complexion

&,= constant

= [(-g)"'/(R.,R")]

x (2R„.,R, + R„.,R, —R„.,R,),
where R23 1 is the covariant derivative of R» with
respect to p.

I choose an orthonormal, tetrad as

~"„,=((g„)-"',o, o, o),
111=( (g11) )

l~ = (l, 0, BAl', Al ),
k" = (k, 0, BAk, -Ak )-,

B=R',/(R', -R',),
A'= (g„/g„)X',
1/X' = 1+ 2Bg„/g„+B2g„/g„,
k'f'= —IR.I/(2g„)

Again (9=0 and

f &„&-(1 P')'~'IR', I'~'X=B21

(2.22)

(2.23)

X(2)=(0, 0, (g22) '~', 0),
&(.)=(0, 0, -P(1 —P') ' '(g..) ' ',

(1-P') '"(g ) "')

(2.17)

with

= -(f/2vp)e22 " (2.24)

&2 =(l, O, Al, BAl ),
k" = (k, 0, -Ak, -BAk ),
B= R', /(R +R'2), 2

A'= (g„/g„)&',
1/X' = 1+ 2Bg„/g2, + B'g„/g2, ,

IR', I/(2g„) .

(2.18)

so even for this tetrad coordinate (2) can be inter
preted as an angle. There are two cases possible:

(a) R', =+R'-,(1+6)'~'. Then the solutions of Eq.
(2.11) are

f/2v=(g /g, .)"'(g23+Bg22) IR; I"'&. (2.25)

Again uo= 0 is the only physically acceptable so-
lution. Hence, for (b) the physical fields and
sources are a "sum" of cases IIA and I. Once
again the limit P-0 is well defined. Now P 0
yields case IIA as the limit.

It would appear that to proceed further I must
solve Eqs. (2.16) for the functions, y, $, p, , and
P. At this point we see the disadvantage of the
RMW approach. Some of these equations are, in
general, quadratic in the second derivatives of
g„„. However, for this problem the solutions be-
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come trivial if I make use of the local symmetry
and if I can show that the rotation angle in the p-
z plane is independent of the radial coordinate p.

III. SOLUTIONS USING LOCAL SYMMETRY

I now solve Eqs. (2.16) using the local symme-
try T. he metric (2.15) is diagonalized by the
transformation

pdfI5 = cosE pdp —sinE dz,

dz = sinE pdp+ cos& dz . (3.1)

+ p~"(I+ kp ")'dP'+ p "(1+kp ") 'd z'

= -g„(dt ' —dp') +g„d@'+g„d z'. (3.3)

However, at this point I cannot take the previous
interpretations"' of c, k, and a since P is not an
angle. Since the relationships among the quantities
in (2.16), the Ricci tensors, etc. , calculated from
(2.16) and the equivalent quantities in the frame of
(3.3) (such quantities denoted by an overbar) are
related by the angle e, we have

2 2 2
gj 1

=ggj, g22 = g22 COS & +g33P Sin C

sin {c

g33 —g22 2 +g33 COS
p

g» ——(-g»/p+ pg») cose sine,

R', = R', cos(2e) = -R', ,

R', = R', = -sin(2e)R', ,

B= —tan& .

(3.4)

Equation (3.4) satisfies Eq. (2.16) and a direct cal-
culation shows ~, =-0. So the complexion Eqs.
(2.9) provide no restriction on the solution.

In terms of e, and the g„„,
Bo= -2 (ck)'~'(g„g») 't'

x [cos'e+(g„/g„) sin'e] '~'cose

= (8~),[cos'e+ (g»/g») sin'e] '~'cose, (3.5)

B.=+2c(k)"'(g,g..) '(g,.)"'
&& [cos e+ (g»/g&3) sin e] sine

=(8,)»[sin'e+(g»/g»)cos'e] 't'sine, (3.6)

where

I later show the consistency of E = constant. The
new line element is written in the form

ds'= -e " 'S(dt —dp')+ p'e'ed''+e"+»dz . (3-.2)

Consider now case (a) of the preceding section;
the solution to (3.2) is just of the form of case I
of the previous work by Witten and by Safko and
Witten. " Hence,

p2a +2c(I + kp-2c)2c2a(dt 2 dp2)

I/2w = -2c(k)' ~ cose (3 'I)

and

I/2v = 2cv k cos(2e) sin(e) (3.9)

is a current along the z axis. Let (8 ), and (8,)z,
indicate the fields for pure case I and pure case
II A

(8 ),= 2c(k)' 'e'p ""'(1+kp ~) ',
(8 ) = 2c(k)' 'e 4p""' (1+kp ~)' (3.10)

Thus I can either exnand in terms of (a) or in
terms of {b). As expected for (a) if e - 0, c- 0 for
weak fields and for (b) for &-0, c--1 as was the
case for pure cases I or IEA.

