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We analyze the circumstances under which the violations of an approximate symmetry in a unified gauge
theory of weak interactions are naturally suppressed; in particular, we investigate approximate muon- and
electron-type lepton-number conservation as an example of such a symmetry. Extending earlier work, we

propose a unified treatment of this symmetry together with strangeness conservation by the weak neutral
current and CP invariance. The rate for the decay p, ~ ey is calculated for a general SU(2) )& U(1) gauge
model. From this and a similar study of the decay p, ~eee we derive a set of conditions which guarantees
that the violation of muon- and electron-type lepton-number conservation is naturally strongly suppressed. As
part of this, we compute the nondiagonal electromagnetic vertex to one-loop order for an arbitrary

SU(2) )& U(1) gauge theory. We then focus on the phenomenological predictions of a particular gauge model
with three left-handed doublets of leptons and quarks. These include the existence of charged and neutral

heavy leptons and of small violations of p,-e universality and the relation GF~sec8c ——GP'. Other muon- and
electron-number-violating effects include nonvanishing rates for the decays K +~n+eP, and KL ~ eP„and for
the reactions p, + N~e + N and v, + N~e + X.

I. INTRODUCTION

There are a number of interesting examples in
weak interactions of approximate conservation laws
which hold to a very high degree of accuracy.
These include the conservation of strangeness by
the weak neutral current, separate muon- and

electron-type lepton-number conservation, and

finally CP invariance. The conservation of p. —and

e-type lepton number may well be exact; we shall,
however, take the view here of regarding it as an
approximate symmetry, the validity of which has
been experimentally demonstrated to a given level
of precision. '

These three cases share an important common
feature, which we should like to focus upon in this
paper, with special emphasis on ILL

— and e-type
lepton-number nonconservation. It is not difficult
to construct a model in which approximate conser-
vation laws hold in lowest order in the weak-cou-
pling constant, G„. The striking feature of the ex-
amples cited above is that the violationwhich, in

principle, could occur in second order, i.e. , in
order G~n, is in fact further suppressed. We pro-
pose, extending earlier work, "a unified approach
to these three problems based on the idea of a
mechanism which "naturally" suppresses violation
of the given symmetry, with p, —and e-type lepton-
number nonconservation an an example.

Historically, the smallness of the Kl -R~ mass
difference, of the rate for K~- p, P, and of other
strangeness-changing weak neutral-current pro-
cesses necessitated the incorporation of the
Glashow-Iliopoulos-Maiani (GIM) cancellation
mechanism in gauge theories of weak interactions.

This mechanism precludes an s-d transition
through the Z coupling in lowest order in the weak
Lagrangian. But it does more than this; as has
been discussed elsewhere, ' it also works at the
one-loop level to suppress ~S w 0 induced neutral-
current effects to the level Gzn(~, '/mv')e c,
where ~, ' refers to the difference of certain
quark masses squared, and ~~=sin0~cos6)~, in the
minimal Weinberg-Salam (WS) theory. Similarly,
in gauge theories of microweak CP violation, ' the
magnitude of CP violation in AS=1 processes is
not of order G~, but, instead, of order
G~(~, '/mv')e, where e -10 ' is the conventional
measure of CP violation in the neutral K system.
Furthermore, in this class of theories the elec-
tric dipole moment of a quark arises only in two-
loop order, and is of order 10 "cm.

It is important to distinguish two aspects of this
mechanism in a natural theory in which param-
eters of the theory are arbitrary. The first aspect
is the appearance of certain mixing parameters
such as e c and e, whose moduli are constrained
to be less than unity, but whose magnitudes are
otherwise arbitrary. For the present, these must
be regarded as empirical quantities to be taken
from experiment. The second aspect, which is
the crux of the matter, is the occurrence of the
mass ratio (Am, '/m„') for any values of the pa-
rameters; this depends only on the representation
content of the model. Since m~ is presumably
much larger than m, in any model so far contem-
plated, the above mass ratio represents a substan-
tial suppression of the violation of the given ap-
proximate conservation law. This second aspect
is what we mean by a natural suppression mech-
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anism.
The suppression factor (am, '(m„') reflects the

fact that two different quark transitions contribute
with opposite sign and, in the absence of any mass
difference, with equal magnitude. Because of this,
the leading term of various amplitudes cancels,
and the remainder is of the order of the above
mass ratio, in the absence of infrared singulari-
ties which might arise in the limit m, 0.

