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Short-range part of the nuclear force
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A simple form of the quark theory accounts for the strong short-range repulsion between nucleons and
makes it possible to estimate the magnitude of this part of the nuclear force.

Meson theory was originally developed to ex-
plain nuclear forces. It has, however, been suc-
cessful only in describing the long-range part of
the force which is determined mainly by the ex-
change of a single ~ meson. Ordinarily, it is
believed that the short-range part of the nuclear
force is dominated by the exchange of heavy me-
sons and more-complicated processes than single-
meson exchange. Another point of view is that the
short-range part of the nuclear force arises direc-
tly from the interaction of quarks and the forces
which confine them in the nucleons. This idea has
been advocated by Johnson' and others who have
developed the "bag model. " But the bag model
does not lend itself to a simple treatment of the
two-center problem' which the interaction of two
nucleons involves. We adopt here a simple pheno-
menological description of the forces between
quarks which is similar, for example, to that
proposed by Schnitzer' as a model for the recently
discovered lt) particles, and thereby make the
calculation simpler.

The choice of the force assumed to act between
quarks is essentially dictated by the requirement
of explaining quark confinement and saturation in
both baryons and mesons. We have taken our ideas
mainly from a published lecture by Feynman. '
The force between quarks is supposed to have a
long range, as, for example, in Hooke's law.
'This is to explain the permanent binding of quarks
in hadrons. But, to explain the absence of similar
long-range forces between the observed mesons
and baryons (saturation}, an appropriate combina-
tion of attractive and repulsive forces is needed.
'This is given by the color hypothesis and an inter-
action between quarks by means of a color octet
of vector bosons. The vector character of the in-
teraction means that the forces between quarks will
be spin-dependent, and the spin-dependent forces
are related in a straightforward way to the central
force"—this does not entail any additional as-
sumption or additional parameters. There are
spin-spin, spin-orbit, and tensor terms, but only
the spin-spin interaction contributes in the cases
considered here. These considerations lead to the
following interaction potential acting between two

quark s:

where R= , (r, +r, +r,—) yis adj.usted according to
the variational principle. The teo parameters,
given in terms of energies, are found to be M~c'
= 151 MeV and g(K/Mz)'~' = 75 MeV. This simple
description of the nucleon's structure can be tested
by computing the root-mean-square radius. We
get

((r -R)')'~'= —= l. l fm,
1
y

(3)

which may be compared to a recent experimental
estimate of 0.9 fm. ' With the same two constants
some meson masses can be computed. For the
&u(783) and the p(770) we get 767 MeV; for the
m(140) we get 370 MeV. The last is the only seri

In this formula X,. and X,. are Gell-Mann's eight
SU(3} matrices which operate on the color variables
of particles i and j, ~ is the quark mass and
comes out of the nonrelativistic reduction of the
Dirac velocity operator, and K is the Hooke's-law
constant. A minus sign is incorporated in the for-
mula because X,. ~ X,- has the character of being
negative for particles which attract. 4

'There are two constants at our disposal: K and

They are chosen to give the observed mass-
es for the nucleon (938 MeV) and the & particle
(1236 MeV). These masses are the expectation
values of the nonrelativistic three-quark Hamil-
tonian with the interaction potentials given by Eq.
(1). The wave functions used in these expectation
values are constructed according to the prescrip-
tions given by Feynman, Kislinger, and Ravndal. '
The color wave function is antisymmetric, the
spin-unitary-spin wave functions are the appro-
priate symmetric functions, and the space wave
function is the Gaussian

g(123) = exp{-2y'I(r, —R)'+ (r, —R)'+ (r, —R)']j,
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where

sg(123; -gX)g(456; gX), (4)

ous disagreement with observation. It may be not-
ed that the color hypothesis enters the meson-
mass calculation in an important way: it gives
an effective interquark interaction twice as large
in this case as in the baryons. '

Having given a plausible description of a single
nucleon's structure in terms of quarks interacting
with the potential of formula (1), we now wish to
describe the interaction of two nucleons which are
close together. We run into an unfortunate tech-
nical difficulty at this point. The proper procedure
for calculating the interaction of two small groups
of particles' is quite complicated. If we use space
wave functions for the quarks which are localized
about two fixed centers, we solve our mathemati-
cal problems but, of course, introduce substantial
errors. Fortunately, the worst of the errors will
subtract out of our final results, and others can .
be minimized by the use of a nonvariational wave
function. In any event, the qualitative features
in the final results should not be altered.