It is reasonable to use (a) with c& 0 when e & v/4
and (b) with c& -1 when e&7r/4 since we will then
be using the more natural forms with the c appro-
priate for the weak-field approximation. How-
ever, each representation (a) and (b) contains the
other; so we may concentrate our attention on one,
say (a). If (a) behaveS properly we may justifiably
expect (b) to behave properly also.

This also suggests the use of some constants
other than k and &. I do this by defining

sine = k,/k,
(3.11)

cosa = k,!k

is a current along the z axis.
Since the current along the axis must be inde-

pendent of the size Of @e pillbox used in Eq.
(2.14), I must be independent of p so (3.7) forces
&= constant. So four constagQ describe the solu-
tion: c, u, k & 0, and e. It is possible that c = c(e).
When & =0, and weak fields 2c can be identified
as the mass per unit length of the Newtonian theo-
ry, k as a measure of the magnetic field in the p
direction, and a as R matching parameter for a
real physical mass distribution extending a dis-
tance p, from the axis, Also, a is needed as a
measure of some parameter of a physical sys-
tem which is initially and final'Ly stationary but
undergoes radial motions in between.

As e-z/2, A-0 but BA-(g»/g»)'~', hence
the k" and l" of Eq. (2.15) become the appropriate
ones for case 0A. Also as & —m,/'2, g22 -g» and

g»-g», so the limit e v/2 is well defined (case
IIA) and we are able to describe any superposition
of J3o and B,-with form a. The only & that might
give trouble, e=e/4, can be handled by taking A,

'
=g„/2(g, ,+g„).

We might expect that the same technique applied
to (b) would produce an e = constant also. I find

Bg- (Bg)g)[cos e + (g~3/g2~) sin e) cose,

Bo = (8~),(g,,/g»)'t'[cos'e+(g, gg») sin'e] 'I'

x sing cos{2g},



J. L. SAFKO

with

Equations (3.11) allow us to rewrite Eqs. (3.4)—
(3.7). The relevant equations are

gl1 gl1 1 g22 g22(kl/ ) g33P ( 2!

g„=g„(1/p') (k,/k) '+ g„(k,/k) ',
g2, =( g„/p+-pg„),

8 =(8 ),[k,'+(g33/g„)k, '] 'i'k, ,

8,= (8,)„[k,'+ (g„/g„)k, '] 'i 'k, ,

f/3v = -3c(k)-"-'k, ,

(3.14)

(3 15)

where g„„is given by Eq. (3.3) with 0 defined by

(3.11). An analogous behavior follows for (3.8} to
(3.1O).

These equations [(3.13)-(3.15)] are preferred to
(3.5)-(3.7) since they show the independent be-
havior of 8 and 8, explicitly. Equations (3.14)
and (3.15) strongly suggest that k, is related to the
strength of the magnetic field along the P direction
while k2 is related to the strength along the z axis.
I ean best investigate the meaning of the parameter
by considering the motions of test particles.

m D'x"!8's =i e(dx"/ds) f„". (4.1)

The 1 lght llall"d sid-e ls pul'e imaginary slllce (ds)
= -(dl )', where r is the proper time of the particle.
The a,nalysis of {4.1) can be carried out in a fash-
ion very similar to that done for the sta, tic cylin-
drically symmetr'ie problem by Safko and Kitten. '

There were, for case I (our fra.me denoted by
the overbar, g, „), three constants of integration
E, J, and I.. F was identified as an energy, J an
angular momentum, a.nd I. a linear momentum in
the axial direction. Now, of course, we cannot
give those interpretations for 8 and L since @ is
no longer an angular coordinate. Three of the
solutions of (4.1) are

fV. MOTION OF TEST PARTICLES

In this section the first integrals of the equation
of motion of test particles (both charged and neu-
tral particles) are derived for case (a) of the pre-
vious section. By test particles I mean that we
ignore radiation and other electromagnetic and
gravitational effects produced by the charge and

mass of the test particles. For neutral test par-
ticles the motion is along geodesics while for
charged test particles we assume a Lorentz-force
law. Thus the equations of motion for a test par-
ticle of charge e and mass m are

goo(dt/ds) =iE-,

g„(dy/ds) i=-](k,/k)'[(k, /k)d+( g„/.=„)(k,/k)Z].(k,/k)'[(k, /k)Z. (g„/g„)(k,/k)d])