The theoretical basis for the natural suppression
mechanism has recently been studied systematical-
ly in SU(2}x U(1) gauge theories in which quark
mass terms are arbitrary (i.e. , in those models
in which there is no zeroth-order natural relation
among masses and mixing parameters; see be-
low). ' Glashow and Weinberg have established
general necessary and sufficient conditions which
guarantee that the weak neutral current naturally
conserves fermion flavors in orders G~ and G~a.
The conditions are (1}that quarks of a given charge
and chirality have the same weak T and T„and
(2) that quarks of a. given charge receive their
mass either from a gauge-invariant bare mass
term or from their couplings with a single neutral
Higgs field (but not from both). One of us deter-
mined in the same framework the conditions which
guarantee that ~nS~ =2 transitions, both CP con-
serving and violating, are naturally suppressed. '
They are (1) the Glashow-Weinberg conditions (but
without the bare-mass option, since the possibility
of such a coupling is precluded by the next condi-
tion), and (2) the requirement that quarks of charge

q and quarks of charge q + 1 do not belong to the
same isornultiplets for at least one chirality.

Let us now shift our attention to the leptonic sec-
tor and consider the role of the natural suppres-
sion mechanism with regard to the conservation
laws of separate electron- and muon-type lepton
number. In unified gauge theories, these laws
have occupied a rather special position. In con-
trast to the conservation of electric charge, the
conservation of muon-type a,nd electron-type lep-
ton numbers is not associated with the gauge-in-
variant coupling of a conserved p. - or e-type lep-
ton current to a, massless gauge vector boson.
That is, these conservation laws, if exact, are
not realized in nature as gauge symmetries. In-
deed, since the weak gauge symmetry is spon-
taneously broken, the eigenstates of the weak
gauge group are in general not eigenstates of the
mass matrix. Therefore, there will in general
be mixing between fermions of the same chirality
and charge, which will prevent the existence of
a conserved quantum number assigned to the par-
ticles in a particular weak multiplet.

As has been remarked upon before, ' in the rnini-
mal Weinberg-Salam model with just two left-

handed doublets" (v, , e)~ and (v„, v. )~, the exact
degeneracy of the neutrinos (guaranteed by their
masslessness) implies separate p, —and e-type
lepton-number conservation. More generally,
consider a model with n left-handed doublets
(N„e)I, (N„p)1„(N„L,)~, . . . , (N„, L„)~, where the
neutral leptons N„. . . , N„are degenerate. Cer-
tainly the natural way to guarantee this degeneracy
is to make these neutral leptons massless, but
this is not necessary. Now one can define v, -=N„
v„—= N„v,. = N,. as both the mass eigenstates and
the weak gauge group eigenstates. Assign to the
electron multiplet the electron-type lepton num-
ber X, , and similarly for X„,P„.. . ,P„. Then
in such a theory these n quantum numbers

„will be exactly conserved. ' For
simplicity let us return to the minimal Weinberg-
Salam model. If one (1) allows v, and v~ to be non-
degenerate in mass, or (2) adds either left- or
right-handed doublets with neutral or doubly
charged heavy leptons (called generically L', L )
which can communicate with rnuons and electrons
or (3) enlarges the original doublets to triplets or
higher-dimensional representations of weak SU(2),
then p, —and e-type lepton numbers will not be
separately conserved. The mixing of v, and v„ in
case (1) is quite analogous to the situation which
obtains in the hadronic sector of the minimal mod-
el, where there is no separate conservation of
(u, ds)~-quark number and (c, ss)~-quark number
because of the mixing of d and s, or equivalently
u and c. It is the purpose of this paper to analyze
the conditions which guarantee that the noncon-
versation of e- and p. -type lepton number is nat-
urally suppressed and to discuss their conse-
quences. ' In doing this we shall also present a
compendium of expressions for electromagnetic
vertices —both parity-conserving and parity-vio-
lating, and both on-diagonal and off-diagonal —of
fermions in any SU(2) xU(1) gauge theory. We
shall briefly comment on special circumstances
in which the fermion mass matrix is not arbitrary
due to the representation content of the theory,
so that the effects of particle mixing are naturally
suppressed. In such models, the model of Cheng
and Li being a prime example, "the general condi-
tions need not apply. With our suppression mech-
anism one obtains predictions for such processes
as p, - ey and p eee which, for a wide range of
parameters (heavy lepton masses and mixing
angles) are in accord with, but not extremely
small compared to, present experimental limits.

