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By associating the mathematical operation of scale transformation with the physics of using different

dynamical systems to measure space-time distances, we formulate a scale-covariant theory of gravitation.

Corresponding to each dynamical system of units is a gauge condition which determines the otherwise

arbitrary gauge function. For gravitational units, the gauge condition is chosen so that the standard Einstein

equations are recovered. Assuming the atomic units, derivable from atomic dynamics, to be distinct from the
gravitational units, a different gauge condition must be imposed. It is suggested that Dirac's large-number

hypothesis be used for the determination of this condition so that gravitational phenomena can be described
in atomic units. The result allows a natural interpretation of the possible variation of the gravitational
constant without compromising the validity of general relativity. A geometrical interpretation of the scale-

covariant theory is possible if the covariant tensors in Riemannian space are replaced by cocovariant
cotensors in an integrable Weyl space. A scale-invariant action principle is constructed from the metrical

potentials of the integrable Weyl space. Application of the dynamical equations in atomic units to cosmology
yields a family of homogeneous solutions characterized by R —t for large cosmological times. Equations of
motion in atomic units are solved for spherically symmetric gravitational fields. Expressions for perihelion

shift and light deflection are derived. They do not differ from the predictions of general relativity except for
secular variations, having the age of the universe as a time scale. Similar variations of periods and radii for
planetary orbits are also derived. The generalized hydrodynamic equations derived for atomic units are
studied. It is found that the stellar structure equations are formally unchanged, except that G and M can
now be functions of the cosmological time. This in turn would imply secular variations of the stellar
luminosities. The effects of these results on the past climatology of the earth and other geological effects are
discussed. None of the consequences of the theory investigated so far is found to be in disagreement with

observations.

I. INTRODUCTION

In recent years, owing to the scaling behavior
exhibited in high-energy particle scattering ex-
periments, there has been considerable interest
in manifestly scale-invariant theories. ' However,
such theories are considered valid only in the lim-
it of high energies or vanishing rest masses. This
is due to the fact that in elementary particle the-
ories, rest masses are considered constants, and
it is well known that scale invariance is generally
valid only when the constant-rest-mass condition
is relaxed. ' An alternative explanation is that, if
atheoryhas an a priori given mass, a length scale
intrinsic to the theory can be constructed. If the
rest mass vanishes, no such intrinsic scale ex-
ists and the theory would thus be invariant under
scale transformation. Implicit in the above con-
sideration is the language of quantum fields. Not
only is the space-time metric a Priori given, it
is furthermore assumed that distances can be
measured independent of the dynamics of the field
under consideration. The scale invariance re-
fe rred to above s tates that the dynamic equations
of the fields are covariant with respect to local
variations of the units of measurement. While
such local scale transformation is mathematically
well defined, its physical significance is obscure

unless one can prescribe physical processes which
could reveal the local variations. To understand
how this can be done, it is necessary to under-
stand what constitutes a unit of measurement.

We notg that in the early days of quantum mech-
anics, it was felt that atomic physics, since it is
fundamental, provided the only natural system of
units' whereby all physical quantities are mea-
sured, and that it was unphysical to consider gen-
eral scale transformations away from the atomic
units. 4 This point of view was modified when dif-
ferent kinds of interaction emerged and there was
no apparent unification among them. To make
measurements, a physical reference system is
needed. Such systems must themselves obey
physical laws. Thus if different reference systems
are governed by dynamical laws corresponding to
different interactions, independent systems of
units can be obtained. For example, the astro-
nomical unit of length is conventionally taken to
be the sun-earth distance. Since this unit results
from gravi tational dynamics, insof ar as a unif ied
theory of gravitation and quantum electrodynam-
ics does not exist, it is logically conceivable that
the astronomical unit mentioned above and the
atomic unit, e.g. , the Bohr radius, are related
generally by a scalar function of space-time.
Thus, with the mathematical operation of local
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scale transformation we associate the physics of
using different dynamical systems to measure
space-time distances.

With this understanding of scaling, we wish to
consider gravitational phenomena under such
transformations. Since gravitation is of infinite
range, it is often said to be mediated by a mass-
less particle, the graviton. In view of our pre-
vious discussion, gravitational theories are ex-
pected to be scale invariant. While this is clear
from the formalism of quantum fields, we wish to
see what scale invariance implies for a classical
gravitation theory. Einstein's general relativity
was originally constructed as a theory of gravita-
tion only. As such, the implied system of units,
which corresponds to a nonvarying gravitational
constant, must be gravitational. ' We shall apply
a general scale transformation to it so that a
scale-covariant theory is obtained. The physical
consequences of this theory will then be explored.

There has been a long history of similar, but
more ambitious generalizations of Einstein's the-
ory. We mention the two prominent ones. In an
attempt to unify electromagnetism with gravitation,
Weyl' generalized Riemannian geometry by al-
lowing lengths to change under parallel displace-
ment. Although the theory was soon rejected as
being unphysical, a mathematical operation known

as gauge transformation was introduced. It repre-
sents, as was pointed out by Eddington, ' a change
of units of measurement and hence gives a general
scaling of the physical system being investigated.
In a paper, Dirac' rebuilt Weyl's unified theory
by introducing the notion of two metrics and an
additional gauge i'unction P(x). A scale-invariant
variational principle was proposed from which
gravitational and electromagnetic field equations
can be derived. As will be seen later, an arbi-
trary gauge'function is necessary in all scale-co-
variant theories. The concept of two metrics,
derived from the Milne hypothesis, was introduced
by Dirac decades ago' to make compatible his
large-number hypothesis (LNH, a brief summary
can be found in Appendix B) and Einstein's gen-
eral relativity. The idea that there exist two me-
trics, one corresponding to gravitational (or
Einstein) units, the other, to atomic units, is
identical to our notion os local scale transforma-
tion from gravitational dynamics to quantum elec-
trodynamics.

To investigate the physical significance of a
scale-covariant theory of gravitation, we shall
first introduce Dirac's theory and define its range
of applicability in accordance with our own inter-
pretation. In the process, minor modifications
will be introduced. But we believe that the fun-
damental concepts are consistent with Dirac's

ideas.
A scale-covariant theory provides the necessary

theoretical framework in which it becomes sensi-
ble to discuss the possible variation of the gravi-
tational constant G. Letting G be a constant
amounts to the adoption of a particular system of
units, the gravitational (or Einstein) units. Con-
versely, G can be found to vary if, and only if,
measurements are made with respect to units
other than the gravitational ones. Furthermore,
it is incorrect to search for effects of varying G

by fitting data with Einstein's equations and sim-
ply allowing G to be variable, for in this case the
equations are inconsistent with the conservation
laws that are commonly assumed. Sensible anal-
ysis of the effects of varying G can be given only
through a system of modified field equations and
modified conservation laws.

We contend also that Dirac's LNH' "can be
incorporated in the present theoretical framework.
The statement that the gravitational constan. t is
inversely proportional to the age of the universe
when measured in atomic units amounts to a state-
ment concerning the relation between gravitational
and atomic units. This we believe was the intent
of Dirac's LNH for the last forty years. With the
scale-covariant theory of gravitation, the nec-
essary mathematical relations can be given for
observational tests of the LNH to be carried out.
It should be noted, however, that the LNH is not
an essential ingredient of the present theory. As
will be seen below, we shall use it to fix a gauge
condition, which in principle could be determined
by actual observation or by some fundamental
principle, once a unified theory has been construc-
ted.

In Sec ~ II, we shall derive the generalized grav-
itational field equations in three different, but
equivalent ways: (1) by performing a direct scale
transformation, (2) by extending Riemannian geo-
metry to Weyl geometry, through the introduction
of the notion of cotensors, and (3) from a vari-
ational principle. Modified conservation laws will
be presented. Having obtained a set of dynamical
equations, we shall derive astrophysical con-
sequences in analogy with the standard theory,
viz. , dynamical equations will be solved for spe-
cific problems at hand. In particular, we con-
sider homogeneous cosmological solutions in Sec.
III. In Sec. IV, we study the geodesic equations
and derive expressions for the perihelion shifts,
light deflections, and secular variations of plan-
etary orbital elements. We also derive the stellar
structure equations for a star in quasistatic equil-
ibrium. A short discussion of the effects of the
above results on the past thermal history of the
earth as well as of other geophysical effects is



SCAI. E-COVARIAXT THEOR Y OF GRA VITATIOW A1WD. . .

also given. Finally, we shall speculate on the
possible relation of the present theory with gauge
field theories and their predictions of cosmolog-
ical constants.

The appearance of a scalar gauge function as
well as the metric tensor in the present theory
can give the erroneous impression that we are
dealing with a special case of scalar-tensor the-
ories'~'". We shall try to point out the essential
differences here. Firstly, scalar-tensor theories
are intended to be complete dynamical theories.
Not only gravitation, but the dynamics of atomic
systems (at least in the classical description) are
also included. We, on the other hand, are only
concerned mith gravitation and do not consider at
this point atomic dynamics or its coupling to grav-
itation. The scalar function, having no independent
field equation for it, will not be introduced as a
field variable. Its physical significance will be
unambiguously defined by Eq. (2.4) below to be the
relation between the measuring instrument and a
gravitationally constructed clock. As such, the
scalar does not participate in the dynamics of
gravitational interaction. Thus Einstein's theory
of gravitation is not modified. We have simply
allowed for different measuring procedures.