(4.2)

=- i4(p), (4.3)

g»(de/ds) =—i/(k, /k) '[(k, /k) 2 —(g„/g,„)(k,/k) &]

(k,/k)'[(k, /k)d (g„/g„)(k,/k)~]]

Z = f. + 3(e/m) e'(k) '~ '(1+ k p ") '(((k, c) .
P is a function which is equal to zero when either
k or' c equRls zel o Rnd ls equRl to one otherwise.
The fourth integral of Eqs. (4.1) is just given by
the line element. For timelike motion E, J, or
I are all real, for spacelike motion they are all
purely imaginary.

The physical significance of E, J, I. are again
deduced in the weak-field, low-velocity limit for
a neutr'al particle. Define the velocity v by

dS2=~oodt 2(1 —V') . (4 5)

while (3.6) becomes for small c(c+1), k„k„a,
and v'

F.= 1+a+ v',/'2+e(c+1) lnp+kp ".
This suggests the definition

c = 58(1 —b) —(1+ 5) 8(b —1),
8 = step function,

5=k,/k, ,

and for sufficiently small k„k„~, and v the iden-
tlflcatlons

V/.~= 8 - a - k8(1 —lk, /k, I)

This interpretation can only be made for p suffi-
ciently small thRt second-order ter'ms Rl'e lgnoI'
able compared to first-order terms. In ordinary
units (3.9) gives us m = 2.2 x 10"(&) kg/'m. The
substitution (4.7) will be made even when e(c+ 1)
is not small, but the identification {4.9) is only

~c (8+1)(1+ ~,~ 2c)+g(1 2)"1/2

Now the total energy U of a particle of mass 3[I and
velocity g moving in the gravitational field of an
RxlRl dlstI'lbutlon of mass Pl peI' unit length ls ln
the appropriate units,
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good for & small and in the limit k„k, -0. The
term k.,!k in (3.7) is needed so that. g»- p' and

g, ,- 1 in the limit ~, k„k„a- 0. This, of course,
holds if either k1 or k2 goes to zero faster than
the other. If they go to zero together we must re-
define p, in order to make the identification (3.9)
for small 6. The quantities 8 and 2 will again re-
duce to angular and linear momentum in the zero-
order limit.

There is no need to carry out the analysis of
many of the types of charged and uncharged mo-
tions possible since this analysis is completely
local. Thus the results of Safko and Witten' can be
taken even for P and z, Orbits which are constant
z now become spirals about the axis in @,z as do

orbits which are constant in P. This is entirely
as expected; there is a smooth transition from
case I to case IIA as k, goes from k to 0 for fixed
k. We could proceed to analyze other particle
motions, for example motions with constant p, P;
p, z; and P, z in analogy to what was done for case
I and IIA. Alternatively, we can use Eq. (3.1) to
allow us to relate

(a) p, P constant- p constant, dp/dz = -1;
(b) p, z consta nt - p consta nt, dp!d z = 1;
(c) f, z constant- p, z constant.

It is clear that (c) is unchanged from the case I
and case IIA analysis while (a) and (b) do not per-
mit charged-particle motion. For neutral test par-
ticles (a) and (b) both give

and

Z = ~(T„,''~„2)Z.

(c+ 1) + (c —1)kp " 2k -(c+ 1)p"(1+kp -") '
(4.10)

(4.11)

I have assumed that both k, and k, are nonzero so
I do not consider (4.10) in the limit k-0. For that
limit the results of cases I and IIA apply directly
as discussed previously. ' The nature of the motion
is determined by the line element (2.15). which
can now be written as

—(dT!ds) 2 =
-(1 c )(1+ kp-2c) + c p-Gc 2(1 +. kp-2c)-4

g„2 (c+ 1) + (c —1)kp "
The sign of the term inside the large square
brackets determines whether the motion is time-
like, spacelike, or null as

&0 timelike

=0 null
L

&0 spacelike.

and

-1&c&0 (negative nzass). All motions are space-
like and p must be larger than the greater of p, or
p„where

kp, "=(1+c)!(1—c),

(1+c)+(1 —c)kp, -''= (-c)p, ' "(1+kp, ") '

x (1 +kp ).