The remainder of this paper is organized as
follows. In Sec. II, we review our general matrix
formalism and discuss the one-loop calculation of
the general fermion electromagnetic vertex. Sec-
tion III contains a description of the various mod-
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els to be considered. In Sec. IV we present our
calculation of the rate for the decays p. -ey and

p. - eee in these models. In Sec. V we focus on the
Kobayashi-Maskawa (KM) model" "involving
three left-handed doublets of leptons and quarks.
Certain interesting phenomenological implications
of the model are analyzed. Our concluding re-
marks are given in Sec. VI. Appendix A contains
a discussion of the self-energy graphs.

II. THE GENERAL FERMION ELECTROMAGNETIC

VERTEX TO ONE-LOOP ORDER

In this section we shall compute the general
electromagnetic vertex to one-loop order for fer-
mions in an SU(2) x U(1) gauge theory. For the
special case of a diagonal, real-photon vertex, in
models where our approximations are valid, our
results can be used to determine the anomalous
magnetic dipole moment and electric dipole mo-
ment of an arbitrary fermion. " The main applica-
tions of the nondiagonal, real-photon amplitude
are to radiative hyperon decays, Y-X+y, where
Y=A, Z, or =,"and radiative lepton decays, such
as f, -e+y (where I. is a heavy lepton) and

p, - e+ y. The nondiagonal virtual-photon amplitude
is used in the calculation of rare K decays such as
&&- p p. , &'-z'ee, K~-z'ee, and the leptonic de-
cay p. -eee. In the present paper, as mentioned
before, we shall concentrate on the application to
p. —and e-type lepton-number nonconservation.

In all these experimentally interesting hadronic
and leptonic applications, there are two simplify-
ing features. First, the main contribution to the
amplitude comes from diagrams in which the mass
of the internal virtual fermion (a charmed quark or
heavy lepton) is considerably larger than the
masses of the external fermion (d or s quark, or
p, , e, v lepton). This fact justifies an approximation
which we shall use in evaluating the Feynman
parameter integrals; namely, we shall keep only
the non-negligible fermion masses. Second, in
the decay amplitude for f,-f,+y„„,„„,the momen-
tum q of the photon satisfies q'&m, ', where m, is
the mass of the initial fermion. Consequently, q'
is also small compared to the charmed-quark or
heavy-lepton mass squared and can be neglected
in the parametric integrals. With these approxi-
mations the parametric integrals will be of the
form

2 2 2
mgf m+ mgfa + bpln 2 + 2 tz&+ 5yln
mp" mgf mp

(where mz is the mass of the relevant virtual fer-
mion) rather than some complicated and, for our
purposes, not very useful, expression involving
dilogarithms. Moreover, since q is small, it is

not necessary to compute the full off-shell vector
and axial-vector form factors but rather only the
V and A. parts of the charge radius. This expedites
the computation.

We shall perform the calculation using the $-
limiting procedure as formulated for spontaneously
broken non-Abelian gauge theories by Fujikawa. "
In this formulation, there is no interaction term
of the type em~(A~ W "P'+A„W'"P ), where A„
is the photon field, and P' are unphysical scalar
fields, in contrast to the regular RL gauge, "in
which this term is present. Furthermore, the
WIVE vertex differs from the form in the R~ gauge
by the addition of a term linear in ( [see Eq.
(2.27)). Finally, as in the R, gauge, the Wpropa-
gator is

k„k~(1 —1($)za 8(k)=-i g 8—
a -mw~'

