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The spectrum resulting from a relativistic treatment of a linear confinement potential is presented using a
generalization of Todorov's quasipotential equation. The potential used is a linear potential and is regarded as
a Lorentz scalar. Excellent agreement is obtained with the psion mass spectrum (3.1,3.7,4.1,4.4 GeV). The
values for the charm-quark mass and constant of the linear potential are significantly different from those in
the nonrelativistic and other relativistic approaches. The fourth and fifth radial excitations are very close to
the values predicted by a three-parameter Regge model proposed recently.

lt is generally accepted that the g/J particle at
3.095 GeV and the g' at 3.684 GeV are the ground-
and first-excited states of a quark-antiquark sys-
tem called charmonium. It has been assumed that
the broad structure around 4.1-4.2 GeV is or con-
tains a second radial excitation of the system.
This has given support to the linear-nonrelativis-
tic-potential model for the confinement of quarks.
That is, assuming

with

it is found that' m, = 1.16 GeV and 0 = 0.211 GeV'
fit the g(Z and g' particles and predict a second
radial excitation Rt 4.18 GeV and a third at 4.61
GeV. The early data did seem to support this
nonrelativistic model. However, more recent
data seem to indicate that a third radial excita-
tion" g"'(4.415) has been found, and this lies
about 200 MeV below that predicted by the non-
relativistic lineax -potential model.

Several relativistic calculations of this same
speetxum have been performed. The two mentioned
here are ones simila, r to the approach used in this
paper. Jhung, Chung, and Willey' have used the
Kadyshevskii version of the quasipotential ap-
proach. Their results do not show an improvement
in the position of this third radial excitation.
Gunion Rnd Li" employ a modified Klein-Gordon
equation regarding the linear potential as a Lor-
entz scalar. That is, the potenti. al appears as an
addition to the mass terms. They obtain the spec-
trum 3.1, 3.71, 4.17, 4.54 for the psion family.
Although this does represent an improvement over
the nonrelativistic calculations. it is still more
than 100 MeV above the excitation at 4.415 GeV.

The modified Klein-Gordon equation used in

Refs. 5 Rnd 6 fox' equal-mass two-body bound states
is not a two-body relativistic formulation like the
quasipotential. approach. In particular, it is not
made clear in these papers how the case of unequal
masses is treated. On the other hand, their meth-
od allows an explicit commitment to the choice of
the Lorentz-transformation properties of the po-
tent1al, Lox'entz-scRlRr potentials Rx'e included ln
association with a mass, Rnd vector potentials are
included in association with the four-momentum
(as a time component). The quadratic terms in the
potential that result from this modify some of the
higher levels. ' This commitment to a definite
Lorentz-transformation property is not made in
the quasipotential approach of Ref. 4, where the
potential appears only linearly. Usually, the
quasipotential is derived from field theory and
this field theory cao provide by way of higher-or-
der terms the appropriate quadratic contributions.
At least this has been shown to be so in the case
of elect&'omagnetic interactions. ' One cannot rely
entirely on a field theory for the potential in a,

phenomenological approach. An ansatz of some
sort must be employed. This introduces some
ambiguity, however, which can only be resolved
by comparison with the experimental results.

I intend to incorporate the linear potential kr as
a Lorentz scalar in a quasipotential formulation.
The one I shall use is a modification of Todorov's'
relativistic two-body Schrodinger equation as
presented in two recent articles. '" I will not go
into Rny detRlls of Todol ov s Rppx'oRch Rnd its
philosophy as they are adequately commented on
in Refs. 8-10. For spinless particles, Todorov's
equation resembles the Schrodinger equation. Its
form in the c.m. frame is

Instead of the ox"dinary reduced mass, one has the
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TABLE I, Model calculations of the psion spectrum. Model I is the nonre&activistic approach
in Ref. 1. Model II is the quasipotential approach of Ref. 4. Model III is the modified Klein-
Gordon approach of Refs. 5 and 6. Model IV is based on (10) and model V is based on (11).
Model VI is the three-parameter Regge-type model of Ref. 11. Models I-V are two-parameter
models. The values of those parameters, (m, k), are listed in units of GeV and GeV~, respec-
tively, at the column headings. The masses given are in GeV.

