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Evolution of time-symmetric gravitational waves: Initial data and apparent horizons*
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Initial data were constructed numerically representing pure gravitational radiation with no sources or
wormholes, under the conditions of time symmetry, axisymmetry, vacuum, and no rotation. The constraints
were solved by making a conformal transformation on a base metric and solving the scale equation for the
conformal factor. The initial data contain a black hole if the amplitude of the waves is sufficiently strong.
The locations of apparent horizons were found for several such amplitudes. At a critical amplitude the throat
pinches off'and the geometry becomes singular.

The first attempt to construct spacetimes nu-
merically was made about 15 years ago, ' but we
have only recently begun to obtain useful informa-
tion from such studies. In problems such as the
collision of two black holes' we have reached the
point of being able to generate spacetimes con-
taining radiation. We need methods to distinguish
radiation from coordinate waves, and to calculate
the energy carried by this radiation, or, rather,
to find out which of the many methods that will
work in principle are actually practical in a prob-
lem of this sort. An excellent test case to ex-
amine for this purpose is a spacetime which is
pure radiation, such as the time-symmetric gravi-
tational waves whose initial data were investigated
by Brill some years ago. ' These are source-free
waves of positive energy on a Euclidean topology,
i.e. , there are no wormholes. The condition of
time symmetry is somewhat analogous to an elec-
tromagnetic wave at an instant of zero electric
field, which could be produced by an imploding
wave which comes in from infinity, reaches its
point of greatest concentration (moment of time
symmetry), and then disperses out again to in-
finity. While there exist electromagnetic waves
which simply disperse, no one knows whether
any gravitational wave, however weak it may be
to start with, will remain forever nonsingular. It
has been proved that a nonsingular evolution will
exist for a finite time, but not for an indefinite
time. So this is another question on which the
study of the time-symmetric waves may shed light.
Finally, for strong waves, one expects a collapse
to a black hole. It should be interesting to com-
pare what happens here to the cases of nonspheri-
cal collapse of matter fields currently being stud-
ied. This paper considers the numerical construc-
tion of initial data for such time-symmetric waves.

For this problem with the assumptions of axial
symmetry, no rotation and time symmetry, we
take as ansatz the following form of a base metric
on an initial spacelike hypersurface:

ds' = e'(dp'+ dz') + p'dP ',
l.e. ,

ypp=ygg= ~

2yes= p y

=0

(y„ is the three-dimensional metric. )

y, ~ and y,~ are zero identically by nonrotation.
Flat space corresponds to q=0. For time sym-
metry we have K„=0, so the momentum con-
straints automatically hold. We solve the Hamil-
tonian constraint by a conformal map:

yab ~ yab y

1.e. ,

8D+4$ = 'Rg,

where D, is the covariant derivative and '8 is the
Ricci scalar with respect to the base metric y,b.
This is a linear elliptic equation which we solve
numerically by relaxation methods. '

The quantity q is not entirely arbitrary but must
satisfy the following restrictions:

q= 0 when p= 0 (z axis) (by axial symmetry),

q, = 0 on p axis,

(4)

q- 1/x' or faster asymptotically.

Brill and Wheeler' deduced a number of prop-
erties of solutions of (3), but were unable to find
any choice of q(x) for which they could solve (3)
analytically. Thus they examined a nonphysical
model —taking the scalar curvature to be a square
well —which, they believed, should demonstrate
qualitative behavior similar to actual solutions of
(8).

They found that for the square-well potential the
total mass is proportional to the square of the
amplitude for small amplitudes, that the data con-
tain a black hole for strong enough amplitudes, and
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at a critical amplitude the throat pinches off. We
will see below that these qualitative features are
indeed found in numerical solutions of these equa-
tions. But a number of problems were left un-
solved. No one had actually carried through this
prescription for constructing initial data which
could actually be part of a spacetime. The pro-
portionality constant of m on &' was not known,
nox was the value of the critical amplitude. Also,
no one had attempted to determine the existence
and location of apparent horizons for such initial
data. All of these questions will be answered in
this papex.