1
X

k —mg +sc (2.1)

and similarly, with appropriate changes, for the
Z propagator. The advantages of using this $-
limiting procedure are first, that there are no
diagrams involving P'5'A vertices. Second, for
the physical quantities which we calculate at the
one-loop level, diagrams such as those of Figs.
1(a) and 1(b), but with W' replaced by g', both
vanish in the limit $ -0. (The limit is taken after
all integrations are performed. ) This is useful
because our general matrix formalism (see below)
is simplest in diagrams which do not involve un-

(a) (b)

f) ~F~ fq

(c)
FIG. 1. Diagrams contributing in a general SU(2)

x U(1) gauge model to the process f&-f2+y, where

ff 2 are (identical or different) fermions. The sym-
bol F; denotes any fermion which can couple in these
graphs. For the decay p, ey, f &

=p, f 2=e, and in
graphs (a) and (b), F'; =I. or L, in accord with the
upper or lower sign choices for W'. It is shown in the
text that graph (c) can only occur for the diagonal ampli-
tude; hence in this graph f &

=F'; =f 2.
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CoR=gZ~W„' +H.c.+ (g'+g")'~'Zz Z„, (2.2)

physical scalars, "
Before presenting the results of the calculations,

we must introduce our general notation. ' The
crucial virtue of this notation is that it allows one
to treat in a unified way all SU(2) x U(1) gauge mod-
els. I et us denote by (L and $R the left and right
chiral lepton fieMs. The components of $L „are
labeled by T, T„F (or equivalently, Q), an«,
where e distinguishes different multiplets with the
same T and F. The coupling of the gauge bosons
to fermions is given by

ULJI/JM ~
UL~ =MD

UR MURMUR~ =MD

where M~' is diagonal. Then

(2.12)

From Eq. (2.11), it follows that

[e', L.]=[a', I/. ]=0. (2.14)

sider, homever, MM~ and M~M; these are Hermi-
tian and have the same positive-semidefinite eigen-
values, so that there exist unitary matrices UL and
UR such that

~W=&Ly T.hL+&Rr T+(RL P R

~z =
& Ly &Z&L+ &Ry &a& R .]I —

P I, ]1 R

(2.3)

(2.4)

The fermion mass eigenstates are then defined as

4L ~L~L) 4R R~R &

(2.15)

In Eq. (2.3), TL ", i=1, 2, 3, are the representa-
tions of the weak-isospin generators for the vari-
ous left and right fermion multiplets and Q = T,
+ F/2 is the electric charge operator. The T,'R.
satisfy the commutation relation

In terms of the mass eigenstates, the fermion-
gauge-boson coupling takes the form of Eq. (2.2)
with

(2.16)

[TI,R TI,R] e TL,R
krak k (2.6)

(2.17)

For a doublet representation of SU(2), for example,
T, "=-,'v, . The weak-isospin raising and lowering
operators are defined as

cIL, ,R U TL, R UfL, R i L, R (2.18)

yL, R~ gTL, R

(2.6) f.L, R TI,R .sn2~eLR
g 3 (2.19)

[TI,R TL, R] TI.R

In Eq. (2.4),
L'R = IIIL'R —S n20 QI 'R
2 3 lV

where

Q=Q L+Q ~

(2.7)

(2.8)

(2.9)

(2.10)

In order to express this coupling in terms of
physical fermion fields, we must diagonalize the
mass matrix, which is of the form

ELM(R+ H.C.

Here M is a general matrix which is constrained
only to commute with Q:

QLM=MQR . (2.11)

Since in general [M,M ]x 0, there does not exist a
unitary matrix U such that UMU~ is diagonal. Con-

I et us proceed mith the calculation. The dia-
grams which can, in general, contribute in one-
loop order to the electromagnetic transition am-
plitude from an initial fermion f, to a final fermion
f, are shown in Fig. 1. In the nondiagonal case
where f,af„ there are also the self-energy graphs
shown (for f, = p, , f, =e) in Fig. 3. For the real-
photon ampbtude, these give a zero contribution
and for the virtual-photon amplitude, they contrib-
ute only to the renormalization of the (nondia-
gonal) vector and axial-vector form factors. The
treatment of these self-energy graphs is discus-
sed in greater detail in the Appendix. In the non-
diagonal case, the graph involving a Z in Fig. 1(c)
mill only contribute if there are appropriate low-
est-order nondiagonal Z-fermion coupling terms
in the I agrangian. Stating one of our results in
advance, it will in fact be shown that if this Z
graph could contribute to the decay p, ey it would
give much too large a rate. The photon graph l(d)
is, of course, present only for the diagonal electro-
magnetic vertex; it gives [cf. Eqs. (2.20) and (2.64)]
F,(0)„=-(o./2v)Q, '5„, where F,(0)„—= F2~(0)„/g, is
the anomalous magnetic moment.
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The invariant amplitude for f,-f, +y (virtual
or real) has the general Lorentz and Dirac struc-
ture (with P, =P, +q)