We note also that since in scalar-tensor theories,
the scalar field mas introduced explicitly to mod-
ify gravitational dynamics, the theories necessar-
ily give different predictions from Einstein's the-
ory regardless of measuring instruments, and
hence can be ruled out by improved experimental
confirmation of Einstein's theory. The scale- co-
variant theory which we shall present does not run
into the same difficulty. More details on this point
will be given in Sec. IV.

II. SCALE-COVARIANT THEORY OF GRAVITATION

A. Transformation of units —Einstein fie11 equation

Given an atomic system, one could use it to pro-
vide a unit for the measurement of space-time in-
tervals. A collection of such measurements then
provides an operationally defined metric tensor

g„,. To the extent that the atomic system need
not be considered a source of the gravitational
fields, i.e. , in the approximation that the mea-
surements do not disturb the gravitational field
present, g„„need not be identified with g„„, the
metric tensor given by measurements using grav-
itational units, and which is intrinsic in the theory
of geometrodynamics. Thus we start with the
Einstein equations in Einstein units

(2.1)

is the Einstein tensor. The bars indicate that Ein-
stein units are being used. The line element ds is
given by

dS =g dx dx (2.3)

ds' =g „„dx"dx"

then

(2.5)

Z„V=~ gf V
~ (2.6)

Equation {2.6) represents a conformal transfor-
mation from a geometry described by g„„to one
described g„„. The corresponding transformation
of the Hicci tensors and therefore of the Einstein
tensor is well known. " We have"

2P„;. 4P „P,
QV gV P J32

~ pV
p P2

(2.7)

where on the right-hand side, covariant differ-
entiation as mell as index raising and lowering
operations are carried out with respect to g,„.

The cosmological term can be written as

(2.8)

(2.9)

This does not complete the transformation of units
on the Einstein equations since the consideration
of conformal transformation of geometries does
not tell us how g„„transforms. To find out, we
consider a further transformation of (2.7). Let

(2.6 ')

Denoting covariant differentiation with r espeet to
g„'„by a colon, the expression on the right-hand
side of (2.7) can be written as

Z, ,2(PV), :. 4 (PV).(PV).
(Pv)'

2
f((e'(':, (((el'(8y). )(Pv )'

Noting that

where the coordinate interval is dimensionless.
g„, is the matter energy-momentum tensor ex-
pressed in geometric units, i.e. , (length), with
lengths in Einstein units. Under a transformation

ds —ds =P '(x)ds,

it is easily seen that since

where

(2.2)
me see that the above exercise demonstrates the
form invariance of the right-hand side of (2.7).
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Here, by definition,

g„„=-3„„(p),

or explicitly

gv 3,„+Ag„„. (2.10)

Similar invariance can be trivially ascertained
for the cosmological term in the Einstein equation.
We conclude therefore that the matter source term
must also be form invariant and that the field equa-
tions in general units can be written as

2P„;„4P„P„2P:„PP,
pp p p2 pP p p2

d(g &x"~x") =0 (2.12)

and writing them so that they are form invariant
under both arbitrary coordinate and arbitrary
scale transformations. %hereas equations form-
invariant under arbitrary coordinate transfor-
mations are called covariant, equations form-
invariant under both arbitrary coordinate and ar-
bitrary scale transformations will be called co-
covariant after Dirac. ' Use of the term covariant
is reserved for properties related exclusively to
the metric tensor g„„as in Riemannian theory.

In Riemannian geometry, if a displacement vec-
tor ~x" is parallel transported, its length does not
change along the path. Thus

O' T„„=G(P)T'„„(P) (2.11b)
However, under a general scale transformation

with

C -=G(P =1), T„„=-r „„(P=1),
ds ds' = Pds,

the metric tensor becomes

(2.13)

where G(P) and T„„(P)are the gravitational con-
stant and the energy-momentum tensor in general
units. Even though the specific functional depen-
dence on P is unknown at this point, we can an-
ticipate some of the future results by pointing
out that in the restricted case of a pressureless
perfect fluid, (2.lib) reduces to

G pu, u„=G(P) p(P)u„u„.

However,

dz —p-j. —p-&+ 4
ds ds

u„=g„„u =p'g„g 'u"= pu„,

we finally obtain

O'G p=G(P) p{P) . (2.11c)

i.e. , the product G(P)p(P) must transform like P',
no matter how G(P) and p{P) transform individually.

B. Co-covarianf equations —geodesic equations

Having arrived at the gravitational field equations
(2.10) in general units we seek to characterize the
nature of the space-time manifold underlying such
equations. In general relativity, space-time is
taken to be Riemannian and any needed equation
can be found by taking the pertinent equation from
special relativity and writing it so that it is form
invariant under arbitrary coordinate transfor-
mations. %e will see that the space-time undel-
lying Eg. (2.10) is an integrable Weyl (IW) mani-
fold, and that pertinent equations of macroscopic
gravitational phenomena can be found by taking
the corresponding equations in general relativity

d(g„'„&x"&x") = 2g„'„~x"&x'd(in') . (2.15)

Consequently, a generalization of Riemannian geo-
metry is called f'or. Such a generalization was
provided by %eyl, ' and we shall use the mathe-
matics developed for this generalized geometry
to describe our scale-covariant theory of gravi-
tation. %e have given a concise summary of the
essential features of %eyl's geometry in Appendix
A. More details can be found in the books by
Eddington' or %eyl' himself.

It should be pointed out that Einstein" had ob-
jected to the use of Weyl geometry to describe the
physics of electromagnetic as well as gravitational
phenomena. The essence of his objection" rests
in the fact that sharp spectral lines are observed
even in the presence of electromagnetic field,
whereas in Weyl's theory, the electromagnetic
field would imply a nonintegrable length which in
turn implies that different atoms, having very dif-
ferent past world lines, should not be emitting
radiation at the same frequency. The same ob-
jection still applies even though a different system
of units can be set up, since transformation of
units such as given by (2.13) does not alter the
gauge-invariant integrability condition (see Appen-
dix A)

(2.16)

However, in order to include scale covariance
considerations of gravitational phenomena, we do
not need the fully generalized Weyl space. Indeed,
comparing (2.15) with (AS) we need generalize the

(2.14)

The length of the displacement vector in this new

system of units will generally change under paral-
el transport. In fact,
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Riemannian geometry to the extent that Weyl's
metric vector k„can be expressed as a gradient

k =4' „, (2.17)

*C„„=-Sm *Q„„+*A„„. (2.18)

*G,„ is given by (A20) and *A „ is the cosmolog-
ical term. Here each term is an in-tensor and we
consider them separately. Since (2.18) is the
generalization of (2.1), the in-tensors must be the

in which case (2.16) is satisfied and Einstein's ob-
jection does not affect our use of such an integra-
ble Weyl geometry (IW geometry). In the litera-
ture, one often finds statements to the effect that
whenever (2.16) is satisfied, the geometry is
Riemannian. It is true that when (2.17) holds, the
space is conformally equivalent to a Riemannian
space. However, to identify the two is to assert
that k „ is unobservable and is completely irrele-
vant to the description of the physical world. We
do believe that an "absolute" k„ha, s no physical
significance and hence is unobservable. In fact,
this is the reason for imposing scale invariance. "
But the relative k„, which describes the difference
between two systems of units, such as those pro-
vided by gravitational theory and atomic theory,
does have physical significance. The nonmeasur-
ability of the "absolute" metric vector allows one
to stipulate that k, is identica, lly zero in one
system of units which we choose to be Einstein
units.

Using general units of measure, the natural de-
scription of gravitational phenomena is given by
the IW space whose metrical properties are given
by the metric tensor g„„and a scalar potential 4.
But to make use of the mathematics developed for
Weyl geometry, it is convenient to retain the scale
vector k„with the understanding that it is a gra-
dient vector field.

Having determined the mathematical space for
our description of physical phenomena, it is easy
to infer that in a gauge-covariant theory, the phys-
ical equations must involve tensors in Weyl space,
called cotensors.

The notion of a cotensor and its power, and the
concept of co-covariant differentiation which
brings a cotensor into a cotensor of the same pow-
er, are described in Appendix A. We observe
here that P(x), defined in (2.4) as the scale factor
between Einstein units and any general units, can
be easily demonstrated to be a coscalar of pow-
er -l.

From considerations of the transformation Prop-
erties of the Einstein equation in the preceding
section, we expect that the field equation in a
gauge-covariant theory can be written as in-tensor
equation having the form

generalizations of the tensors in (2.1). Since the
metric tensor is a cotensor of power +2, we can
write

*A„„=Ag„„,
where

(2.19)

B'av gv 3pv ~

so that finally (2.18) can be written as

(2.21)

= —8v g„„+Ag, „, (2.22)

where the term k„.„—kv. „has been dropped be-
cause (2.16) has been assumed. Equation (2.22) is
identical to (2.10) if

(2.23)

This amounts to prescribing the gauge potential
of IW space as follows: In Einstein units, the nat-
ural gauge k„=0;4 = constant is used. For any
other system of units, the gauge must be changed,
and the ga.uge induced by such a change of units
is precisely (2.23). Thus, in general the metric
potential 4 must be written as

4 = —in/, (2.24)

where P is the scale factor between the units being
used and the Einstein units.