Ne used the following form as a trial function,
because it is the simplest function which satisfied
these restrictions with the least spatial variation:

m= ——
1 V gd'x (flat-space Laplacian), (12)

2Ã .
or, using (6),

m = —— Cg4'x.
2F

Brill showed that this can be cast in a positive-
definite form:

j.m= —— V(in/) ds
2r

1 ", 1 Vg',48&+— —6 x
2m .' 2'

where 4, X are constants, and r'= p'+z', and n

Brill has shown that the initial-value equation
can be rewritten in the simple form:

w'here V' is the ordinary flat Laplacian in three-
space and

4 -=s(q +q, ). (7)

m= ——
i

VP ds (G=c=1),
2F

which can be transformed to a volume integral

For our choice of q we obtain (taking X= 1)

q~~+ qgg = A[2U -n(4+ n) p'U r + 2n'p'r' 'U'], (8)

where

U=-(1+r") '.
The boundary conditions on 4 are either that 4

goes to unity at spatial infinity or that (i is unity
at the origin. In the first case the asymptotic be-
havior for g will be

1+=m/2r+ O(1/6),
where m is the total mass of the configuration.
To get the second normalization g is multiplied
by an overall constant c= $(0) ', which changes
the total mass by the factor e .

There were a number of numerical problems to
be solved to make Q have the proper asymptotic
behavior, and to be a consistent solution of the
equation. The total mass of any configuration can
be written in a numbex' of different forms, which
should give reasonable agreement if we are to be-
lieve oux' numerical construction. The basis ex-
pression is (with /= 1 at infinity)

because, from (7), fP d'x= 0. One cannot expect
exact agreement in a numerical solution. But in
the first attempt to calculate the mass using a
fairly fine mesh, we found the value from (11) two
orders of magnitude larger than that from (14).
Also disturbing was the fact that the surface in-
tegral was quite different from the volume inte-
gral, although they should be equal whether or
not ]' satisfied the initial-value equations. This
fact showed the importance of using a difference
scheme which satisfied the conservative property.
Such a scheme is one for which the difference op-
erators are chosen to satisfy the macroscopic flux
conservation theorems on a grid of finite size. The
ordinary second-order accurate expression for the
Laplacian in Cartesian or axial coordinates pos-
sesses this property, as we shall show.

Consider a unit volume produced by rotating a
region dp by dz located at p„z, about the P axis
to make an annulus of volume 2~p, hphz. Then
Stokes's theorem through the sides of this volume
gives

v'p d V—= 2vp, npnzv'g(p„s, )

= (,b,z2vp, ~. . .&, —g,nz2vp,
~

—2p,. ~+(1 —np/2p, )g. . .]
+ 2 (~a.i g

—2&a y+&~-i g)
j.

(where we use j to denote the p direction and i for
the z direction. ) By construction the volume in-
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tegral using this expression for V'|tl will equal the
surface integral over the boundary. Here the re-
sult agrees with the usual second-order formula:

V'g=g»+- gf +
1
P

1=
& 2(&»» i

1
(»I», , »I»» .-.)

we used the common Taylor series method for ob-
taining difference expressions. Then we express
the first derivatives on the right-hand side of (15}
at the point i+ & (for example) by

9 1
~ [» "&=en'~»" ~»'24''~»- -~» *' '"'

Thus we get a fourth-order conservative expression
for the Laplacian in axial coordinates:

1
+ n, (P»,»» 2g»-»+ I».»»}.