p, is greater than p, provided k'"~'&(-c)(l —c')(1
c)1 1/c(1 + c)1/c

c&-1. Define p„p„p„and p, as

kp, -"=1,

-(c + 1) + (-c)p, " '(1+ k p, ") '(1 —kp, ")
From this I conclude the following:
0&c &1. All motions are timelike with p, & p& p„

where -(c+ 1) = (1 —c)kp, "
= (1 —c)kp, ",

and

p,"= [(1 —c)!(1+c)]k +(-c)p, " '(1+kp, ") '(kp, -"' —1),
(c' —1)(1+kp„~)=c'p, ' '(1+kp, 2c) '.

p,
'."= k+ (1,'c)p,

' "(k+p, ")'[(c+ 1)p, "+(1 —c)k].

1&c. If p2& p, motions are timelike for p, & p
-- p, , null for p= p„spacelike if p& p,. and if p., -- p„
then all motions are spacelike with p2& p, where

(e —1)k + cp,"2(k + p2"}
' = (c + 1)p,. "

+kcp," '(k+ p,") '

If 0&p, &p, motion is allowed for p& p, . If p, &p,
then motion is allowed for p& p, . In any event the
motion is null if p= p„ timelike for p& p, and
spacelike for p& p, .

In general it is apparent for a positive mass den-
sity along the axis, c& 0 or c& -1, there is a cer-
tain amount of energy F- which can be divided be-
tween angular momentum j& and linear X. If too
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much is given to one there is not enough left to
provide for the other. Thus it is not possible to
have timelike orbits of the type considered, i.e. ,
too close or too far from the axis. In summary the
overall behavior of these motions is entirely as ex-
pected after consideration of the motions allowed

by cases I and IIA.
The results of analyzing case (b) of Sec. III give

comparable behavior.

~ ( ~

1 ~ e ~el ~
~ ~

~ ~ 4~ 5 ~ g e~ g+ ~ e k e ~g+
t~ y ~ g ~ 4
~ e P e /~ y ~.~

~ 4 ~ ~
~ ~

p 0It

~ oe
~ ~ g 4 ~ ~

~~ ~ ~, , ~

~ ~ ~ ~
1~

~y ~ * g

~ i ~ ~ ~

~ ~ l g ~

~ ~ ~ ~ w
~ ~ ~

: D
~0

FIG. 1. The model configuration showing side and top
viewers. The shading indicates the distribution of matter.
p is the distance from the axis of symmetry, z is the
symmetry axis, and fje) an angular measure about the
axis.

V. MODELOF A SOURCE

I now show that there are physically reasonable
sources which could produce the field I have dis-
cussed. The situation I consider is that of a per-
fectly conducting wire coaxial with a solenoidal cur-
rent as shown in Fig. 1. Space is divided into
four regions denoted by 4, B, C, and D. I will ex-
amine case (a) (I and IIA) in detail. The analysis
for case (b) (IIA+ I) follows in an identical fashion.

Region A is a mire of infinite conductivity. The
stress-energy momentum tensor is taken to be

Q Q Q

0 P, 0 0

0 Qp. S

0 0 S P,
~&san

with an internal line element given by

(5.&)

2 e2y 2$(df2 dp2) p2 2kd@P. e2$+2gdz2

tot: Tg + Tp em&

where T "will be of the form (5.1) with a line ele-
ment (5.2), while

T~ em=&we&'"-~ u"&un~

At the surface p, the components of f» will be con
continuous. The external line element can be taken
similar to (5.3) but I cannot take p, ,=$,=0. Thus

dsD'= -(p+ p, )'c
'

'c[K+(p+ p, )' ]'e'"0 "o(df' —dp')

+ (p+ p,)' 'c[K+ (p+ p,)'c]'e '"od@'

+ (p+ p, )'c[K+(p+ p,)'c] 'e'~0"'os' (5.8)

with p, g, p, , a,nd g» functions of p only.
In region 8 there is the mixture of B, and B I

have been considering. That is, if I rotate my co-
ordinates in p-z by e given by (3.1), I obtain

dss'= -(p+ p,}" "[0+(p+p,)"]'-e'"o '~o(dt' —dp')

+ (p+ p,}'"[0+(p+ p,)"]'e '"od@'

+(p+ po)" [0+(p+ p,)~] 'e'"0 "+dr', (5.&)

where p„y» |I)» and p, are constants, I mill
choose a scaling p, = p, ,= 0, y, = a. Since region A

is of perfect conductivity, we expect that there mill
exist a surface current of strength

(5.4}

in the z direction, i.e. , at an angle e to z on the
surface at p, .