In addition to the field equations (2.22), one can
easily generalize other equations in relativity to
the scale-covariant theory. Thus, the conserva-
tion law

gpv -0 ypv —0
JV pv (2.25)

which follows from the Einstein equations, must
now be written as

(2.26)

In a similar manner the geodesic equation in gen-
eral relativity, (GR),

u" u "=0
g V

gets generalized to

g"„u"=0, (2.27)

where u" and u" are particle four-velocities nor-
malized to unity.

To ascertain that our prescription for general-
izing the relativistic equations is indeed correct,
we note that if one starts with the geodesic equa-

(2.20)

is a coscalar of power -2.
Since we have already argued that *Q„„is scale

invariant, we shall write
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tion in Einstein units the covariant quantities by the corresponding co-
covariant ones. Thus we ean write the action
principle as

and lets

dX=PdA. , g „=P2g where

(2.30a)

and uses procedures similar to that of Sec. II A,
it can be shown that the new in-geodesic equation
becomes

The ln-invariant character of (2.30a) is ensured by
the multiplication factor p . In principle, one
can add to (2.30a) terms involving co- covariant
derivatives of P, and a term quartic in P, so that
(c,c, = constants)

(2.29) I = dx'vg (- p' *R+c,p*"p,„+cp') . (2.30b)

Using the definition (A16) and remembering that
n" is a covector of power -1, it is straightforward
to demonstrate that (2.2'I) and (2.28) are equiva-
lent, Depending on whether me are dealing with
massive or massless particles, e in (2.28) can
be set equal to 1 or 0, respectively.

In summary, to obtain the generalized equations
in the scale-covariant theory, we take the general
relativistic equations, write the tensors in co-
tensor form, and use co-covariant differentia-
tions. It should be noted that in addition to the
variables that exist in the general relativistic
equation, me now have also P, whose functional
form is not specified. We shall return to this sub-
ject after a, scale-invariant variational principle,
from which (2.22) can be derived, has been intro-
duced. The physical interpretation of Eqs. (2.26)
and (2.28) as well as a possible way to determine
P for the above equations mill be discussed after
the formal development of the theory is completed.

C. Scale-invariant action principle

The ideas that led to the generalized field equa-
tion (2.10) can be used to construct a generalized
variational principle as mell. Here we shall make
connection with Dirac's paper' alluded to at the
beginning, and spell out the minor modifications
we have introduced. Since, as we have seen, the
equations are scale as well as coordinate covari-
ant, the Lagrangian density must be an in-scalar.
As me have also determined that the relevant geo-
metrical space is an integrable Weyl space, the
gravitational field Lagrangian must be constructed
from the elements of IW space, the metric tensor
g„„and metric potential 4, which in accordance
with our discussion in the preceding section is
replaced by P. The simplest may to proceed is to
generalize Einstein's action in the same manner
me constructed co-eovariant equations: replacing

6I=6 dxvg(- p *R+cp +16@2)

d'xRg(- p'R+ 6p'p, +cp'+ 16xZ)

=0. (2.31)

At this point, we do not specify the matter La-
grangian Z aside from stressing that by definition
it is a coscalar with II=-4 and that

2 5
ggv ~ggxgvpQ —p-2 (~gg)Xp (2.32)

mhieh is the natural generalization of

in general relativity. The factor P
2 is necessary

for the cotensor power of both sides of (2.32) to
be -4. We note that the first line of (2.31) is
manifestly scale invariant. The second line has
been written out because it is easier to derive the
field equations from it and will serve as a basis
for our comparison with other theories.

It should be remarked that when Dirae' intro-
duced his action principles in the form of (2.31),
p was considered a new scalar field in addition
to Acyl's metric vector k„. Furthermore, since

The in-invariance requirement dictates that only
a quartic term can appear, The rniddle term,
while having the correct invariance properties,
has no contribution in our theory because

P „=P „—II&„P=0,
where II is the power of P. The first equality fol-
lows from the definition (A14a). The second e|Iual-
ity follows from (2.23) and the fact that II =-1 for
P. Including a matter Lagrangian, me can then
state our action principle as follows:
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Dirac's k is not related to P by (2.23), P, P*"
does not vanish. With this additonal ter'm in the
Lagrangian, Dirac could ensure that no indepen-
dent equation is derived for the variable P,
only if he puts c, =6 in (2.30b). With our intro-
duction of IW space and p as a metric potential,

the indeterminacy of P becomes a natural conse-
quence of the theory. A variational principle for-
mally identical to the one given by the second line
of (2.31) was also considered by Anderson" and
Bicknell, " Independently varying g,„and P, and
using (2.31) and (2.32) we find

pv,.y p spy p& p&pg=f g' ggIg~ g"' —-'g"R+2 —4 — " 2 "— ' +8 g"'+ 'g'g" -gg2
p p2 w

p p2 2 py

~z
+ 4cp'+16~ ——2' -12p". 5p

$p
(2.33)

Hence,

p"" 0"p", p'. p pg"'- —'g""P+ 2 —4 2
—g"' 2 '" — = —8n3'""+ Ag

p p' '
p p' (2.34)

pft+ 6p".„= 4Ap-+ 8v 62/6p, (2.35)

p~+6p". „=-4~p+s~pg „.
Comparison with (2.35) gives

(2.34 ')

pgv Qp' (2.36)

However, this relation must be an identity by con-
struction if I is to be scale invariant. To see this,
we consider an infinitesimal scale transformation,

ds —ds ' = (1+ X)ds

so that

5p =-xp,

When the above variations are put into (2.33) and
~I is required to vanish under such transforma-
tions, we find exactly (2.36).

It should be pointed out that the matter Lagrang-
ian considered here is phenomenological. It gives
rise to a source ter m which is again a phenom-
enological energy-stress tensor, as in classical
fluid dynamics. Within the context of the present
gravitation theory, source strengths can only be
measured through the effects the sources have on

where we have set —,c }3 =- A. Equation (2.34) is
seen to be identical to the Einstein equation we
have derived previously for general units. Al-
though (2.35) appears to be an independent field
equation, we shall show that this is not the case.
ln vacuum,

Z =0 Q""—0,

and it can be easily seen that the trace oi' (2.34) is
identical to (2.35). More generally, the trace of
(2.34) can be written as

the geometry. We can thus scale the source term
like geometrical quantities and impose scale in-
variance on the matter Lagrangian. Implicit is
the stipulation that the scale-breaking part of the
latter is neglected even though it may contribute
to the gravitational field. As will be stressed
below, it is precisely such terms which are re-
quired to complete the theory of coupled dynamics.

The fundamental assumptions in all the above
methods of deriving the gravitational field equa, —

tions are the same. We imposed scale cova, riance
as well as general coordinate covariance. In the
first two methods the indeterminacy of P is clear,
since it was introduced as an arbitrary scale fac-
tor and no new equation could be derived for its
determination. With the variational method, al-
though a new equation was obtained, it has been
shown not to be independent of the rest of the field
equations. Such an under-determinacy is not new.
It is well known that for any action invariant under
certain continuous transformations, there exist
Bianchi-type identities among the field variables.
In CR, the under-determinacy is taken care of by
imposing coordinate conditions. In the present
theory, we shall impose gauge conditions so as to
eliminate the arbitrariness in P. However, before
we elaborate on how this can be done, we shall try
to clarify certain conceptual differences between
the two kinds of conditions. Coordinate systems
are considered to be a priori devoid of dynamical
significance. The measuring units, on the other
hand, are generally considered to be dynamically
determined. In fa.ct, it has been suggested"-' that
every proper theory should provide in and by itself
its own means for defining quantities with which it
deals. The gauge freedom that exists in the pre-
sent theory is a, result of our professed ignorance
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of the proper coupling between different kinds of
dynamics~ speel~lcally the coupling between geo
metrodynamics and quantum electrodynamics.
If the coupling is stipulated a priori, such as in
the al p -po t fga tt alaeto ad
QED action, one no longer has gauge freedom. In
fact, p must then be constant. We do not feel that
such a simple superposition is the only possible
coupling of the two kinds of dynamics, for within
its framework, there is no possibility for the grav-
itational constant measured with respect to atomic
units, to vary„an issue which ought to be resolved
by accurate experimental verification, rather
than by a priori conjecture. . To the extent that
the measuring system does not perturb the grav-
itational field being measured, the above given
formulation of the gravitational theory in arbitrary
units can be considered applicable. Thus, one
could even take such measurements as an a pos-
teriori determination of the unknown scale factor.

In view of the above discussion, we emphasize
again that the dynamics of the measuring device
is not included in our action principle. As An-
derson" has pointed out, if one makes the grav-
itational source scale invariant, one cannot con-
struct dynamical systems which measure dif-
ferently from the intrinsic gravitational units.
This is indeed quite clear frorr. the first two de-
rivations we have given for the generalized field
equation: Since only gravitational dynamics is in-
volved, only one dynamical clock can be con-
structed. In a unified dynamical theory, there
would be a single unit corresponding to this dy-
namics, which would be neither gravitational nor
atomic. In such a theory, one could conceive of
11Inlt1ng cRses ln which isolated atorn1c systems
Rs pRsslve measuring devices do not Rct Rs
sources of fields. As such, the measuring device
or clock loses dynamical meaning in the restricted
dynamical problem being considered. The unified
theory, if such existed, would be able to supply
the relation between the atomic measurements
and those made intrinsically with the restricted
dynamics. That is, the scale invarianee would be
broken and Eq. (2.36) would become the field equa-
tion for P rather than a Bianchi identity.