I II III IV V

(1.16, 0.211) (1.16, 0.205) (1.12, 0.137} (1.15, 0.218) (0.942, 0.717)

3.105
3.695
4.18
4.61
5.00

3.1 3.1

3.71
4.17
4.54
4, 89
5.19

3.095
3.684
4.161
4.578
4.954
5.304

3.095
3.684
4.088
4.408
4.676
4.912

3.095
3.684
4.103
4.415
4.654
4.841

relativistic x'educed mass

mJmp
m

bV
(4)

[P„P"+ (m + V) ']$ = 0 .
In the Schrodinger representation this becomes

where se is the total energy in the c.m. system.
The variable fp'/2m reduces to the binding energy
in the nonrelativistic limit. In general,

2 f 2 2 2

lo' —2(m, '+m, ') +
2m Bm,m, $0

(5)

The ol'lglllal follll (2) of Todol'ov s qllaslpo'telltlal

equation eras modified for scalar interactions by
Crater and Naft' and by Crater and Palmer. " The
motivation behind these modifications is not re-
lated to the problem under consideration here. In

those papers, a method was given for adding a po-
tential for scalar interactions to mass terms in
the toro-body quasipotential equation analogous to
that &which is done in the one-body Klein-Gordon
equation. Two methods mere given, indicating
that the procedure is not unique. For comparison,
(2} will be rewritten here as

(p'+2m V)g=(&'-m ')g,

E'=m '+6' .
Equation (6) can also be written in the covariant
form

(P&P" +m '+ 2m V)g = 0, (8)

where p~ =(E,p) in the c.m. frame. The first meth-
od consists of replacing (8) by

The other form derived in Refs. 9 and 10 is" (for
equal masses)

-V''+2m V+~ V'
bV

As pointed out there, the form (11) allowed very
tight binding fo1 scalax' Coulomb potent1als %'1th

large coupling, whereas (10) did not. This is no
reason for preferring (11) over (10) in the present
context.

The L, =O spectrum predicted by (10}and (11) can
be found numerically, and the results together arith
the nonrelativistic results and the toro relativistic
results referred to above are given in Table I.
The spectrum from (10) differs only slightly from
the nonrelativistic results. In particular, the
third excitation is off considerably. Hovrever, the
spectrum from (11) predicts the g"' state at 4.415
to be 4.408, only 7 MeV off. The parameters used
are m, =0.942 GeV and k= 0.716 GeV'. These differ
substantially from the more or less common re-
sults of the other methods in Table I.

Arik, Coon, and Yu" have proposed a three-
paxameter fit to the psion spectrum based on a
Regge-like theox'y. It is of interest to note that
their values of the fourth and fifth radial excita-
tions (4.65 and 4.84 GeV) are very close to the
values of 4.68 and 4.91 listed in Table I that re-
sults from the tvro-parameter approach based on
Eq. (11).
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'~The derivation of (10) and (11) are similar in that
both involve (1) incorporating the scalar potential by
generalizing the mass terms, and (2) imposing the

constraint p& —p2 ——m2 —m& (Ref. 8), i.e., requiring
that it be a constant of the motion. However, the
order in which these two steps are taken differs in
the two derivations. Equation (10) can be obtained by
imposing this constraint on (w/I) [(p & +m& )/2m ~

+ (p2 +m2 )/2m 2] to give p™„p"+m~ and then general-
izing this by replacing m by m„+ V (Refs. 9 and 10).
Equation (11) can be obtained by generalizing m; —P;
=m;+m, V/w (i &j) andthen imposing theconstrainton
{zo/B [(p f + p f )/2 p, + (p 2 + p p )/2p2] (B= p )+p2) {Refs.
9 and 10). Both (10) and (11) are c.m. forms. Now in
each case, V must commute with the operator p &

—p2 .
This occurs if V= V()7 )), where )x)2—:(x,—x&)
—(P (x&

—x2)) /P, P=p&+p .2In the c.m. frame this is
the square of the relative coordinate r.

'2M. Arik, O. D. Coon, and S. Yu, University of Pitts-
burgh Report No. 160 (unpublished).