At p, there is the region C which has infinite con-
ductivity in the f direction and zero conductivity in
the z direction. We can imagine a solenoid of wire
with the wire diameter very small compared to the
accuracy of measurement. At this surface there is
a discontinuity in B, while B~ is continuous. I ex-
pect a current of

I~= 2ck'~'(g»/g») „[cos'e+(g„/g„) sin'e]'~'

x [cos'e+ (g„/g„) sin'e] ' sine (5.5)

in the P direction at p, . In region C there will be
only f». Thus in this region
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with a physical component of the magnetic field
given by

2Ck'+e"0 "o

(p+ p, )'c "' [k+ (p+ p,)'c]' (5.9)

I now argue that the components of T„„in regions
A and C can be chosen to be physically reasonable.
There are three local conditions':

1. The components D, P„P» P„and S of the
stress-energy-momentum tensor are finite at all
points.

2. The energy density D ~ 0 within the matter.
3. For weak fields (small c and k «c), D is of

the order of the mass density and P1 P2 P3 and
S are of the order of the square of the mass density
sity:

D = O(c), a, = o(c'), s = O(c')

for c «1, k=0(c').

In addition for region A there is a further condi-
tion:

4. %'e have the condition of elementary flatness.
If R is the ratio of the circumference of a circle
(coordinate radius p) to its radius, R- 2zz a,s p- 0,
for all circles centered on the axis and perpendi-
cular to it.

Take g» in region A to be of the form

g =(1-e'")'"pe" (5.11)

as given in the Appendix and further assume in ad-
dition to (5.10) that

p
/+2

po0/+2 P1
(5.12)

a= a{1+Rx [Rx -(1 —x )] "(n+1)),
P = P [1+ Rx'n/(n + 2) ](1+ Rx') ',
e = e + aRx'(1+ Rxz) ' '(n + 1),

cr=g„{R—1)e '""' 0x (n+ 1),

where

x= sinE/' cosE,

R = g„/'(p, 'g„. ),

A=R ' —A.

For c small, and k«c,
R = 1+4c[2 lnp, + (n+ 1)/(n+ 2) ]

(5.13a)

(5.13b)

( 5.12c)

(5.13d)

(5.14a)

(5.14b)

(5.14c)

and use an overbar to denote the values when e = 0
(i.e. , the solution of Safko and Witten'), then it fol-
lows that

= 1+4cb, . (5.15)
All solutions are chosen so that the first and sec-
ond fundamental forms are continuous across the
boundaries.

It has been shown by Safko and Witten' that there
exist sources satisfying conditions 1-4 for either
pure case-I or pure case-IIA external fields. For
example with an external case-I field and an inter-
nal metric of the form of (5.2) with g» =—0, they
found a T„„with S=-0 which satisfied conditions
1-4 if they took

a = n(1 —8cx2L),

P = P [1+x'n/(n + 2) ],

~ = e + ax'/(n + 1),

cr= 4cb,g,.„c '"" ox!(n+ 1).

(5.13a')

(5.12b')

(5 13c')

(5.13d )

Inserting (5.15) into (5.13) we obtain for E small
(an unessential simplification)

2P(n+1)= a(n+2), zn=n,

For small c and k=O(c')
n+1

p0= 2 cp1.n+2

QD= ED.

(y p
fr+1

P. =Q
n+1 p,

P p
m+1

0=-P+P- = —p+ v~m+1 p,
p

q+1
p=-p, +E + = -9+'Op

q+1 p,

with

(5.10a)

(5.10b)

(5.10c)

(5.1 Od)

(5.10e)

I can make 0 as small as desired by choosing n

sufficiently large. Substituting these into the ex-
pressions for the energy density, D, and pres-
sures, P, and S, given in the Appendix, D = 0(c),
P,. =O(c'), and S=O(c'} as required for physical
acceptability. Thus the matter in region A can be
chosen to be physically reasonable.