%„(f,(p ) f (p,)+y(q))

iu-(2P )2y„(F,"(q')+F", (q')y, )

1 2

+qi (F2"(q')+F"2(q'}y,) u, (p, ) .

(2.20)

In Eq. (2.20) u, (p, ) is to be regarded as a tensor
product of a Dirac four-spinor and an n-dimen-
sional vector, where n denotes the number of had-
ronic or leptonic flavors, i.e. , mass eigenstates.
The form factors F, (q') ar.e nxn matrices in the
space of physical quark or lepton fields. We have
normalized the E, "matrices so that the diagonal
elements are equal to the anomalous magnetic
moment (times the charge) and electric dipole mo-
ment of the corresponding fermions.

Electromagnetic current conservation requires
that

where f, and f, label the initial and final fermions.
In particular, for the decays p. - ey or (for nonde-
generate neutrinos) v, - v,y, F,(0) = 0. Further
more, for a real photon, the full amplitude is

3}I= e" (q)31I„, (2.24)

dI'"
', (0) = ' F,'(0)

n2, -m2
(2.25a)

(for m, tm, ) a.nd

and c q = 0, so that the E, " terms make zero
contribution to f, f, +y(q'=0). Thus in order to
determine the rate I'(u -ey), we need only calcu-
late the quantities F, "(0).

For the related decay p. -eel, we shall need the

+, "terms. Since in this decay q'z m„'«m~'
«m~' it is useful to expand the vector and axial-
vector form factors, keeping only the largest
terms. From Eqs. (2.22a) and (2.22b) we obtain
the following relations linking the vector and axial-
vector charge radii dF, '"(0)/dq' with the scalar
and pseudoscalar form factors:

q"%„=0 .
which implies the two relations

(2.21) dpA
l (0) = F",(0) .

m, +m2
(2.25b)

(n2, -m2)FIv(q')+q2F, (q2) =0,
-(m2+m, )F,"(q')+q'F", (q') =0 .

(2.22a)

(2.22b)

F'(0) = @I,b,~

FA(0) 0

(2.23a)

(2.23b)

For q'=0, since P', are analytic at this point,

We shall use Eqs. (2.25a) and (2.25b) to determine
dF, 'A(dq', since this method is easier than a di-
rect computation of F," "(q'). Once having utilized
E3 in this manner, we wi 11 drop them because
they make a zero contribution to the amplitude for
p, -eee.

Diagram 1(a} gives a contribution

d Qeg'Q„(, ~ y (7', L+ K, R), „™2 y"(7', L+I', R)n &(k)68~(k —q)I'~R~&(k, —q, q —k), (2.26)

where the chiral projection operators L and R are given in Eq. (2.10}a.nd a sum over both upper and lower
signs is understood. The WWy vertex is given by

ieI' ', ' '(k„ k„ k,) =ie[(k, —k,)„,g , + (k, —k,) g„,„,+ (k, —k,)„,g ,„,] ie$+[(k, ) , g „ —(k,) g„,„,]
(2.27}

(with the momenta defined as going into the vertex). In Eq. (2.26), Q„=+1, corresponding to the upper and
lower choices of signs in the 7, operators. Similarly, diagram 1(b) gives a contribution

d'k (P — +M +M

P2 ~ ™D (2.28)

The contribution of diagram 1(c) is given by Eq.
(2.28) with the replacements g'-g'+g",

, m~-m~, and $ g, where g is the gauge
parameter for the Z field.