One could of course turn the problem around and
consider, Rs DlrRc does, thRt the 1Rrge-number
coincidences are statements of relations between
the units of different dynamics. Consequently, the
gauge condition can be inferred using such re-
1Rtlons Rnd we shR11 show below how this can be
done .

Thus we see that the LNH can be considered the
observational input which determines the atomic
gauge relative to the Einstein gauge, Rnd therefore
the function j3. With this known functional form of

P and hence known variation of G, the field equa-
tions derived earlier are complete and solutions
can then be obtained to yield various cosmological
models just as in general xelativity.

It should be remarked that we have not used LNH
in the general form (85). Rather, we are consid-
ering (84a) and (84b) as separate hypotheses which
ean be adopted in conjunction or separately. Our
purpose is to use relations of the type (84a) and
(84b} to determine the gauge condition. Whether
(85) is consistent with the scale-covariant theory
can then be subjected to tests using the dynamical
equations. It is interesting to note that if both
(84a} and (84b) are used in the determination of
P, (86) follows as will be shown in the following.

D. Conservation hvvs

In any action principle, corresponding to coor-
dinate transformation (CT) and gauge transforma-
tion (GT) invariance, there are associated con-
servation laws. In the ease of the vacuum, Diraes
has already given the details of the derivation of
these laws. For CT invariance, one gets the gen-
eralized Bianchi identities Rnd for CT invariance,
one simply gets an expression which is identically
ze x'o.

When matter was present, the GT-invariant con-
servation equation was derived in Sec. II C. Aside
from ensuring that the scalar field equation is not
independent, it does not seem to have any sensible
physical interpretation, For CT invariance, one
can proceed formally as indicated by Dirac. ' After
some tedious algebra, one arrives at precisely
the conservation equation (2.26). Instead of pro-
ducing all the details of this derivation, we shall
pursue (2.26) further by introducing the energy-
momenturn tensor of a perfect fluid,

(2.3't)

Introducing (2.37) into (2.26), and using (AIQ), we
obtain

(2.38)

and the Euler equation

(p+P}u' = (g'"- u "u")

where for any A„A =—A. „g". For a comoving vol-
ume V-R', an alternative form of (2.36) is

1 Dp'UGP p 1 DAP D=-3-—,—-=u" e . (2.4O)
p)QGP Dt p RP Df ' Dt

We recall that the gravitational "constant" is now
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P}=&n Fz (2.42)

is the rest-mass density.
Since Dirac's LNH raises the possibility of non-

conservation of baryonic number, we shall seek a
generalization of (2.41). According to our co-co-
variant considerations, (2.41) can be simply writ-
ten as [see A161

(Ku ~) ~„=(9)lu~). , —(11+4)Ru~k,

=0. (2.43)

The cotensor power lt of $}u" can be deduced as
follows. First, it is clear from its definition that
g~" has power -1. 9J} is the classical limit of p,
the energy density, and hence has the same power
as p, which we denote by II(p). Furthermore, we
denote the coscalar power of G by II(G). From
(2.11c) we can write

a function of spa. ce-time and its derivatives do not
vanish in general. Equations (2.38) and (2.39) show

explicitly how the variation of G and P modifies the
energy and momentum conservation laws of gener-
al relativity when written in general units.

Next we consider yet another conservation equa-
tion whose physical content is not contained in the
action principle. In hydrodynamic problems en-
countered in general relativity, it is necessary to
have an equation for the number density of parti-
cles in order for the system of hydrodynamic
equations to be closed.

Let us consider the mass conservation law in
Einstein units, i.e. ,

(2.41)

where

the assumption of validity of (2.41) in Einstein
units and its consequences in (2.46) and (2.47) is
consistent with our previous treatment of the
scale-covariant field equations. It is easy to see
that in the classical limit, when p = 0, (2.40) is
equivalent to (2.46). But we empha, size that (2.46)
is an independent equation since it is a,ssumed to
be valid even when matter pressure is nonvanish-
ing.

1G&-n&c)
t ' (2.48)

where the second relation results from a conse-
quence of the LNH, namely that the gravitational
constant in atomic units is inversely proportional
to the cosmological time. We next consider (2.46)
in a cosmological context. Equation (2.46) implies
for a comoving volume g

1 D+'U
'9 Dt' j3

= [II (G ) —1 Jml —,

or (2.49)

E. LNH as a gauge condition

Since we do not yet Know the functional form of
G or P, we have only the formal structure of a
theory. To be able to solve dynamical problems,
we must specify P which corresponds to choosing
a gauge. We sha, ll now give an example of how the
LNH can be used to specify P in cosmology.

G is a cosca.lar, and we assume it has power
II(G). In Einstein units, it has a ronstant value
G. j3 has been shown to be a coscalar of power -1,
In Einstein units it is a constant which we can set
equal to unity. Thus, generally, we can write

II(p) + II(G) =-2,

so that

II -=11(mlu ) = il(8)I)+ 11(u )

= II(p) —1

= -II(G)-3.

(2.44)
D933'UG P

Dt
a result to be expected as a particular case of
(2.40) since when P —0, p —p, =I}JI (rest-mass den-
sity). We theref ore have

(2.45)

(n u ~). —[II(G ) —I ]n =O. —p

p
(2.47)

II(G) cannot. be specified independent of the gauge
condition. Examples of its determination will be
given in the next section. Finally, we note that

Consequently, Eq. (2.43) becomes

(Ku"), „—[II(G) —1]9)I—= 0, (2.46)

where Eq. (2.23) has been used in the above reduc-
tion. In atomic units, particle rest mass is con-
stant and we obtain an equation for the particle
number density.

(2.51)

Il(G) = —1,
G =GI3.

(2.52)

(2.53)

On the other hand, if we do not assume spontane-
ous mass creation and require

p[.n(C)-l. ) ~O (2.54)

(2.50)

where the second relation states that the mass in
a comoving element increases like the square of
cosmological time, which is another consequence
of LNH. Combining (2.48) and (2.50), we find
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we obtain instead

p ~t

II(G) =1,
G =op I.

IlI. COSMOLOGY

(2.55)

(2.56)

(2.57)

rectly by scale transforming the corresponding re-
sults in Einstein units and using the fact that P2Qp
=G p. Using (3.3) to eliminate G(p) p(p), we can
now solve Eq. (3.2a), which we shall write for the
case when matter dominates over radiation, g,~=0,

dE dE a—+3AE -k
P dt d7' E

Having determined the atomic gauge and hence
a specific functional form for P, the dynamical
equations can be applied for cosmological consid-
erations. %e shaB assume, as in the standard
cosmological model, spatial homogeneity and iso-
tx'opy. The 11ne eleIQent caJl be wx'ltten ln the
Robertson-%alker form

F =R(t) P(f), a:—
3 P ORO'.

Upon 1ntegrating, we find
j' jQ dE

{n/F - I + ', AF')'~2-.

(3.6)

{3.7)

d*'=dt —R (t't '+r de'+v'sin'Hdq'}, (3.l)1-Ax

where 0 is a parameter which can be normalized
to ~1 ox 0. We keep in mind that ds is in atomic
units. %hen the occasion arises, quantities in
Einstein units will be indicated by a bar over the
symbol as has been done in Sec. II.

With (3.1}and (2.37) the field equations (2.10) be-
come

p(f)R(f) = [1+,'t, F7, ln—(t/f,}]'~'; (3.8)

P(t)R(f}=q, (1 —2q, ) '(cosh&- 1},

For 0=+1,0, the A=O solutions are well known.
Translating back into atomic units, the R(t) vs t
functions now read for the case (A}, P =t,/t (matter
cl eatlon: Fol" Q = Oq

~ ~

P 2 k am—+— +—= —Gp+-'A
A P A

(3.2a) t,H, ?n{t/f, )+2 = q, (1 —2q, ) '~'(sinh g —$~),

A P P 8 P'-4'—+—+————= — {3p+p)+ —'A
z p pa p' 3 {3.2b)

As in ordinary cosmology, the dynam'ic equation
(3.2a} must be supplemented by the "energy con-
servation" equation (2.38)

A 1 DCP P0+3 (p+ p) = p -—3pR QP Dt P
'

which, for any equation of state of the form

1=q,(1 —2q, ) '(cosh f, —1),

A. =q, (l —2q, ) '~'(sinh g, —g,);
for k =+1,

P(f)R(t) =q, (2q, —1) '(1 —cos8),

t,H, ln(t/t, )+B= q, (2q, —1) '~' (8- sin8),

(3.9b)

(3.9d)

P=&g p~

can be integrated to give

1
G(P)p(P)R'"'""- (3.3)

1 =q, (2q, —1) ' (1 —cos 8,),
B =q, (2q, —1) '~' (8, —sin8, ) .

(3.10b)

(3.10c)

(3.10d)

Specifically [see (2.53) and (2.57)]

P
' "~ (A) matter creation,

pals(1+C~~

) (3.4)
3Cp "s {B)no matter creation.

