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The properties of the axial-vector currents and their divergences are examined in the context of the quark
model as quantized on the null plane. The SU(3) transformation properties of the divergences are not as they
naively appear to be. It is found that correction terms to strong PCAC (partial conservation of axial-vector
current) are expected, especially for kaons, and that these terms are likely to be proportional to one-body
quark operators (and therefore octet operators), but that the proportionality constants may have a mixture of
linear and quadratic dependence on the quark mass parameters. In view of this, some consequences of the
one-body nature of the PCAC-correction terms are derived without making any assumptions of SU(3)
algebraic structure. A universality relation which was recently obtained by Dominquez is a direct result of
this line of reasoning; furthermore, assuming the pion PCAC correction A, is small, a value for Ag of
approximately 0.2 follows. This then is used to correct some old PCAC formulas, bringing them into
agreement with experiment. Finally, the consequences of some assumptions concerning the SU(3) properties

of the axial divergences are explored.

I. INTRODUCTION

In the usual approach to chiral symmetry,! one
begins by considering the case in which the axial-
vector current A} is exactly conserved; this is
presumed to be related to the vanishing of the
masses of the pseudoscalar-meson octet. In this
case, a matrix element of A}, can be written

(B|AE |ay=if (B, P,| a)(g" /a®) +(B| A% |a)y, (1)

where ¢=p, - p; and the meson-pole term is ex-
plicitly separated from the nonpole term,
(8|A%|a)y. The conservation of A% then implies
(using the standard null-plane notation?)

if, (B, P,|@y=1im lim (8|q"A}| @), @)

a;~>0 ¢*=>0

where the order of limits is such as to eliminate
the pole terms from A}. The result is the same as
that which one would obtain via the strong partially
conserved axial-vector current (PCAC) hypothesis
for nonzero meson mass. It can be written as

(m 2 - mg2)(B| Q5| @) =7, (2m)*2p36( P4 - 13)
X 6(2)(1):, - p;xﬁ)Pal a) )
®3)

where
Q= f dix 5(x*)A%(x) . (4)

This relates the matrix elements of the null-plane
charges @,5, to pionic transitions between arbitrary
hadronic states a and B.

When m #0, there is no ambiguity in defining the
limit q,,9*—~ 0, since A then has no pion-pole con-
tribution. What one shows in this way?® is that
strong PCAC reduces smoothly in the limit m 22—~ 0
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to the result Eq. (3). This does not mean that there
cannot be other terms in Eq. (3) that vanish in the
zero-mass limit; such terms would enter for ex-
ample if PCAC were modified by addition of terms
proportional to m, which were not singular in the
chiral-symmetric limit. The question of the exis-
tence of such terms is unsettled, and we turn next
to an examination of this problem

One begins? by defining the nucleon-nucleon ma-
trix element of the axial-vector current as

(N(p")|A%(x) [N(P))
= 1w ()3 [g 4@V +h 4(@))q"]
X ysu(p)e=i®, (5)

where g=p’ - p.
Taking the divergence, one has

(N(p")| 8, A%(0) [N(p)y=D(g®)u(p)rysu(p), (6)
where
D(%) = Mg 4(¢%) + 3% 4(q%) , )

which can be separated into a contribution from
the pion pole plus the background:

D(qz) = Dpole(qz) + E(qz) ’
(8)
Dpole =ftgrh'1v(m'2 - q2)-1 .

Evaluating the pole term at ¢g*>=0 leads to
D(0)=Mg ,=f,8,yn+D(0). 9)
One then assumes an unsubtracted dispersion re-
lation for
_ * — t
50=2 [ mbo%. (10)
T Yom,2 t
The conventional (strong) PCAC relation,!
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8, A* =m%,®, , (11)

m
where &, is the pion field operator, connects D(g?)
to the pionic form factor K(g®) of the nucleon.
With this assumption, one finds

ImK (2)

ImD(t)=m*f, & yy—o—5 » (12)
rorerNm, ~t

where K(0)=1. Thus

- MgA
frngN

_m? /“’ dt ImK (¢)

B omg2 L (£ = myay

If one neglects the continuum integral at £=0 one
obtains the Goldberger-Treiman relation. Within
the context of strong PCAC, however, the validity
of the formula is not dependent on pole dominance.
Although D is proportional to m,%, so is the residue
of the pole term. From this point of view, the re-
lation is simply a consequence of SU(2) X SU(2)
symmetry.® However, this leads to difficulties
since one must now explain why 4, is as large*
as it is (namely, A, ,y=0.058+0.013) in spite of
the fact that it is proportional to a small quantity,
m2.