It is convenient to separate the LL, RR and LR,
RL parts of the form factors arising from the W

and Z graphs 1(a)-1(c):

Fi = (F' )I L, , RR+ (F' }LRRLi,
(2.29}

Performing some Dirac algebra using the chiral
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projection operators E, and R in Eqs. (2.26) and
(2.28}, we determine the general structure of the
LL, RR and LR, RL parts of the form factors to be
as listed below. In these equations a sum over the
indices a(a) =+ (-},—(+), Z(Z) is understood cor-
responding to the contributions of W, Ã', and Z
graphs, respectively:

FV(q2) 2[y LCI I, RBy I + f BCI L, RR7R]

(2.30a)

EA(q2) q2[q I CI L, RRq L f RCLL, ABER]

(2.30b)

Fv( 2) (m +m )2[gLCI IRByl , 7 BCLI, RRgR]
2 2

(2,31a)

FA2(q )II„BB= (m,
' -m2') [f', C, ,' ""7'-,

QCLL, BBgR] {2 31b)

Fv(q2) (m m )[7LCLI,BR'+ &yBCLL, RRS R]

(2.32a)

F2 {q }LL.RR —{ml+m.}AC.,;

2ec„mv(m, +m, ) mv4 ~IR, ZL, 8m' 2
V

(2.37)

where a is of order unity (and b is either of order
unity or In(m~'/mv2), depending on the model).
Hence the contribution of Fav'A(q')q„- (m, + m, )
x F, '"(q') is negligible for both diagonal and non-
diagonal transitions, being smaller than that of
E, '"(q') by the factor (m, 2'/mv'). A similar re-
mark applies to Eq. (2.34).

Vhth the weak matrix structure of the form fac-
tors thus determined, we next consider the re-
strictions on the amplitude for f, -f,+y arising
from the Hermiticity of the Lagrangian and from
time-reversal invariance. This amplitude con-
stitutes an effective proper f,f,y vertex

(2.38)

(where g is a tensor product of a Dirac field and
an n-dimensional vector of all flavors of quark or
lepton fields).

In momentum space this vertex is

7 RCLL, BBafR]
a S,a a

F2 (q )LR,RI {ml ™2)[~aCa, a ~D~a

+ 7RCLB, RLM. CIL ]

E,"(q'),„„=(m, +»1,)[r,'C,","M,q,"

(2.32b}

(2.33a)
I'2(pl p2;q) =yaI' (pa, pli -q)ya ~ (2.39)

Equation (2.39) requires that the total form factors
satisfy the foQowing relations:

2I(p.,)I „(p„p,; q)u(p, )

and the Hermiticity of the Lagrangian implies that

(q }LR.BI, =0
~

E2'"{q'}LR,RL = o ~

v RCLRRIM 7
I, ]a 2, a D a (2.33b)

(2.34)

(2.35)

I V

where m~ denotes the mass of a. virtuaI fermion in
Fig. 1, andm~=m~ or rnz. In contrast, from Eqs.
(2.33a} and (2.33b), (2.44)-(2.47), (2.50}, (2.54),
and (2.57), it follows that

In Eqs. (2.30)-(2.33) C, , and C, , are real n xn
diagonal matrices, the values of which will be
given below. In the approximation in which the ex-
ternal fermion masses are much smaller than the
internal virtual fermion masses, the C matrices
are independent of the external lepton masses.
Thus the symmetry under the interchange I, m,
is manifest in the above equations. One can ob-
serve that, under a parity transformation, the vec-
tor form factors are symmetric and the axial-
vector form factors are antisymmetric, as they
must be.
» Eq. (2.35), ,E'"( )q» RaLctually has the form

suppressing F, "matrices,

E; "(m„m,) =E," "(m„m,)t,
E,'(m„m, ) = E,'(m„m, )',
E", (m„m, ) = -E,"(m„m,)',
F,"(m„m,) = E,'(m„m, )~,-
E", (m„m, ) =F",(m„m, )t .