For the case (B), P =i/t„ i.e. , without matter cre-
ation, one can derive an analogous set of equa-
tions, where, however, the terms to ln(to/t) must,

substituted
For dust (c,' =0) and radiation (c,' = —,') the previous
equations specialize to

to
p(t)df - 2 t, i

1-
t

(3.11)

(A) p (f) , , R-'(f-), (8) p (t)-R-'(t),1

(A) p„{&)- -~ —R '(~), (B) p„(f)-—R '(&).
1

(3.5b)

Equations (3.2) and (3.5) can also be obtained di-

In particular, for large values of I, , the cases
k = 0 and k = -1 yield

R(t)-f "~' (4=0) R(t)-t (k=-1) (3.12)

Analogously, for small 8's, the case 4=+1 gives
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(3.13)

Finally, we must explain the relations between

F70, qp in Einstein's units and the corresponding
H„q, in atomic units. In fact, Egs. (3.8)-(3.10)
still contain the Hubble constant and the deceler-
ation parameter expressed in Einstein units.

Introducing the notations

dels employed in the nucleosynthesis computations
done so far correspond to Einstein units with 6 =0.

The first case to be considered will be the one
corresponding to no-matter creation. Since in the
three cases the R(t) function can be written approx-
imately as f'(a= —,

' or 1), it is easy to check that
(3.18) becomes

1 —a 1 —a
qp 1 f qp'+a

(3.14) a
qp qp 1

(3.19)

~=2q + +2(l+Q )
0 —2 —0p 2A hp hp

p, ' 3H,' 'H2 H

z
= (2qo —l)HO + A+ (1+2@0)h 2 —4hoHQ,

0

(3.16)

or

we can easily derive from (3.2) the relations (p,
Pmpy

The value of qo is clearly less than one for any of
the three curvatures k =+1,0; in particular qp
= 0.5 for k =+ 1,0 and q, = 0 for k = -1, whereas qp
is 0 or 2. This clearly indicates how incorrect it
is to compare q, instead of q, with observations.

The case (A) can also be treated. By writing
approximately R =f(lnf)~ (b = j' or 1), it is easy to
derive that

1 —b
qp=

8L ]+~
(3.16) b1 tnb+(b —1)

(b+ lnf)'

(3.20)

a generalization of the well-known relations in
Einstein units,

~=2q, + —.. .=(2q, —l)H, '+A,

(3.17)

The relation between q, and q, is derived to be

~H
Bo Ho+ho ~ p p

0

(3.18)

At this point we must discuss a very important
point concerning q, and q, . In traditional cosmol-
ogy the search for the value of the curvature has
been pursued in the last 16 years by Sandage and
his collaborators. Recently, however, the abun-
dance of deuterium, an element very difficult to
form but present in the early universe, has proved
to be a more sensitive test than any of the ones
used by Sandage so far. The conclusion based on
the abundance of deuterium is that the universe is
open and the value of the deceleration parameter
is much less than unity. This value is often mis-
takenly identified with qp, thus ruling out the k =+1,
=+1,0 cases for P = tlto, since q, = 2. However,
this is not correct. The experimental value should
be identified with qo, because the cosmological mo-

MG
, -const,Rc' (3.21)

Dirac has suggested that R —t, for the matter cre-
ation case. In fact, if M- t', G - t ', R must go
like t. Clearly such a behavior is only reproduced
by the k =-1 curvature case, without matter cre-
ation, however. Within the matter creation case
it is clear that a pure R-t is not an admissible
solution for the A =0 case. However, it ought to
be remembered that the Mach principle (3.21) is
actually not incorporated into the set of Einstein
equations (3.2), and so its use corresponds to an
extra boundary condition. This is most clearly
seen if we write (3.21) as

p GR' - const. (3.22)

Here again, as before, qp (1 and in particular,
qp 0.5 for k = + 1 and o and q, = 0 for k = -1 . This
completes our exposition of the cosmological con-
sequences of the gauge-covariant theory of grav-
itation. As will be shown later, case (A), corre-
sponding to matter creation, seems at present
favorable over case (B). In this case we would
suggest that the k=-1 curvature case, with R- t lnt, is more likely to be the model that best fits
the cosmological data in that it yields the smallest
value of q„namely zero, as the growing evidence
from the abundance of deuterium seems to indi-
cate. At the level of numerical coincidences and
Mach's principle
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The pxoduct pG is a coscalar of power -2 and so

p C(PR}2 = const. (3.23)

This impl. ies PR =& = const, i.e. , we must have a
static Einstein universe in Einstein units. Case
(B), with P "t, is evidently excluded, since it would

imply R-1/t, i.e. , a contracting universe, a fact
against all existing evidence. For case (A) with
matter creation, P-1/t, we have R-t, i.e. , the
universe expands, an admissible solution. In this
case the cosmological constant A must be different
from zero.

Mach's principle as expressed by (3.21) is im-
posed in addition to the field equations and is not
a natural result of the latter. However, we prefer
to stick to the exact solutions represented by (3.8),
(3.9}, and (3.10) without postulating any additional
external boundary condition.

Finally we would like to comment on the exis-
tence of the large number [see (B3)]

(3.24}

By asserting that (3.24) should hold for all cosmo-
logical times, Dirac concluded that one must re-
quix'e matter creation. But in the construction of
the large number N„ the present expansion para-
meter Ho was used to define the visible universe,
whose coordinate boundaxies may change with
time. Hence the variation of N, with time need not
imply matter creation. In fact, by using p„(t) from
case (B), (3.5a), corresponding to nonmatter cre-
ation, p -1/R'(t) and (3.12) and (3.13) for either
k=0 or +1, the quantity

(t) 1 R(t) ' 1
H'(t) R'(t) A(t) P'{t)

goes exactly like t and no matter creation is
needed. Granting that the LNH ean be meaning-
fully used to fix the gauge funtion P(t), we must
emphasize that the cosmological solutions pre-
sented here are valid only for large cosmological
times and cannot be extrapolated to early times.
If onedoes so,"'"onefinds that the mean free time
for nuclear interactions as well as the mean free
time for photon Compton scattering are greater
than the expansion time of the universe itseU and
therefore no nucleosynthesis could have taken
place.

As repeatedly stressed by Dirae, the LNH is an
asymptotic condition and it cannot be used to fix

the value of P(t) at times when nucleosynthesis
occurred. A new condition must be found. For
exactly the same xeason we cannot at this moment
make any sensible comment on the existence of a
horizon, since that again implies the knowledge of
the function R(t) and therefore p(t) for any t.

IV. APPLICATION TO LOCAL GRAVITATIONAL

PHENOMENA

A. Equations of motion

In this section, we shaB consider three classical
tests of general relativity whex'e effects of a non-
constant P may be observable. Since, as we have
emphasized, we have introduced a scale function
P to put Einstein's theory of gravitation in a scale-
covariant form, any purely gx avitational experi-
ment is not expected to produce results different
from the predictions of GR. In particular, the
perihelium advances per revolution and the deflec-
tion of light rays by a spherically symmetric grav-
itational field, being measured in radians, are
necessarily scale invariant. I.ikewise, the equa-
tions of motion for planetary orbits, expressed in
terms of coordinates, must be identical to those
of QR, since coordinates are also invariant under
scale transformations. It is only when radial dis-
tances and orbital periods in atomic units are con-
sidered that the present theory yields predictions
different from those of GH. Specifically, both dis-
tances and time will be scaled with respect to
those of GR by a factor P . With this sealing, it
is easy to obtain predictions from the px esent the-
ory once those of GR are known.

However, in discussions of planetary orbits with
a varying gravitational constant there has been in
the literature some confusion as to what the eox'-
rect equations of motion ought to be. %e shall
therefore outline below the set of new equations of
motion that are relevant for the class of problems
under consideration and indicate how integrals of
these equations can be obtained. Discussions of
specific changes in measured quantities required
by the present theory will then foBow.

We consider motion of particles (massive or
massless) under the influence of a spherically
symmetric gravitational field. In QR, the metric
is given by the Schwarzehild solution of the source-
free Einstein equation, and the line element is
written as (in this section t and r are taken here
to be coordinates)

d&' =g „„dx"dx"= (GM)'[(1- 2/r)dt' —(1 —2lr) 'dr' —r '(d8'+ sin'8 dy')] .

With arbitrary P, an exact solution of the source-free (2.34) is given by

ds' =g„px "dx" = p 'dP = p '(GM)'[{I—2/r)dt —(1—2/r} 'dr' —r'(d8'+ sin'8dy')] .

