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We consider the low-frequency limit of cross sections for massless scalar, electromagnetic, and
gravitational waves scattering on a Schwarzschild black hole. Explicit results are found for the scattering
amplitudes, which differ from the Born approximation results.

I. PLANE WAVES

For any process, the calculation of a scattering
amplitude via the time-independent formalism re-
quires a statement of a fiducial plane wave. For
scattering on a Schwarzschild black hole, a de-
composition into spherical harmonics is essential.
Any expression written for a “plane” wave must be
“distorted” owing to the long-range field.!'> The
asymptotic scalar “plane” wave is’
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in the exponent describes the distortion of the wave
owing to the long-range field (M is the mass of the
hole, w is the frequency of the wave, and » and ¢
are the usual Schwarzschild coordinates).

For the electromagnetic and gravitational cases
one needs to either work with gauge-invariant
quantities or to fix a gauge. In these cases we
choose to present the ingoing and the outgoing
pieces of the wave in two different gauges, both of
which are asymptotically transverse (and trace-
less). We have for the vector potential component
A, m* and the metric-tensor perturbation compo-
nent hm,m“m" (see Ref. 2)
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Here the constant mode amplitudes K, K are, for
circularly polarized incident waves,

Rz, = - 2T (-1) (”;‘)
x[6,,,6(w —@) +P6,_,0(w+@)], (1.5a)
Kfze=(-1)""K 5, (1.5b)
i, == 1Ty (1)
X[6,,6(@—-w) -Pb,_,0(@+w)] , (1.6a)
Kihoe=(=1""K 58 (1.6b)

and A and % are the electromagnetic and metric
perturbation amplitudes of the plane wave. Also,
for the purposes of this discussion the label down
(up) means incoming (outgoing). InEgs. (1.3)-(1.6)
the symbol P =x1 is the parity. This quantum num-
ber does not enter scalar and electromagnetic
scattering partial waves. Their scattering is in-
dependent of the parity. The gravitational scat-
tering, however, is not. However, in all cases,
the plane wave is a sum of positive- and negative-
parity pieces. The expressions (1.3)-(1.6) are for
left circularly polarized waves if w>0. The other
handedness is obtained by reversing the sign of w
everywhere.

The variables Ke*“"* Ke*i®"* described in
(1.3) and (1.4) are simply related to the asymptotic
form of the gauge-independent wave variables
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(here collectively denoted X) described by Mon-
crief.? These wave variables X all satisfy a wave
equation,

(1.7)

where V(#) is a function of order »~3. [V(#) is dif-
ferent for the scalar, the electromagnetic, and
the two (P =+1) gravitational cases.]

One calculates a scattering solution by imposing
the boundary condition that the wave be pure in-
going at the horizon, At 7= this solution can be
asymptotically split into its up (outgoing) and down
(incoming) parts. The normalization of the wave
is then adjusted so that the down part is identical
to the down part of the plane wave, via (1.1), (1.3),
or (1.4). The difference between the up part of the
now normalized solution and the plane-wave value
of the up part is the scattered wave amplitude.

II. LOW-FREQUENCY SCATTERING

For many purposes it is desirable to have simple
analytical closed forms for limiting regimes of the
scattering problem. Here we concentrate on the
limit w - 0. This is the appropriate limit, for in-
stance, for the cross sections needed in “test par-
ticle” virtual quantum calculations. As we now
show, it is actually an approximation in w/! and
the analytical results it produces for large [ com-
plement numerical calculations for small /.

The appearance of the term /(I+1)/7* in Eq.
(1.7) shows that for /#0, and for the w -0 limit
considered here, the s-wave scalar scattering is
different from the scattering of the other modes.
For any other mode, the classical turning point is
#p>1/w for small w. This makes the influence of
the (#)~° terms of Eq. (1.7) negligible compared to
the angular momentum term [(I+1)/»2, and it
means that the peak value of the potential barrier
in Eq. (1.7) is very large compared to the energy,
w?, of the wave. Hence the scattering becomes
elastic for small Mw/!, and a description in terms
of (real) phase shifts becomes satisfactory. (We
shall denote such phase shifts as y,.) The substi-
tution