However, on a nonuniform or stretched mesh, or
in nonflat coordinates, the ordinary operator will
not in general be conservative. For example, we
used a quadratic scaling of the grid:

» t I I I t I 1 i I I t-2
(xlQ )

( )

3.2—

2.8—

2.4—

so

z='/+cd,

p= $+ c$',
(18)

ru
CL

2.0—

CA

»II„= s'g« —2cs'»I»„[s =-»I, = (1+ 2c»I) '].
Consider just the g„ term in the Laplacian:

s,.2
»I'„nz =—n', (»I'» „—2g» +»I'

pq
C —»I'» -i)

(19)

(20)

l. 2

0.8

04-

I I I I I I I I I I I I I I

2 4 6 8 l 0 l 2 l4

AMPLlTUDE (f = I at infinity)

This is not the same as»II, ~, .~,» —P, [, ~,&„ which

equals
1

2n [s»+» s(«+» «) -s» --» ra(« —«-»}]2hg

= 1
[(S» +» + S»)(g» +»

—g») —(S» i + S»}(I"» —g» i) ].4zg

(21)

If we had used (21) to obtain the difference opera-
tor for g„, then its volume integral would have
equaled the surface integral, but if we had used
(20) it would not have. If we need to solve an ini-
tial-value problem in general nonflat coordinates,
we can use the above algorithm to construct a co-
variant differential Laplacian which will be conser-
vative.

The error introduced by the nonconservative form
(20) was not trivial, even on quite fine grids, and
could amount to almost an order-of-magnitude dif-
ference between the masses given by (11) and (12).
However, even using a uniform grid on which these
integrals agreed, they still differed from (14) by

over another order of magnitude. It was necessary
to go to a fourth-order accurate scheme to get all
the masses to agree. There is no unique way of
writing a fourth-order differencing operator, so

(x lQ ) I I I I I I I I I I I I I I

I.B — (b )

l.4—

l.2—

(A l0
X

0.8

0.2

I I I

4 6 8 lo 12 l4

AMPL I TUDE ( 0 = I at or ig in )

FIG. 1. Variation of mass vrith amplitude for two nor-
malizations of g. P, = 1, n = 5, using a 50& 50 mesh with
a step size of 0.2). (a) /=1 at infinity. We plot m/A
versus A. m/A2 goes to infinity at the pinch-off point.
{b) /=1 at the origin. We plot m versus A. The mass
goes to zero at the pinch-off.
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, [(-1—d)yi i,2+(d —1)pi i, +(28+ 26d)pi i„+(28—26d}gi i, —54/i i]
1

1
+86/ 2 [-~i+2, J i I-2ej+ (~i+1 j+~i-& J) 4~ i Jl~ (23)

where d—= hp/2p, .
Using this operator to solve for i)1 [by the

usual successive overrelaxation (SOR) method]
the mass integral (11) agreed with (14) to
about 30% on a 50x50 uniform grid (with step
size 0.2). It is worth noting that the positive-de-
finite expression was by far the most invariant un-
der all changes of grid size, differencing scheme,
etc. , giving essentially the same mass for the sec-
ond-order scheme on the stretched grid as for the
fourth-order scheme on the uniform grid. Thus it
would be worth trying to cast the mass into a posi-
tive-definite form for other spacetimes when at
all possible. We plot the mass as a function of A
in Fig. 1.

A further advantage of the fourth-order scheme
was evident at strong amplitudes near the pinch-
off point. The second-order method required su-
perfine grids near the origin to get any solution,
and could not reliably distinguish the amplitudes
above the pinch-off from those below. With the
fourth-order scheme only a moderately fine grid
(step size 0.1 with X= 1}was adequate for all am-
plitudes, and it was clear where the pinch-off oc-
curred, as the relaxation converged below the cri-
tical amplitude and diverged above it. We will dis-
cuss the behavior of these strong amplitudes fur-
ther in the next section.

Locating apparent horizons

then

thus

s2 —dx2 + dg2+ dz

= (F '+ G ')dp'+F'dy'

= y„dp'+p dy' (on the equator)

= g'(e'dp'+ p'dy'); (25)

F, = g'+ 2p(g„ (26)

(q4 q F 2)1/2

(y" —s's')(D, s, —K }= 0, (27}

where s' is the spacelike normal to the two-sur-
face which is the horizon. We can rewrite this
(the following is due to Eardley'}

defines a surface z(x, y) on the equator whose in-
trinsic geometry is that of the time-symmetric
wave. We show such embeddings in Fig. 2. Note
the appearance of the throat when the amplitude is
increased.