Various possibilities have been considered:

A, yy may move into agreement with theory, D(q?)
may require a subtraction, strong PCAC may not
be valid, and a heavy pion (which is not a Goldstone
boson) may exist.® Drell” has emphasized that
D(q?) in general will receive contributions from
other physical states in the J ©=0" channel that can-
not be described in terms of a resonance; for ex-
ample, there may be a direct coupling of 3, A}
from the vacuum to the 37 continuum with the quan-
tum numbers of the pion. Finally, it is necessary
to call attention to the recent work of Jones and
Scadron,* where a dispersion-theoretic estimate

of A,y is shown to give roughly half of the experi-
mental value, which is far from the older estimates
of an order of magnitude smaller than experiment.
We will proceed with the attitude that there is like-
ly to be a small unexplained discrepancy for the
pion case, while (as we discuss below) there is
more likely to be a large unexplained discrepancy
for the kaon case.

The PCAC hypothesis may be tested in other
ways than in Goldberger-Treiman relations. For
example, there are the various sum rules of the
Adler-Weisberger type.

Because of the difference between the K and the
7 masses one might expect that the continuations
to zero mass would be different for pions and
kaons; however, this is not necessarily true. By
combining Adler-Weisberger—type relations for
7K and K7 scattering, one obtains the following®

A 1

TNN

(13)

sum rule:

7 [0 g0 = aongs)]

=fv2 f%l{ [U Y- "K*(V) - U"f“"K’(V)] ) (14)

where 0.,»,(v) denotes the total cross section for
particle a continued to zero-mass scattering on
particle b on the mass shell, all at laboratory en-
ergy v. If the equality Eq. (14) held for physical
particles as well as for zero-mass incident parti-
cles, then the decay constants f, and f, would be
equal. At the time of its derivation, this was be-
lieved to be true. However, it is now known that
fx/fy ~1.25, so one must look for a source of this
25% discrepancy. A possible solution will be pro-
posed below.

Recently, Dominguez® has proposed an extension
of the usual strong PCAC hypothesis by postulating
an SU(3) family of heavy pseudoscalar mesons in
an effort to account for corrections to Goldberger-
Treiman relations and other soft-pion and soft-
kaon theorems. He shows that there is a universal-
ity among the corrections to the various Goldber-
ger-Treiman relations for AS #0 decays. The soft-
kaon theorem for K, is modified and is in agree-
ment with experiment. Other applications to soft
pion theorems are made also.

We show how these and other related results may
be obtained in the quark model. The consequences
of quark additivity are deduced first, without any
assumptions of SU(3) algebraic structure. Only
then do we analyze the rather complex SU(3) struc-
ture of the divergence operators, abstract their
properties, and obtain some phenomenological re-
sults.

II. QUARK STRUCTURE OF CURRENT DIVERGENCE

When studying the properties of nonconserved
operators, such as the axial-vector currents, one
should first express all quantities in terms of
charges and moments integrated on the null plane.
Such a formulation of the theory has many advan-
tages over the older infinite-momentum approach.!?
The principle advantage is that nonconserved
charges still annihilate the vacuum, so that Cole-
man’s theorem is no longer valid. That is to say,

©|@;|Py=0=(0]a;|P), (15)
but nevertheless
[ @ 0600, 42 () | Py@))
=i(0|q-A}| P,(a))

=(2m)%6(q%) 6P (q,) 6,4/, m,2  (16)
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is nonzero, and

a).
(an

Recently, this last relation has been used to study
pion-emission processes in the context of strong
PCAC and the Melosh transformation.!!

Even in the free-quark model, it is easy to see
that the SU(3) transformation properties of the di-
vergences 8, A? are not as they naively appear to
be.? The symmetry-breaking part of the Hamil-
tonian is taken to be!?

(my% = m2)(B|Q3| ay=i <ﬁ| fd“x 6(x*)a, A% (x)

' =m (@ +dd) + m Ss , (18)

so that the divergences may be written in the form

9,A¥=2mp;, a=1,2,3 (19)

9, Ab=(m,+mv;, a=4,5,6,7, (20)
where

v;=iqYA 4 » (21)

and analogous expressions for A%Y. We will assume
that insofar as algebraic properties of operators
are concerned one may use the free-quark model
as a guide.™

In order to study the SU(3) properties of the v;
we must first express them'® in terms of “good”
quark fields q,:

- - 1
va~q;(x)>\ao3(yl-al+mu)?’q,(x)+H‘c.+--- , (22)

for a=1,2,3, and analogous expressions for the
other v,. The centered dots stand for terms arising
from interaction; these terms are independent of
the quark mass parameters. Therefore

a=1,2,3 (23)
a=4,5,6,7, (24)

v,=A +2m B+,
va=An+ (ms+7nu)Ba+ Tty

where A, and B, are one-body quark operators
lying in distinct octets. This conclusion is not
modified by Melosh transformation.®

As we have pointed out,'? since we know from ex-
perience that 8, A% (a=1,2,3) is a good interpo-
lating field for the pion, it is reasonable to expect
that the SU(3)-rotated quantity with the quantum
number of the kaon should be a good interpolating
field for the kaon. But this quantity is not 8, A%
(a=4,5,6,7). Infact, it is clear that factoring out
the mass parameter will not help, since v, for a
=1,2,3 and v, for a=4,5,6,7 are not SU(3) part-
ners.

Now 9, A¥ is a sum of a part proportional to m,?
and one proportional to m,. Since m, is presumably
small, the former term will be negligible except
for possible contributions to a pion pole, since

m,2/(m,? - q°) is large for ¢> small even if m,? is
small. Therefore, corrections to pion-pole domi-
nance can arise from the second term, which is
linear in m,. This observation is independent of
how much of the pion-pole term comes from the
m,? or from the m, term.

It is consistent for the m,” term to dominate the
pole term, and this would give the results of
Scadron and co-workers.'” That is, it is possible
that the pion and kaon field operators are, re-
spectively,

d’,=qIX,O’3-:-]q+ ’ (25)

1
tI>K=qI)\K03-ﬁ q,, (26)

which are obviously SU(3) partners in an octet. In
this case one would have

au A:‘=4mu2‘bv+o(mu) ’ (27)
8, A= (my+m)®,+O(m,+my), (28)

and the correction terms would have vanishing ma-
trix elements between the vacuum and one-meson
states.

On the other hand, if the terms proportional to
mz2, (m,+my)? can be entirely ignored, then
8, A¥/2m, and 8, A%/ (m,+m,) are SU(3) partners.
Furthermore, if the pole parts of these operators
are SU(3)-related, then the nonpole parts are so
related as well. This is the line of reasoning used
by Gell-Mann et al.'® and others.

The lesson to be drawn from this analysis is that
it is quite plausible for strong PCAC to require
correction terms, especially for kaons, that these
terms are likely to be proportional to one-body
quark operators (and therefore octet members),
but that the proportionality constants may be lin-
ear or quadratic (or a mixture of these) in the
quark mass parameters.

III. QUARK-ADDITIVITY CONSEQUENCES

One of the fundamental assumptions underlying
the phenomenology of the quark model is that con-
tributions to a given process from individual
quarks may be added independently.'® For con-
served quantities such as electric charge, the
additivity assumption is trivially satisfied. On the
other hand, for nonconserved quantities such as
axial charges, additivity is nontrivial and is a
statement of dynamics.!®

In order to make definite predictions about alge-
braic properties of transition matrix elements one
must specify the transformation properties of the
transition operator as well as those of the states.
It is generally true that a kind of octet dominance
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is automatically incorporated in the quark model
when transitions are described by one-body quark
operators. However, these operators connecting
say one hadron multiplet H to another H’ need not
belong to the same octet. This can sometimes be
rather subtle, as for example in the case of the
transition operators u; and v;, the scalar and
pseudoscalar densities.®

The additivity principle implies'® that

H'| T|HYy={q"lITllq), (29)

where ¢,q’ are the “active” quarks participating
in the transition, while the other, “spectator,”
quarks play no role in the process in this approxi-
mation. The overlap integral involving these spec-
tator quarks has been set equal to unity; in taking
ratios, the effect of the overlap mismatch should
be negligible. One should note that in this way one
relates matrix elements of baryon transitions to
corresponding matrix elements of meson transi-
tions, something that one cannot achieve via sym-
metry arguments alone. For example, in this way
one may obtain all the SU(3) results for pionic de-
cays of hadron resonances, as well as other SU(3)
relations for decays involving a particular meson,
simply by the assumption that the relevant matrix
elements are determined by one-body quark oper-
ators with the proper quantum numbers. However,
7 decays and K decays are not related unless addi-
tional SU(3) or higher-symmetry assumptions are
made.

In the case at hand, we are interested in the cor-
rections to strong PCAC which arise from the
part of 8, A2 which is orthogonal to the state P,.
As discussed above, this may be thought of as a
field operator for a heavy pion, but this picture
is not necessary. The null-plane analysis of
8, A suggests that it may be reasonable to as-
sume that this nonpole term is a one-body oper-
ator; we will abstract this property from the free-
field equations.