X=Y(1-2M/7)""? (2.1)
gives a wave equation of the form
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(2.2)
For Mw < {, (2.2) has the form of the Schrodinger

equation for a Coulomb scattering problem with
7%/2u =1, where p is the mass of the scattered
particle, and with attractive charges of magnitude
Ze®=4Mw®. The asymptotic solutions of (1.7) which
have a phase e**“"* go over asymptotically to
phases e*!“7c, with

v.= 7+ 2M In(2w7) , (2.3)

the combination which appears in the well-
known'-*® solutions to the Coulomb problem for
the parameters described above. Obviously the
asymptotic relation

r*~ ¥e (2~4)

will be satisfied if the so far unspecified constant
in »* is adjusted so that

y* =+ 2M In(v/2M - 1) + 2M In(4Mw) . (2.5)
We shall call the limit Mw << 1 of Eq. (2.2), i.e.,
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the comparison Newtonian problem. Solving Eq.
(2.6) exactly is equivalent to solving (1.7) or (2.2)
in the w -0 limit. Since (2.6) is exactly a Coulomb
radial wave equation for 72/2u =1 and Ze® = 4Mw?,
we may immediately take over results from the
quantum-mechanical Coulomb problem. In par-
ticular, the phase shifts 7, found for (2.6) will be
those of the Coulomb scattering problem.

In the low-frequency limit considered here the
two parities for gravitational wave scattering ap-
proach each other, a result which is straight-
forward from the form of the wave equation (2.6)
in this limit. In general, for finite w, the two
gravitational wave parities scatter differently.
This may be seen by referring to the metric form-
ulation of Zerilli® and Moncrief*, where a wave
equation of the form of Eq. (1.7) is obtained, with
explicitly different V() in the two parity cases.
An alternative viewpoint on this problem is af-
forded by a formulation?® in terms of the Teukolsky’
equation. This equation deals with Riemann ten-
sor components and is explicitly independent of
the parity P. When dealing with the Riemann ten-
sor formalism, however, the expression for the
phase of the plane wave is parity dependent, with
a parity dependence which disappears only at
w -0 as considered here and at w -« (the WKB
limit)?; this parity dependence of the plane wave
then manifests itself in a parity dependence of the
scattering. The work of Chandrasekhar® and of
Chandrasekhar and Detweiler® showing the rela-
tion between the two parity solutions to the metric
perturbation problem is closely related to the
Teukolsky equation approach of Ref. 2.
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III. SCATTERING AMPLITUDE
We have seen that the phase shifts y{? (for [#0)
tend to the Coulomb phase shifts 7, for Mw/I-0
(here a labels the spin: O for scalar, 1 for elec-
tromagnetic, and 2 for gravitational). Further-
more, the two parities P =x1 behave identically in

J

this limit, even for scattering of gravitational
waves. We use the notation Y J(8, ¢) =e'™ S™(6).
In the three cases scalar, electromagnetic, and
gravitational, there is a scattering amplitude for
circularly polarized incident waves given in the
w -0 limit by the following®

scalar: f(6)= 47;)0 IZO(ZZ+1)1/20 (2‘7<°)_1) (3.1a)
w*o(ﬁgg- SO 2iy (0 41r) Z:; (21+1)V2 S0e*™ (3.1b)
electromagnetic!!: a(6)= (427;);/2 2;(2l+ 1)v/2 _,Sf(ez"%z‘)—l) (3.2a)
~ (42”1,):)/2 g(zu 1)YV2_Sle® s (3.2b)

gravitational: g(6)= 4ﬂ) Z(Zl 1)Y2 _,S%(e wri? _q) (3.3a)
~ iz”.)—l—z f:(zu 1)V2_,8%% M, (3.3b)

w—*0 1=2

In all these cases the second line, following the
symbol ~, is obtained from the first by noticing
that

> (21+1)V2 ST

1=]sl
is proportional to a § function in the forward di-
rection. Since we anticipate the same forward di-
vergence as in the Coulomb case, owing to the
long-range Newtonian force, dropping this term
which arises from the (-1) in Egs. (3.1a), (3.2a),
and (3.3a) is a permissible transformation.!? The
scattering amplitudes then are undefined up to a
phase which amounts to adding a constant to each
of the phase shifts, which in turn is equivalent to
adjusting the constant in Eq. (2.5). Hence the con-
stant in 7* is not relevant for calculating the cross
section.’ Our choice in (2.5) has made the phases
for />0 equal to those in the usual treatment of the
comparison Newtonian problem.

We use the formula'® with x=cos#:

fl [sin®(6/2)]°P,(cos6)d cos6

fl 2791 - x)°P,(x)dx

2(-1)'T%0o +1)
To+1+2)T(1+0=1)

(Reo>-1) . (3.4)

This is the expression which is used to “explain”

r

the summation of the expression which is the scat-
tering amplitude for the scalar version of the com-
parison Newtonian problem (2.6). A small amount
of manipulation using the properties of T'(Z) gives

F(6) =M[sin?(8/2)]~}* 2 #w 2in, (3.52)
1/2 =
= %— > @I+ 1)V2 Soe (3.5b)
1:
where
; T(1+1-2iMw)
2im, _ N T = TR
€ T T(+1+2iMw) (3.6)

and where (3.5a) is recognized as the scattering
amplitude for the scalar limiting Newtonian prob-
lem, Eq. (2.6). This explanation has to be taken
with some reservation since the term [sin®(6/2)]"!
in (3.5a) means that Reo = -1 in Eq. (3.4). How-
ever, we shall continue by viewing this integral
as the limit as € = 0, for Reo=-1+¢€.
From Egs. (3.1) and (3.5), we see

(©) (4m)v/2
2iw

F(O)=F(8)+(e*Y0 -

e* o) ~—— S 3.7
which is just the addition of an angle-independent
complex constant to F(6) which gives the New-
tonian case.