(4.1)
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The t."hristoffel symbols for the two metrics are related by

P~+gp p p"
vX vX v p X p vX p

The components of the in-geodesic equation (2.28) can now be written explicity:

AP, , B„P„.r'P,, tr2+ i~ ir tr t ~2 pp -0B~ B i) B P 'B
B Bp, p . 1A„., r p„r+ '"-—~ p- ~ r']+- '"r ——1 —r~r jy+ pp

—0Ap p 2A A p A ~ ~

p, ~ . 2 ptp+ —-~ yr =0.
p r p

(4.3)

(4.4a)

(4.4b)

(4.4c)

For ease of notation we have taken GM =1& a dot
indicates differentiation with respect to the para-
meter ~, and we have used the notation or

J2J2r4 dy r' (4.9b}

B=A '=1 —2lr. (4.5)

Ar'2 r 2 A)2 = qP2 (4.6)

For simplicity we have assumed p = p(t, r) and fur-
thermore, restricted the motion to the 8 = e/2
plane. The normalization condition (2.29} can be
shown to be an integral of (2.28) and can now be
written explicitly,

(4.9c)

These are seen to be identical to the equations
used in the study of perihelion precession, light
deflection, and radar echo delay in GR. Thus,
without further mathematical analysis, we can
immediately write down the following":

Dividing through by r, (4.4c) can be integrated to
yield

dA.
—(lny+2 lnr —lnP) =0

(a) Perihelion shift:

6m
(&v)„=z,

where

(4.10)

or

p 'r'j =const=J, (4.7)

1 12I = —+ —'

r, r-' (4.11)

which is the generalized angular momentum con-
servation equation. Using (4.6), it can be shown
that (4.4a) reduces to

(b) Deflection of light:
4

(&v') ),= —,
0

(4.12a)

r, are the coordinates of aphelia and perihelia.

or

d~
—ln(P 'tB) =0

p 'tB = const =E, (4.8)

where r, is the radial coordinate of closest ap-
proach of the light path. If this coordinate is taken
to be that of the solar limb, we then write

(4.12b)

d, , J' E'—P 'Ar'+ —,——=0.
d~ r' B

It can be seen that this is another way of writing
(4.6):

p Ar' +———=const=e.J
r2 B (4.9a)

One can eliminate the parameter X in favor of cp or
i in (4.9a), using (4.7) and (4.8) to give

which is the generalized energy conservation equa-
tion.

Finally, with the aid of (4.6)-(4.8), (4.4b) yields

&t=4 1+in
0

(4.13a)

where r, and r, are the radial coordinates of the

where we have restored units (atomic) to the right-
hand side of (4.12a) and where R, is the solar ra-
dius. It should be noted that even though GM,
scales like a geometric length, R does not since
it is not a quantity determined by gravitation alone
fsee Eq. (4.17)].

(c) Radar echo delay: The coordinate time delay
is given by
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reflector and emitter respectively and have been
taken to be constants. r, is the closest radial ap-
proach by the radar signal characterized by (dr/
dy), =0. A maximum delay is obtained if ~, cor-
responds to the coordinate of the solar limb. We
can finally write for the atomic proper-time delay

2+14 + 3Q (4.18)

ordinates of the orbit are identical with those of
GR. In particular, we can derive from (4.9b) the
foH.owing:

{nt~) =g~ n t =p 'G111B'~ (r}n t=GM nt
h =~{GM)'.

=4Gm 1+in (4.13b) For simplicity, we limit ourselves to circular or-
bits whose radial coordinate is

where we have used (2.50), i.e. , GMP = const.
Since R, is not gravitationally determined, the

expression (4.13b) does not scale simply like a
time. We have

r =h'/(GM)'

'The orbital radius, given in units of atomic length,
is then

P(ht„) =(&t„)o —8Go.V,Din P-~
I (4.13c)

80

8 = p '(GM}r=h'/(pGM) =h /(p GM) (4.19)

where

(4.14)

where the index zero corresponds to the value to-

Arguments based on homological transforma-
tions" give the following relation for the radius of
the sun:

Defining n = y and eliminating h from (4.19) and
(4.7), we recover Kepler's law in it usual form

(4.20}

From (4.19) and {4.20) one easily obtains for the
time variation of n and R,

(4.21)

n+ k2 —4
+3+3k, +k, '

n —1+k, +k2
n+3+3k, +k, '

(4.15)

~ =~,pT", k=k, p'1T"2. (4.16)

where n, k„and k, a,re the indices in the nuclear
source term and the opacity, i.e. ,

1 DGm P
GM Dt P

Hence we have the following:

(a) primitive theory'7 ":
P=1, G-t ', M =const,

~i G f'I

n G R

(4.22)

(4.23)

(4.24)

For the p-p chain, n =4.5, and for the case of
Kramer's opacity, k, =1 and k, =-3.5. With these
values, we find

(b) scale-covariant theory (GMP = const), matter
creation

p ~ t 1 G-t ', M-t', (4.25)
(4.17)

which can be used in (4.13c) to show explicitly the
time dependence of (n t„)

n 0
n G' R G' (4.26)

(c) scale-cova. riant theory (GMP = const), no
matter creation

B. Planetary orbits
t ' M =cons (4.27}

Instrumentation technology has permitted a high-
accuracy measurement of planetary distances and
orbital periods in atomic units. It has been sug-
gested that such measurements could in the near
future reveal deviations from predictions of the
standard gravitational theory, such as the secular
variation of the orbital period I' of two gravitating
bodies. In this section, we shall derive some pre-
dictions of the scale-covariant theory relevant to
such measurements.

As was noted before, the equations for the co-

(4.28)

The preceding equations can alternatively be ob-
tained remembering that n=nP, F7, =RP, and GMP =

const.
We have presented a dynamical derivation to em-

phasize consistency of our reasoning and caution
against the ad hoc introduction of dynamical equa-
tions without a theoretical framework. "'"

To conform to the notation most widely used in
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the literature regarding the earth-moon motion,
we shall cast cases (a), (b), and (c) in the form

equations are, dropping v' terms and letting y- 1,

n. —n,
G n

(4.29}

2—[r(I —e '~) J=2G(4vr'p) 3~+2—(} r'e~~,
Br ~18 p

with f=
2 for (a), f=+ 1 (matter creation) and f = —1

(no matter creation). Here ii, is the contribution
due to the tidal motion and n, is the atomic con-
tribution. The most recent data indicate that"

(4.35)

(4.36)

n, = (- 26.0+ 2.0) "/century',

n, = (- 3 6.0+ 5.0}"/cen«ry',
(4.30)

(4.37)

Since n, -n, turns out to be negative and G/G is by
definition negative in any of the previous theories,
it follows that

Using (4.36), (4.35) can be integrated to yield

(4.38)
—=f (-5.8 +3.1)10 "/yr
G

(4.31)

with f either 2 or 1. The case without matter cre-
ation (f=-1) seems indeed to be excluded. Can
one decide between f=-,' and f=1 ?

In the cosmological context of the present theory,
Eqs. (3.8)-(3.10) indicate that R is almost a. linear
function of t, so that with good approximation,
—G/G can be written as

M(t, )=4w f p(t') "dr',. (4.39)

Since we are considering cosmologically induced
variations of stellar structure, P/P is of order
I/ „fwehre f, is the age of the universe. For a
local system, (r/t, )' « I (we have put the velocity
of light c= 1), so