Let us write the axial-vector-current diver-
gences as a sum of a pole term (9, A}),,. and a
background term 3,:

9 A:E(auA:)pole'*'ﬁa' (30)

5

Then, with the assumption that only one-body
operators are important, quark additivity implies
that the ratio

_ {B16,] a)
Jaba= = TB106, AT )

is independent of B, @. Note that we have not yet
made any assumptions as to the SU(3) transforma-
tion properties of 6,, so the A, are not related at
this point. This universality relation has been ob-
tained by Dominguez.®

(31)

The net effect of the PCAC correction, accord-
ing to Eqgs. (31), (32) is that f, is to be replaced by
f.(1-4,). This result may now be used to correct
various relations that follow from the strong
PCAC hypothesis. For example, the 7K analog of
the Adler-Weisberger relation, Eq. (14), now be-
comes

(=402 =f (1= A%, (32)

Of course, the quantities A, enter into correc-
tions to PCAC relations involving baryons as well.
In particular, the Goldberger-Treiman relation
and its octet analogs may be written

(mar"'ma)gﬁ’B:fagB'aa(l— a,), (33)

when g4'% is the axial-vector coupling constant
for the B’— B transition and g, 5, is the strong-
coupling constant for B’~B+P,.

Note that the same quantities A, appear here as
appeared before in purely mesonic processes.

If the correction to pion PCAC is negligible then
by using the experimental value for f,/f, of 1.25
we find from Eq. (32)

Ap=0.2, (34)

which is consistent with the presently known ex-
perimental value of this quantity, as deduced!
from A—Nev decay,

A (expt)=0.30+0.15. (35)

Chen® has made a theoretical estimate of this
using strong PCAC and has found a value too small
to explain the observed correction.

A further application of these ideas may be made
in modifying the classic results of PCAC and cur-
rent algebra for K, decay. The soft-pion®! and
soft-kaon®? results will now read

?‘; [fimg®) +f.(m ) (1= 4,), (36)
TR A CEp S (37
K

The most recent experimental data®® are consis-
tent with

f.m?) <f,(m?) =1, (38)

which then implies that the correction Ay cannot
be negligible. In fact, with the previously deduced
value of A,=0.2 agreement with experiment is ob-
tained for Eq. (37). Assuming a linear fit to the
form factors f,(f), which is consistent with the
data, it is easy to check that Eq. (36) is in agree-
ment with experiment also.

Another way to state the above is in the following
theoretically biased manner. Assuming A, negli-
gible, K* dominance for f,(f), f,(0)=0.97 as esti-
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mated by Pagels then Eqs. (36), (37) imply

2 2
%=2f+(0)<1+%>_ 1=1.27, 39)
providing a theoretical estimate of f,/f, which is
remarkably good. (We have dropped a term pro-
portional to [f_(m,?) - f_(m,?)] which is presumably
very small.)

As another example of a corrected PCAC result
we briefly examine meson-baryon scattering o
terms. Significant effects are expected only for
kaon scattering, as we have seen; in this case,
one finds?*

F(0,0,0,0)=-0,,, (40)

where F(v,t,4¢%,q’?) is the isospin-symmetric KN
scattering amplitude. Clearly, any analysis of
scattering data will only determine 0,,/f,>. The
modifications of PCAC that we have inferred will
effectively multiply f, by (1~ A,) or approximately
0.8; thus o, will be 0.64 times the value obtained
without this correction. In spite of the fact that
the correction here is quite large, little can be de-
duced with any certainty for two reasons: First,
the data analysis is not unambiguous. and estimates
of 0,y vary® from 180 MeV to 600 MeV; second,
theoretical expectations for o, depend on the
ratio of o, to 0,5, which depends on the details
of how SU(3) is broken.!” In the (3,3) model of
chiral-symmetry breaking, for example, it can

be shown that?®

20, y— 0, x=242 MeV (41)

if one ignores the (small) isospin-zero KN ampli-
tude. We will discuss this problem below when
we take up the whole question of the SU(3) trans-
formation properties of the strong- PCAC modifi-
cations o, introduced earlier. In this section we
have carefully avoided this question in an effort
to determine those consequences of the present
theoretical framework that are independent of
SuU(3).

In a similar manner, one may consider meson-
meson scattering. Some time ago, Osborn®® stud-
ied the set of all soft-meson theorems for all
scattering amplitudes of the pseudoscalar octet,
with two particles off shell, using PCAC for each
pseudoscalar state and current algebra. He found
that a linear expansion in the invariants is uniquely
determined by the absence of exotic o terms for
nm, 7K, and KK scattering so long as f, =f, is re-
quired for consistency. In the present context, it
is easy to see that the same result obtains if one
uses the effective couplings f,(1- 4,) and f(1 - Ap),
which are constrained to be equal by Eq. (32).