Starobinskii'® has shown that the =0 scalar ab-
sorption cross section is not zero at zero fre-
quency. This implies that yf,") is complex. From
Starobinskii:

Imy (9 = kMw |
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where k is a positive real constant of order unity.
In addition, Matzner' has shown that the low-fre-
quency behavior of Rey (¥ is

Rey {9 = w(dM - $ MIn2Mw)

with d another constant of order unity.

Hence the additional constant term which modi-
fies the Newtonian result is dominated by a term
proportional to In2 Mw, and diverges for w - 0.
Hence the low-frequency scalar scattering cross
section for the gravitational case diverges at all
angles as w - 0.

We are left now with evaluating a(6), g(6) accord-
ing to (3.2) and (3.3). Since the two cases are so
similar, the electromagnetic case is left to the
Appendix.

We introduce the raising operator L, which
raises the z component of angular momentum, »z,
by one unit®'5;

- - S

L -<ae mcotf sine) . (3.8)
We have

L' St=[(l=-m)(l+m+1)]/2 5™+ (3.9)

We also use the spin-weight-raising operator &
(see Ref. 3):

¥=—(9,—m/sind — s coth) : , (3.10)

FSr=[(I-s)I+s+1)]/2 8™ (3.11)

Now consider Eq. (3.5b). Since each term in the
sum has m=0 and s=0, the operator L' L* may be
applied as a differential operator to the summed
expression. We have

L*L'F(6)= (34 — cot)a,F(6)
)1/2 %

Zzw D@1+ 1)V2L LY S%% M (3.12b)
1=0

(3.12a)

1/2
(477) Z (21+ 1)1/2 l)l(l+1)(l+2)]l/2

X Sie?tm (3.12¢)

J

B
£(0)= cos*(6/2) *

By g
cos*(9/2) "1

4 - 2in -1+2i Mw
cos*(6/2)g; =Me O{y +< 2V

2iMw — 2 ,: 2iMw -1
2iMw +1

a sum which is even more divergent than (3.5b),
but which may be evaluated by explicitly applying
the differential operators to the expression F(6)
of (3.5a). Notice that the [=0, [=1 terms of
(3.12¢) vanish.

Similarly, since each term in the sum (3.3b) has
the same values s=-2, m=2, we have

&6(6) = (ae - siie +cot9> <ae - == +2c0t0>g(9)
(3.13a)
1/2 _*®
= (—4%— 2 (21+1)/%g8 _,S%e% ™ (3.13b)
1=2
(4,",)1/2

- 3 QU= DI 1) 2)

X oS2e® M (3.13c)
The result (3.13c) is a sum identical to that of
(3.12¢).

We shall not concern ourselves with the diver-
gent nature of these sums, since they obviously
sum to the quantity

H=sin989<%%€-> , (3.14)

which diverges at 6=0. Instead we regard Egs.
(3.12¢) and (3.13c) as giving us a linear second-or-
der inhomogeneous differential equation to solve
for g(6):

2 2
<ae_ sin6 +cot0> <89 ” sind

Since the second-order operator is presented in a
factored form, the integration of (3.15) is straight-
forward. Using the notation y =sin?(6/2) we obtain

+2 cot9> g8)=H .

(3.15)

(3.16)

)y1+2iuw_2y2iﬂw]} , (3.17)

where the constants B, B are the two constants of integration associated with the two solutions to the homo-
geneous version of (3.15) and g, is the inhomogeneous solution. The constants B, B can be determined by
obtaining the moment of (3.16) against any two convenient _zsf. Since

ZfrfsS;"sS’,’,'dx=6,,, (x=cosb) ,

(3.18)
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2iw

2 2 /2
< i;1> ez‘"tzfg(G) _.Sidx

dx

1 1 1
= 2 Cr 2 __ YV 2
B.[l'zs’ cos"(8/2)+B ,[1 -251 cos’(6/2) dx+f_1 8 -5idx (3.19)

so evaluation of the integrals for any two [ values

uniquely determines B and B. Because the poly-

nomials’ expressions become more complicated

for larger I, the sensible procedure is to use

_,S%and _,S% to determine the values of B and B.
NOWS_lS

i (BN
-252= (ZE) cos(6/2) , (3.20)
while
7 1/2
_zsg=(g> cos*(6/2)[1 - 6sin?(6/2)].  (3.21)

The integrals are tedious but straightforward. We
obtain

2e%", /2 - 2iMw
T 2w <1+2z‘Mw) ’ (3.22)
_ 241
g2 (3.23)
2iw

which gives

4(6)=Met 0L

207 _ 45
. 2ye®o (yzmw 1 - 4iMw 1>/cos"(9/2)

2iw 1+ 2iMw
4e?o 2igy 1 —iMw > 40/
* e <y B l+2iMw,/cos (©/2) .
(3.24)

The first term in this sum is identical to the F(6)
for the comparison scalar Newtonian problem.