At the inner surface of region C, I require that

B~ be continuous so at p, within region C the non-
vanishing component of f,„ is

f»(p, ) = 2c ' kg„z'~'[c s'oe(+g„ g„/) sin'e] '

x cose,

The quantities n„a, P0, and E are determined by
the matching conditions across p= p, . Elementary
flatness determines n, = E, and the relation between
a and P is fixed by the requirement P, =O(c'). I
now show that the existence of this solution enables
me to construct the solution I desire.

where g» and g„are calculated in region B at
p= p, . Since the metric in region C is nondiagonal
there may be several components of f„„and f"". I
again choose a power-law expansion for p, , g, y,
and X in which the forms are the same as (5.10) and

(5.11), except p/p, is replaced by (p, —p)/(p, —p, ).
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Neglecting terms of order k, and hence T„„,I
can show once again physical acceptability.

In the exact solution it is not possible to neglect
the terms of order k. In this case we express the
components of f„„atp= p, in terms of a power law
similar to (5.10) again in terms of (p, —p)/(p, —p,).
All the f„„are chosen to vanish at p= p, except f».
The four Maxwell equations that are not trivially
satisfied provide the additional constraints to lead
to an exact solution in terms of the boundary con-

ditions at p= p, and p= p, . Solutions are only pos-
sible if the parameter C of Eq. (5.8) is greater than
the c of Eqs. (5.3) (neglecting k again).

If we choose to expand in terms of solution II in-
stead of I in region B, the entire argument carries
through with the appropriate changes. So it is pos-
sible to construct physically reasonable sources
and solutions for a wire containing a current co-
axial with a cylinder containing a solenoidal cur-
rent.

APPENDS

I take a nondiagonal metric of the form

ds'= e~ ~(dp' —dt')+ p'e 'dP'+ e~+'"dz'+ 2pe" (e~ —1~'~

where Z, f, p, , and X are functions of p alone. The form of g» is chosen to simplify later calculations.
With this metric form the Ricci tensor has the following nonvanishing components:

R„=+p, 'y' —p'g'+y" —g" —P'/p+y'/p+ &'(y' —P'),

(e-2x+ I)pea (2e 2k+ 1)pry'+ pays yrt 2e 2
ya2+ ytu+ (2e-2 I)qt/p+ yP/p

+ (1 e-M) [I/(2p2) pt/p] g r(g t+yt+ pt + I/p) yes (e2x 2)(e21 1) lpt2

e~R»lp'=(2e ~ —I)p'g'+ g" —e ~p'/p+(3 —2e ~)P'/p

(I e 2x)(p I2/2+ 2yl2 I/p2) +pl(p t + pl) —(1 e 2x) lyl2

e21 % la (esL I)1/2[4e 2kp tel +4e xyl 4e xiii/p+ e 1/p 2 2(e 1+1)p I/p V
I (1 e 1)pt2

-(2e~ —1)(e'"—1)yipi (eu 2)(1 -2~) gl2 (1 e ~) g n]

e~~ '"= -p,"-g(3 —e '")p,"-(3—2e 2)plyt ply e 2xps/p+(1 —2e ")P /p

+(1 e 21)[1/(2p2) 2PI2]+pl(gl 1/p) (1 e PA) lgl2

If these values for R„„are substituted into Einstein's equations with T„„ofthe form (5.1) and with the
definitions of v and q as given in Eqs. (5.10) I obtain

P, D= p" + p. "-+2p, '/p+ X'(4p, ' —2q'+ 2/p)+ X"+-,(1 —e '") 'X"

P = q'p'+q'/p —v" +(e ~ —1)[-p' /4 —v'/p+ p'v'+ p'/(2p) -v" +1/(4p)]

+y'[5g'/2 v' 7i'+ 1/(2p)] g~(e2& 4)(e2& I) ~y'~

P e~/p'= q" + v" + (e '" —1)[3p "/4 —3p'v'+ Sv"+ 3p'/(2p) -3v'/p —5/(4p') ]

+X'[Sp'/4 —v'+3/(2p)]+X" +&(e' -4)(e'~ —1) 'X"

e29 4P ql 2vll + v 2p Ivl 2vl/p+ (ply + pl2 + 2p t/p

+ (e '" —1)[-3v"—3p, 'v'+ 3p "/4+ 3p '/(2p) —3v'/p —1/(4p') ]
+ X'[-5 v, '/2+ v'+ 1/(2p) ]+h" + —,'(e'" —2)(e —1) 'X"

23e'" & "=(e'"—1)'~'(p"+(e'" —1) '[(e'" —2)y~~+Peu+1)pl2+(e&+I)plpt+(e2k 2)pt/p]

+ (5e ~ —3)p "/2+ 6e '"P'(p'+ P' —1/p) +, 2y" —2(("+(1 —3e '~) p'/p+ (3e '" —I)/(2p')).
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