——= —=~=a .
G to Ro

(4.32)
~~~I j 2

GM
r (4.40)

The value of H, is uncertain and present estimates
range anywhere between 50 and 100 km sec 'Mpc '
However, even with the smallest value of H,
(=5xl0 "/yr), Eq. (4.31) does not admit f=-,'. The
px esent-day indication is therefore in favor of the
version of the scale-covariant theory with matter
creation, and not of the primitive theory.

which is formally analogous to the standard stellar
equilibrium solution in general relativity. But in
the present context both G and M are functions of
tGQe.

In the same approximation, (4.37) and the radial
component of (2.39) can be written as

C. Stellar structure equations
G M+ 4zr3p

r
(4.41)

In the scale-covariant theory of gravitation, one
accepts the possibilities of a gradual weakening of
the gravitational field and continuous matter crea-
tion. Thus, a star in hydrodynamic equilibrium
may undergo secular variations induced by the
variations of gravitational field strength and the
total mass of the star. In this section, we apply
the field equations {2.34) to the problem of stellar
structure. Assuming spherical symmetry as usual,
the line element and the velocity field can be writ-
ten as

s2 =ego(t' r)dP —e2()(t, r)dr2 ra(dg2+ stn2g dp2)

dp =-&'(a+ P},—
where (4.40) has been used. We finally arrive at
the stellar structure equation

df G (o+ p)(m+ 4vr'p)
dr r (r- 2GM)

{4.42)

This equation indicates again that any cosmologic-
ally induced variation of stellar structure is, to
an accuracy of (r/f, ), implicitly contained in the
variation of G and M. Consequently, classical re-
sults such as the luminosity of a star"

(4.33) L, G M~p. (4.43)

u ' = {re ~, (y' —1)' 'e ",0, 0), (4.34)

where y is a function of r and t.
After some lengthy algebra, the nontrivial field R' 'GM2 ~ = const, (4.44)

and the polytrope relation" {p- pr, I'= 1+ 1/n, n
= polytropic index),
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D. Surface temperature of the earth —geological effects

Cosmological ideas such as the ones presented
in this paper are sometimes tested using arm-
ments based on the acceptable temperature of the
earth in the past few billion years. Several argu-
ments aga. inst and in favor of a time varying G

have been published over the years but no firm
conclusion can yet be rea, ched.

The absolute luminosity of the sun is known to
vary as

L (t) = I.„(t)G'(t)M'{t), (4. 46)

where 1.„(t) corresponds to the change due to the
evolution of the chemical composition, i.e. , the
molecular weight p, . For Kramer's opacity, y- 7,
6- 5. Defining an effective temperature as

cT,'= S(t) = L
(4.47)

where R is the sun- earth distance, it is easy to
see that even if G and 3I are constant, the temper-
ature was lower in the past since p. was smaller.
Using (4.19) for R, it is easy to derive the time
variation of the solar constant S(t) as

where S,= 1.9885 cal em~min '. For the cases
under consideration, we obtain the following:

(1) stellar evolution only,

S,(t)=S„' ";
0

(2) primitive theory,

S,(t) = S,(to/t)""

(3) scale-covariant theory, no matter creation,

S,(t) = S,(t,/t)~'.

(4) scale-covariant theory, matter creation

S,(t) = S,(t/t )" " '

The effective temperature T, is then obtained as
210.69 S't'(t) 'K. Using standard stellar model

remain valid up to the same accuracy.
If we apply (4.44) to a, galaxy, for which the

polytropic index n is of the order of 5 or 6 and so
in good approximation 1 —1, (4.44) yields for the
size of the galaxy

(4.45)

since, as we know, G,VIP= const. We therefore
conclude that the size of a. galaxy scales like P ',
i.e. , exactly like the orbit of one of its peripheral
sta, rs [Eq. (4.26)j a, s expected.

computations to evaluate L„(t) one can evaluate
S,(t) and the remaining ones. It turns out that 1.2
cons ago, T, = 244 'K, 285 'K, 266 'K, and 240 'K
for y=7 and 6=5. Analogously, 2.5 cons ago, the
results are 238'K, 334'K, 288'K, and 230 K.

We should point out, however, that the above
estimates of T„evaluated from (4.47), cannot be
directly compared with temperatures derived from
geological data since the greenhouse effect and
possibly other geothermal effects have been ig-
nored, so that T, does not represent the physical
temperature at the surface of the earth. Adjusting
the chemical composition of the atmosphere, by
introducing a smaIl amount of ammonia, Sagan and
Mullen"- were able to get such a large greenhouse
effect that the lower luminosity in the past was
amply compensated for, and a higher "surface"
temperature was obtained. Consequently, the past
thermal history of the earth cannot be used to
argue conclusively for or against a given cosmol-
ogy by estimating the variation of the sola, r con-
stant alone. A more thorough analysis of the
problem, including the varying greenhouse effect
with a varying solar constant, is now being at-
tempted, and the results will be published else-
where.

Other geophysical effects of a varying G cosmol-
ogy are often discussed and we shall limit our dis-
cussion here to showing that the present theory
does not contradict any well-established fact.

An update survey of implications for geophysics
as arising from nonstandard cosmologies can be
found in a paper by Wesson. " We shall discuss
here two major effects: the expansion. of the earth
radius and the spin down. Thorough discussion
and pertinent references can be found in the paper
by Wesson.

Having shown that in the present theory the hy-
drostatic equations governing the stability of a
star are unaffected by the scale function P(t), we
can write down the expression to be satisfied by

R, G, and M [Eq. (4.44), as

R -M &r-~ &~ &&~ 4&G l~ &r 4& (4.49)

where R,/t, is 0.425, 0.354, and 0.319 mm/yr for
Ep 15 18 and 20 billion years, respectively.
Several independent estimates (Wesson, quotes 21
of them) lead to the result

R, = (0.5—0.6) mm/yr (4.51)

which yields the desired results for the time vari-
ation of the earth's radius, namely

R 2E' —3 1
matter creation, —= 4—

(4.50)
B 1 1

no matter creation, —=
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We have already proved that within the scale-
covariant theory, the conserved angular momen-
tum is given by Eq. (4.7), from which we deduce
that the time variation of the period is given by
(using 4.49)

2 G 2r 4m
3I'-4G 3I -4M P' (4.53)

Hence we have the following:
(a) primitive theory,

P 2 1
I 3I"—4t ' (4.54a)

(b) scale-covariant theory, matter creation,

P I' —2 1
P 3I' —4t ' (4.54b)

(c) scale-covariant theory, no matter creation,

P 3I"—3 1
P 31 —4t' (4.54c)

where P,/f, is 0.576, 0.480, and 0.432 msec
century for t, =15, 18, and 20 billion years, re-
spectively.

By fitting an expression of the type p= apr to the
numerical values of P and p for the earth, "we
concluded that 4.5 ~I «7. We shall take I'=6, so
that

0

matter creation, R, = 0.227,

, 0.205
' 0.03

no matter creation, R, = ~ 0.025

0.023

in mm/yr. Analogously

0.082

(4.55)

0.617

(a) Po= 0.068, (b) Po= 0.137, (c) Po= 0.514

. 0.061 0.123 . 0.463

(4.56)

in msec/century. None of these figures is in con-
tradiction with the observed values.

V. CONNECTION WITH GAUGE FIELDS FINAL REMARKS

In this paper we have presented a, scale-covari-
ant theory of gravitation, characterized by a set

for the last 500 million years,
Let us now look at the spin-down effect. It seems

to be an accepted fact that the earth is not only ex-
panding but also slowing down at a rate of

P, = 1.6 msec/century . (4. 52)

of equations mhich are complete only after a choice
is made of the scale function P(f). Among an n

priori infinite number of choices, two seem par-
ticularly appropriate: Einstein gauge (P = const)
and atomic gauge.

Since no general principle has yet been given as
to how to choose P(t) in atomic units, we have
suggested the use of the large dimensionless num-
bers relating atomic and gravitational constants.
Several results, ranging from cosmology, plane-
tary orbits, stellar structure, and earth's geology
are then derived and shown to be consistent with
a variety of mell-known facts.

Even though such proofs of consistency must be
given, they constitute a neces sar y but not suf fi-
cient raison d' etre for such a new theory. Other
more fundamental reasons exist which justify the
study of a covariant theory of gravitation. The
generalization is being pursued; we have in mind
the relation between gravitational and atomic phe-
nomena, a relation that in spite of having been
discussed in the scientific literature with in-
creasing frequency has not; yet, led to a satisfac-
tory picture. Gravity is recently being considered
in a much broader light and its hoped-for relation
to the structure of matter is more closely inves-
tigated; the ultimate goal is the unification of all
types of interactions, an endeavor that has been
recently crowned by encouraging success.

From the theoretical point of view, Weinberg
and Salam have convincingly conjectured that elec-
tromagnetism and weak interactions can be com-
bined into a unique non-Abelian gauge theory. Ex-
perimental evidence is so far in favor of such a
theory. (Einstein theory of gravity is also non-
Abelian. ) From the experimental point of view,
strong interactions have recently been shown to
exhibit scale invariance, a property so far pos-
sessed only by electromagnetic interactions.

Seemingly dividing barriers have either fallen
or become more brittle upon close inspection and
the gate seems to have finally opened to a flood of
new interesting though still unrelated proposals.

In this paper we have focused our attention on a
direction so far unexplored, namely scale invari-
ance. We do not claim to have shown that gravity
must be scale invariant, but only tha. t a gravita-
tional theory endowed with such a property leads
to no contradictions with weB-established facts
ranging from geology to cosmology.

Since local gravitational phenomena have been
historically the major cause of the high rate of
casualties for other generalizations of Einstein
equations, we have given a detailed presentation
of the three classical tests, with the result that at
any given instant of time the present theory yields
the same results as ordinary standard theory.
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Having passed that hurdle, we have indicated
how the present theory can enlarge our interpre-
tation of several phenomena, not ultimately being
the only consistent, theoretical framework which
can accommodate a possible variation of the grav-
itational constant with cosmological time, a possi-
bility entirely excluded by ordinary Einstein equa-
tions.

Besides passing several crucial. tests, a theory
must also be able to make predictions. In this
respect we bel. ieve that the present theory can
solve what has been a major difficulty concerning
the cosmological constant A, within the framework
of gauge fields an.d broken symmetries. Although
it is not known whether A is needed to explain cos-
mological facts such as the magnitude vs red-shift
relations, it is unquestionably true that the stabil-