The modification of PCAC mentioned above can
be described as simply the use of the same con-

stant f for both pion and kaon PCAC, where f=f,.
This has the effect of increasing kaon decay ampli-
tudes considerably; such a prescription has been
used in phenomenological analyses.?”

IV. ALGEBRAIC STRUCTURE OF CURRENT DIVERGENCES

In this section we shall return to the axial-vec-
tor-current divergences which were discussed
briefly in Sec. II. Recall that we found there that
these operators did not have simple SU(3) trans-
formation properties even in the free-quark model.
In view of this, we were reluctant to draw any con-
clusions about the structure of these operators ex-
cept the presumably weak assumption of their
dominant one-body nature (which in fact does hold
true in the absence of interaction). Having done
this, and having explored some of the consequences
of this, we now proceed to the more speculative
analysis of the SU(3) properties of the v;.

The ratio of pion to kaon masses satisfies'?

fim?2 _ 2m, (0lv,|m)

Femg myrm, 010 1K)’ (42)

which involves not only the mass parameters

m,, m¢ but also the ratio of matrix elements of the
v;. This latter quantity clearly depends on the
SU(3) properties of the v;. In an expansion'® in
terms of quark transverse momentum p,, the term
with L, =0 give'?

©v, |7 =2m (b, +hy/M?) 4 hy/M 4=+« , (43)

O] v | K) = (mysm oy + hy/ M)+ hy/M 4+~
(44)

where %; are reduced matrix elements such that
hy/h,, hy/h, are of order {p,®) and M is the quark
mass appearing in the Melosh transformation. If
one takes only the leading term, which corre-
sponds to ignoring transverse motion of quarks,
one obtains!*!’

fxmxz_ ms+m, 2

Fr () (%)
so that

%z 7 (Gunion et al.). (46)

u

On the other hand, if the term in &, is dominant,
then

2
femy _ms+m,

—x £ , 47)
Tt~ 2m, (
so that

%ﬁ =30 (Gell-Mann et al.). (48)

u
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These two extremes correspond, respectively,
to the divergences 9, A} being proportional to the
quark mass parameters m,, m  quadratically or
linearly. The ratio m /m, is clearly very sensi-
tive to this behavior of 8, A} and so it is of inter-
est to determine other quantities which depend on
this ratio.

Consider Eq. (31) for the special cases in which
B=K,m; taking ratios, one finds

frbp @logla)
AR TR (49)

for arbitrary state . We have argued above that
(independent of the ratio m /m,) the PCAC-cor-
rection terms are such that 6,/2m, and 6,/
(my+m,) are SU(3) partners. Incorporating this
into Eq. (49) implies

fXAK= myt+mg
’
ffAT 2mu

(50)

so that the two extreme cases described above
correspond to

A, m
K K ~
TS 12.5. (52)

g

Furthermore, using Eq. (32), one finds for these
two cases

A,=0.27, A,=0.08, (53)
A,=0.21, A =0.017. (54)

The second solution, which follows from the ap-

proach of Gell-Mann et al.,** has been used by
Dashen and Weinstein®® to derive various sum
rules for the Goldberger-Treiman discrepancies.
(A recent discussion of these sum rules is given
in Ref. 4.)

V. SUMMARY

Within the context of the quark model, as quan-
tized on the null plane, the SU(3) transformation
properties of the axial-vector-current divergences
are not as they naively appear to be. Correction
terms to strong PCAC are expected, and we have
argued that these are likely to be important for
kaons especially. Such corrections may be domi-
nated by one-body (and therefore octet) quark
operators; however, since the dependence of these
operators on the quark mass parameters even in
the free-quark model is not simple, it is unlikely
that it would be simple in the interacting case.
Therefore we were led to examine the conse-
quences of the assumption of quark additivity for
the PCAC-correction terms without making any
assumptions of SU(3) algebraic structure. A uni-
versality relation, Eq. (31), is a direct result of
this line of reasoning. Furthermore, current al-
gebra implies Eq. (32), which, together with the
assumption that the pion PCAC discrepancy 4, is
small, leads to an estimate for A, of approxi-
mately 0.2. This then was used to correct some
old PCAC formulas, bringing them into agreement
with experiment. Finally, we returned to the
problem of the SU(3) properties of the axial-vector-
current divergences and explored the consequences
of some assumptions of simple behavior.
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