Antisymmetric six-quark wave functions are con-
structed from the three-quark wave functions. The
space part is

G(1 ~ ~ ~ 6) =g(123 ~g(456; -~
U (+)= (t

l

v' I Ay)/(q I
&q)

= s YE&.. &s) ~sl&s) (10)

less the energy at infinite separation. (H,» is the
Hamiltonian of one group of three particles, H„,
is the Hamiltonian of the other group, and V' is
the interaction between the two groups. ) As might
be expected, this effective potential is proportion-
al to the square of an overlap integral. Because
of this the range of the effective potential will de-
pend very much on the nucleon's size as given by
the space part of the wave function. If the param-
eter P in Eq. (5) is adjusted variationally, as y in
Eq. (2) was, the root-mean-square radius is very
much too large, and the resulting effective poten-
tial will have too large a range. We will choose
P to give the observed radius of the nucleon. As a
result, there are large errors in (g lH„, +H„, lAg)/
(g lAg), but most of these are eliminated when the
energy at infinite separation is subtracted.

'The evaluation of the effective potential between
nucleons is straightforward but too lengthy to in-
clude here. We will just give the results and make
a few comments. It is convenient to divide the ef-
fective potential into two parts. The most im-
portant is

g(123; Y) = exp( ,P'[(r, —-Y)'+ (r, —Y)'

(5)+ (r, —Y)']).

Parity determines the sign used in Eq. (4). ~is
the position of one nucleon and -~ of the other.
The color wave function is simply the product
of two color-singlet wave functions for the two
nucleons:

500

S=O, T=O
P=-I

C(1. 6) = C(123)C(456) .
The spin-unitary-spin wave function in the case
where spin and isotopic spin are both 1 is

Q(l ' ' ' 6) =N', ~, (123)N,'(, (456) .

(6) 500

200
The other cases require a sum of such terms mul-
tiplied by appropriate Clebsch-Gordan coefficients.
Since the wave function, g, is already partially
antisymmetric, the antisymmetrizing operator
needs to contain only a few permutations:

B

(8)

100

The effective interaction potential between two
nucleons is the expectation value of the energy of
the six quarks,

(Ae IH l&g)/(Ay l~y) = (y IH,-+H„.+v' IAq)/(y IAy)

(9)
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FIG. 1. Contribution frown Eq. (10) to the approxi-
rnate internucleon potential. $, T, and P are spin,
isotopic spin, and parity.
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tral-force terms which becomes complete at zero
separation while the spin-spin force terms add
together and constitute the bulk of the interaction.
The contribution from Eq. (10) is shown in Fig. 1.

The role of the spin-spin part of the interquark
poten'axial in giving a short-range repulsion be-
tween nucleons was pointed out in Ref. 1. Without
the direct interaction between quarks, the bag
model gives an attractive short-range force as
in Ref. 2.

The other part of the effective potential is

-IOO
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x (fm)

There is an exact cancellation of the nonexchange
terms in the numerator of Eq. (10). This is to be
expected; otherwise there would be a long-range
interaction between nucleons. The central-force
part of V,-,. and the spin-spin part contribute dif-
ferently to the remaining exchange integrals.
There is a partial cancellation between the cen-

FIG. 2. Contribution from Eq. (11) to the approximate
internucleon potential. S, T, and P are spin, isotopic
spin, and parity.

where E, , and E„,are the isolated nucleon ener-
gies computed with the space wave functions of
Eq. (6). There is a sizable contribution in the odd-
parity (antibonding) states, which is to be expected.
The contribution from Eq. (11) is shown in Fig. 2.'

We have tried to show here (i) that very simple
considerations lead to a phenomenological interac-
tion between quarks, (ii) that the spin-dependent
part of this interaction accounts for the mass dif-
ference between nucleons and 4 particles, (iii)
and that this interaction potential also explains the
short-range repulsion of nucleons with the spin-
dependent part being particularly important.

Note added in proof. C. DeTar has made a study of
the internucleon potential for the S=1, T= 0 case
using the bag model [MIT Report No. CTP 631,
1977 (unpublished)].
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