ity of galactic clusters put limits on its magnitude.
In fact, j A~ must be less than 10 "cm~.

Since the cosmological constant A can physically
be interpreted as the vacuum contribution. to the
energy-momentum tensor of matter, " it is possi-
ble to derive the following expression'6 "within.
the framework of the gauge fields:

A = —— ~ & 10"' cm '
G~

some 50 orders of magnitude larger than the pre-
vious value. This large discrepancy, which has
even been considered as undermining the credibil-
ity of the Higgs mechanism, "can be drastically
reduced if not totally accounted for in. the present
theory. In fact, on the basis of (2.20) and (2.51)„

A must have a time dependence of the form

A(f) = A, (t,/f)'.

If A, & 10 "today, A(t) & 10 ' was achieved at f
= 10 " sec, a time not dra, stically different from
the quoted t=10" sec, i.e. , T=300 QeV at which
the computation is usually performed. The com-
putations can be improved further once we have a
better understanding of the behavior of P(f) at
early cosmological times. In. fact, we ha.ve rea-
son to believe that P(f) scales faster than f ', thus
moving 10 ' sec to earlier times.

The analogy with gauge fields and broken sym-
metries is probably even deeper. In fact, we have
learned from the work of Linde andWeinberg that
a possible phase transition existed at very high
temperatures or equivalently at very early cosmo-
logical times. Above a critical temperature T,
=300 GeV, the differences in strength among weak,
electromagnetic, and nuclear interactions disap-
peared„all the forces becoming unified.

Our proposal here is complementary in spirit
since it deals with gravitation, an interaction not
covered by the gauge fieMs theory of Weinberg and

Salam. The present work indicates the possibility
of an; increase of G at early times. Supposing that
G increases always like t, gravitational interac-
tion would equal in strength electric forces at t
=10"sec.

Since, however, we do not know the exact form
of P(f) at early times, the previous values serve
only as orientative. Should the phase transition
become definitely established, one could use it to
fix the behavior of P(f) for early times.

In conclusion, a great dea, l of future work re-
mains to be done both from the stan. dpoint of in-
ternal. consistency, comparison and relation with
theories of fundamenta, l interactions as well a.s di-
rect compal ison with observations;

It is our feeling, however, that the preceding
;analysis has shown how a scale-covariant theory
c". enlarge the possibilities of taking one step
further toward a unified theory of the various
kinds of interactions, without contradicting any
well- accepted facts,
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APPENDIX A: COTENSOR ANALYSIS

In this section, we shall first review the essen-
tial features of Weyl's geometry. Cotensors are
then defined in Weyl space. Some mathematical
relations in cotensor analysis pertinent to the main
text of this paper will be derived here.

The fundamental postulates of %eyl geometry
are a,s follows;

(A) There exist affine connections I'~„„such
that parallel transport of a vector (' can be de-
fined Rs

where

(8) The change of length of a vector by parallel
transport is given by

Note that the metrical properties of Weyl space
are specified by both g„an() k, . Since lengths are
not, assumed to be preserve(l, the scale vector k~

gives their variation under parallel transport.
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It can be easily shown that the affine connections
are related to the metric and scale tensor s by

other. The latter is also called a gauge transfor-
mation and we shall be using these terminologies
interchangeably in this paper,

From (A3) it can be shown that under the scale
transformation (A9), k„ transform as follows:

k —k' = k, + (Inl) (A12)

—(Z..k~+g.P. g'P. )—. (A5a)

Qp/
px 28 (gyp,

%+gpss

v guk, p)

—(g"„k„+g"„k„—g„„k")

F~uk (+ vkx++ Pv +vP (A5b)

where I'"„„are the Christoffel symbols defined in
terms of g„„as in Riemannian geometry.

If we define a curvature tensor inWeyl space
by mea, ns of parallel displacement of a vecto~
along a closed curve, we get analogous to the
Riemannian case

The associated contracted tensors *B„„and~R

can be written as

=B „-2(k .„—k„. ) —(k, .„+k„. )

-g,„k".,—2k, k„+2g, P"k„, (A7)

(AB)

ds- ds' = I(x)ds

Since

(A9)

where R„„and R are the Ricci tensor and scalar
curvature defined in terms of g,„. Clearly, if k„
= 0, the affine connections as well as the curvature
tensors reduce to the Riemannian case, and %'eyl
space in this limit becomes Riemannian space. We
note also that a. semicolon is used in this paper to
denote the normal covariant differentiation defined
using I""„~rather than *I"„„.

Next consider a general scale transformation of
the form

It is easy to show using (AII) and (A12) that *I' „t,
is invariant under gauge transformation. It is of
course not a tensor. But the tensor properties of
*R"„», *R„„,*8 can be easily established. Fur-
thermore, since *I""„„is gauge invariant, inspec-
tion of (A6) and (A7) shows that *It'„„and *R,„
are also gauge invariant.

Now we introduce the notion of a cotensor. Let
A denote a tensor of arbitrary rank, i.e. , is under
coordinate transformations, A has tensor proper-
ties. If in addition, under gauge transformation
(A9),

(A13)

then A is called a, eotensor of power H. In particu-
lar, if II=0, A is called an in-tensor. Thus, we
see that ~R"„», *It„„are in-tensors. From (A11),
g„„ is a cotensor of power 2. Since g"" is the in-
verse of g„» it is a eotensor of power -2.

Clearly, products of cotensors are again co-
tensors. In particular, let A„A, be cotensors of
powers II, and II„ thus

A=A, A

is a cotensor of power II = H, + H, . Consequently,
~R is a coscalar of power -2. (In the present
terminology, scalar and vector are special cases
of tensors. ) We mention the obvious fact that not
all tensors are cotensors. For example, R,„and
A do not transform like (A13), although they have
tensor properties under coordinate transforma-
tions.

The extension of the concept of tensor to that of
eotensor requires a corresponding extension of
covariant differentiation. It is clear that the co-
variant derivative of a cotensor is in general not
a cotensor. Let 8, V, T be cotensors of power II
having ranks 0, 1, and 2, respectively. We define
the co-eovariant differentiation of these objects as
follows:

ds2 =g„„dx"dx'" (A10) (A14a)
and Ch'", since it is a coordinate differential, does
not change under sealing, we have

V "~„=-V" „+*I'~„„V"—II@„V", (A14b)

(A14c)

Equation (A11) can be recognized as a conformal
transformation. We remark that given (A10) as
the definition of the line element, conformal trans-
formation and scale transformation imply each

A"" =—A"" + ~l"" A + *I'" A"'-Hk A""
WA A, p » X r

(A14d)

(A14e)
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General. ization to higher-rank cotensors is imme-
diate. It can be easily seen from expressions
(A14) that the co-covariant derivative of a cotensor
of power II is again a cotensor of the same power.

The following relations will be found to be useful:

V "g„=V~.„—(II+ I)k„V~+0"V„—g"„k~V", (A15)

V ~g„= V".„-(II+ 4)k, V~,

A ~ "~~ =A"".„—(II+ 2)k„A ~"—g~ ~k p
A' "

g "~k,A."'+0"A"„+0"A"„,
A~" ~„=A~".„—(II+ 5)k„A""—k, A'~ + k~A"„.

If A""=A"~, we have

A'" „=A"'.„—(ll+ 6)k„A""+k "A"„.
f

The metric tensor g„„satisfies the relations

The analog of the Einstein tensor Q„„is

(A2O)

APPENDS B: DIRAC'S LARGE-NUMBER HYPOTHEQS

In this appendix, we briefly outline Dirac's large-
number hypothesis (LNH) and some of its conse-
quences. More detailed discussions can be found
in Dirac's papers. ' " A comprehensive summary
has also been given by Canuto and Lodenquai. "

The motivation of Dirac's hypothesis has been
the coincidences among certain. large dimension. —

less numbers first noted by Eddington, which have
been known a,s the Eddington. numbers. One of
these is the ratio of electrostatic and gravitational
forces between a proton and an electron:

e2
N = 2 x 103s

Gm, mp

A second number arises when the age of the uni-
verse, approximated by the reciprocal of the
Hubble expansion. parameter, is divided by an
atomic unit of time:

PN C =7 x10".0 e'
0

If the present average density of ma, tter in the uni-
verse is taken to be p= 10~' g cm ', the total mass
within the visible universe defined by this Hubble
radius c/Ho is given by 4mp(c/Ho)'. A third —large
number can thus be derived:

The coincidences mentioned above refer to the fact

that the following relations hold:

N, = a2%2,

X "'=a '"X,
3 3 2 &

(84a)

(84b)

where Qg 03 ar e of order close to unity. Many the-
orists believe that the dimensionless constants in
physics, such as e'/kc or m~/m„can in principle
be explained theoretically. Likewise there have
been numerous speculations about the coincidences
of the Eddington numbers. Dirac pointed out that
the xatios N, :N, :N,'~' are of order unity. They
are expected to be derivable theoretically as one
would expect for the fine-structure constant. Ac-
cepting this point of view, and noting that N2 cor-
responds to the cosmological epoch, he came to
the conclusion that the gravitational constant mea-

suredd

in atomic units and the number of baryons
in, the visible universe must be a function of the
epoch. Furthermore, he formulated the hypothesis
that given any large dimensionless number X, it
can be expressed a,s

(85)

where a and k are constants of order unity. Clear-
ly, Eqs. (84) are special cases of (85). It should
be noted that (85) is now taken to be a functional
relation: As time passes, N2 necessarily changes
and N would change accordingly.

The immediate consequence of the large-number
hypothesis is that the gravitational constant is in-
versely proportional to the epoch, and the number
of baryons in this visible universe increases like
the square of the epoch. When Dirac" applied the
LNH to R, the radius of the universe measured in
atomic units, he concluded that the exponent 0 in

(85) must be 1 and hence

(86)
where we have written t for X„which is the epoch
in atomic units.

It should be emphasized that the large numbers
considered thus far have been derived as ratios of
macroscopic gravitational units and microscopic
atomic units. In fact, this prompted Dirac in his
original article on. the subject to suggest that the
proper way to understand the I.NH is by the con-
sideration of two metrics. But this line of reason-
ing had not been taken up until recently.

Other a,strophysical consequences of the LNH
have been considered by various authors. The
conclusions do not follow as simply from the LNH
as do Eqs. (84) and (86), and various dynamical
x'elations had to be used implicitly or explicitly.
Hence, instead of summarizing these results here,
we shall consider them anew in the main text as
consequences of the modified dynamics of the
gauge- covariant theory of gravitation.
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