While these embeddings tell us the approximate
amplitude for which a black hole exists, to deter-
mine the exact amplitude and to find the shape of
the apparent horizon we need to solve the trapped
surface equation'

As we increase the amplitude (holding X fixed)
the "cloud" of radiation becomes more and more
concentrated. When it becomes sufficiently strong
a black hole will form. This event. is signaled by
the sudden appearance of an apparent horizon, i.e. ,
a marginally trapped surface. ' On a time-symme-
tric surface this is equivalent to the existence of a
surface of minimal area, or "throat. " The forma-
tion of a throat can be visualized by constructing
embedding diagrams of the geometry. While it is
a difficult task to embed the entire surface, it is
simple to embed the equatorial plane, due to its
rotational symmetry. One can write the embedding
explicitly by demanding that the metric on the
equator equal that of a surface of rotation z(x, y)
in Euclidean space. ' We set

ss(u"D„)us = -X y~I'"„„s„,

where

(28)

x=F(p) cosy,

y = F(p) siny,

z = G(p),

(24) FIG. 2. Embedding of the equatorial geometry into
Euclidean space. The three embeddings are for ampli-
tudes A=2, 5, and 15, respectively.
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X-={y'~-s's')K„=cAsD„ss -y T~s„,
and u~ is the tangent vectox" to the horizon. Then

Using K,e = 0 and (I) this simplifies to

where 8 ls the arc length along the curve. If 8 = 8(X)
then

+xq qe 2+ cot8+ ~ — 2~+ y Ig 2+ " =0.

dX dX' dX dX' dX

or

~ dx dx

sl.nce

ds "'dh3 ch~
~ dX Ch ~ds

Defining (A, B,C go over coordinates I, 2)

D g 4g ~ g 1 68I ~tBg (y)gg2 ~ 9L (33)

Now using A. = 8,x"'=t,g'"= 8,x"'= Q, (33) be-
comes the following:

gg p~yy8lg gQ de
Xy

Now using

Hmvever, the method ere devised to solve this equa-
tion should work equally vrell with the general case
(35). We solve this equation to find the surface
y(8). The method that worked best was to write r
as a power series in cos(8) (much as Brill and

Lindquist did in constructing minimal surfaces').
msx

r(8) = P c„cos"8. (38)

Then (38) becomes

P(c„c„.. . , c„,. . . , 8) = 0 for all 8.

Starting %1th an lnltjal guess' eRch c~ %as varied
to find the minimum of J Pd8 with the other coef-
ficients fixed. The procedure was iterated to find

the minimum over all the c„. When the amplitude
vras too weak, the solution converged to a point at
the origin. For amplitudes A ~ 5 (with @=5,&=I)
the solution converged to a nonzero curve very
close to the throat located by the embeddings. As
the amplitude increases, the horizon moves fur-
ther out Rnd becomes more spherical until it
pinches off at A =—16. The horizons are shorn in
Fig. 3, using the normalization g = 1 at the origin
(making it easier to prese~t all the results on the
same scale). The occurrence of the horizon and

the pinch-off does not depend on the normalization,
but the embeddings mill of course appear different.
With p = 1 at infinity, the mass goes to in-
finity rather than to zero at pinch-off. The

dx" dx~ '~'de~ dx~

( y)'I2 "s d8 d8 d8 d8

ch" de~
(2y)&I2 yAB d8 d8 y oe &

x"=(r, 8),

m"=(I, -r,),
dg"
d8 =(&g, l)

I

i

I
th

I

FIG. 3. Location of apparent hoxizons. The inner
curve is for A, =5, where the horizon first appears. The
outer curve is for A, =15, just befoxe the pinch-off
(shown fox' 1=1, g = 5, step size of 0.05).
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these initial data, both for weak "clouds" of radia-
tion which disperse to infinity, and for strong
waves which collapse to a black hole. We will de-
scribe several ways to calculate the energy flux
carried by this radiation, and show the spatial and
temporal distribution of the radiation pattern.
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