The last two terms in the expression (3.24) have
an apparent divergence in the backward direction,
0-m. However, this divergence is not real, as we
now show. Now

y 2w = g2iMw In[1-c0s2(0/2)] (3.25)
As cos?(6/2)-0 ,
y MY = 1 — 2iMw cos®(6/2)
+3c0s*(6/2)(2iMw)(2iMw - 1)
+ O(cos®(6/2)) . (3.26)

In this limit, the trigonometric factors in the last
two terms combine to cancel the [cos*(6/2)]™" de-

nominator. We find
g(9——1r)-Me2""o<;)1~—1+O(cosz(9/2))> . (3.27)

which vanishes at 6 =7. There is thus a remark-
able cancellation of the backward divergence aris-
ing from the homogeneous terms B, B in Eq.
(3.16).

As discussed in Sec. II, the Newtonian problem
calculated here approaches the relativistic scatter-
ing problem when the frequency becomes small,
Mw - 0. The large parentheses in the last two
terms in (3.24) contain the difference of quantities
equal to 1+ O(Mw) as Mw -0 so the a priori low-
frequency divergence in the last two terms is
avoided.

As' Mw-0
y 2iMw = 2iMw In sin %0/2) (3.28)
~1+2{Mw Insin®(0/2) . (3.29)

Hence, in the relevant limit Mw -0
g(e) _.Me‘inOyZiMw/y

2 Me*Mo ‘ .
* cose/2) | [Insin?(6/2) - 3]

+21nsin2(0/2)+3j{ . (3.30)

Although qualitatively similar, the cross section
calculated from the result (3.30) differs in detail
from that found for the Born approximation by
Westervelt'” and Peters'®:

(6/2) +cos®(6/2)

.2 Sin®
o(8)=M sin*(6/2)

(3.31)

This difference is even more remarkable since the
Born result for the scalar case of the Newtonian
problem is well known to give the exact cross sec-
tion for that problem. As shown in the Appendix,
for the electromagnetic case the Born approxima-
tion agrees with the calculation here in the back-
ward direction, and the cross section for the elec-
tromagnetic case is close to the Born result for
essentially all angles.
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APPENDIX: THE ELECTROMAGNETIC AMPLITUDE a(6)

To evaluate a(6), we write

8a=L"F , (A1)
1 . ~1+2i

(ae - 53 +cot9> a=-Mdg[sin?(§/2)] 1" 2wty (A2)
A

a= m +ay; , (A3)
Me®T, }. T— (2iMw - 1)

a;=-— c—-—os-z———(e/z) ‘ 21‘1/[(;) [sin2(e/2)]2Ww } . (A4)

Here there is only the single constant A to evaluate. We take, for simplicity, the moment of g against
_1S] (see Refs. 3 and 15). Now

3\
_ls}=—(z7?> cos?(8/2) . (45)
Hence
fa_IS}dx= Eﬂ;—"{%iz—‘jl—=2 (%)VZA + f a; _,Sidx . (A6)
We obtain
A= (2iw) e (A7)

which gives

e~*Mog cos?(6/2) = -M{(sin®(6/2)]~***#¥w ~ [sin?(§/2)]*#M«} - Ezl_w {[sin®(8/2) P - 1} . (A8)

Using Eqs. (3.28) and (3.29) for small Mw, the scattering amplitude except near the forward direction is

( 32 24M 1942
; sin“(6/2 “  Insin®(6/2
a=_Me2;TI0.‘[ .(2/ )] + = ( / ) (Ag)
| sin®*(6/2) cos?(6/2)
Finally, we may investigate the 6 -7 (backward) limit of this result using (3.26):
1 o [ cos®(8/2)
a ~~ =-Me*"o| ——= —1} E—Me"""O[———-] . 10
i sin®(8/2) sin%(6/2) (A10)
Only in this limit does the scattering amplitude agree with the form
EY
cos*(6/ 2):]
0(0)=M?| — ===
) [sm“‘(e/Z) (A11)
found by Westervelt'” and Peters'® in Born-approximation calculations.
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