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

EA(m, =m, ) =0. (2.45)

Finally, CI' invariance implies that the I'& ma-
trices satisfy the relations"

E ' "(m„m,) =E," "(m„m,)', j =1,2, 3 . (2.46)

The C matrices may be conveniently written in
the form (suppressing nonmatrix indices)

One can easily check that these conditions are sat-
isfied by Eqs. (2.25) and (2.30)-(2.35), given that
with our approximations the C matrices are inde-
pendent of m, and m, . Note that the current con-
servation equations, (2.22a) and (2.22b) are con-
sistent with these Hernlltlclty relations. In the
{CP-invariant} diagonal case, Eq. {2.43) implies
that Ev(m, =m, }=0 [also implied, for q'220, by
Eq. (2.22a)], and Eq. (2.42) yields
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eg'
Ci) —

32 2 2 C555~
7T mw

(2.47)

(with no sum on i) .For the W" graphs we use the
relation, in the Weinberg-Salam model, "

cess.
The Z graph 1(c) contributions are obtained by

simply multiplying those of graph 1(b) by K and
replacing m~' by mL' in Eq. (2.58}:

g' ~G

8

For the Z graph we make use of the relation

Bmz' 8mw'

(2.48)

(2.49)

(Cl(c))LL, RR =Kq (- 2 + 16 )
i

1(Cl&c))L RL - Kq 2+ 6, 4 ln —+ 6

(2.59)

(2.60)

(2.61)

and define C, , similarly to Eq. (2.47), with

—2'P(T'- T,'+ T)zr r,a

(2.50)
(Ta

In these equations g and g' are the coupling con-
stants for the SU(2) and U(1) subgroups of SU(2)
x U(1), respectively; X» is the vacuum expecta-
tion value of (the neutral member of) a Higgs
multiplet with weak isospin T, and the sums in
Eq. (2.50) are over all Higgs multiplets. For the
W ' terms obviously

where

2
F5

2
mz

(2.62)

The invariant matrix element for the radiative
decay f, -f, +y is given by

23}f(f,(p, ) -f.(p.) + r(q))
V~ 0

=~,(P,) "' (F,'(0)„+F",(0)„&,)R, (P,},
(

2 21 2 21 a 1 1

)I L, RR (Cl(a) +1(b))IL,RR
a, ~ (2.51) (2.63)

for k=2, 3, and similarly for the LR, RL, part.
From our present and past calculations'" "we
find that the diagram of Fig. 1(a) yields

where for notational convenience we have separated
the Dirac and weak-gauge-group matrix struct-
ures, defining

(( 1(a)}I,L, RR (q q )(2 1 e )

(Cl(a))LR, RL (q q )( 2+ 3e )

(2.52)

(2.53) The rate is then

(2.64)

while dia, gram 1(b) gives

(Cl(b))II. , RR q (
2 + (

~ )
5

(2.54}

(2.55)

1(C'&b))""=q, 2+e, -4 ln —+6, (2.56)
i

m .'
mw

(2.58)

We recall that these results apply in the limit
$ -0. As is expected, Fa(q') is a non-Abelian
gauge-dependent quantity; in Sec. IV, it will be
shown that it has precisely the correct ( depen-
dence to cancel the $ dependence of the Z and
W'W exchange contribution to p, - eee and yield
a $-independent S-matrix element for this pro-

(c" ') =() -') —~ —' ~ '-

) (2.5))
5

In these equations Q, and QF are the charges of
the initial and ith virtual fermion, and

m m m1'(f, f +y)= ~ 1 ——' 1—
8m m,

x I:IF,'(0)„l'+ IF,"(0)„l'1 . (2.65)

From these results we can immediately derive
several constraints on models of weak interac-
tions. W'e concentrate on the leptonic sector here,
since the quark sector has been discussed be-
fore." First, the existing experimental bound on
the branching ratio for the decay p. eee, viz. ,
BR(y. ee(a) &6x 10 ', prohibits a direct lowest-
order Zp, e coupling in the Lagrangian. For if
there were such a coupling this decay would pro-
ceed at a rate comparable to that of the decay
p, -ev, v„unless the mixing of the muon and elec-
tron were unnaturally small. But if 2z and F~are
to be diagonal in the p, -e subspace for an arbitrary
mass matrixM and hence arbitrary U~ and U„,
they must in fact be multiples of the unit matrix
in the entire Q = -1 subspace. That is, all left-
handed leptons of charge Q =-1 must have the
same value of weak &, and similarly for right-
handed leptons of charge Q = -1. As a conse-
quence the Z graph 1(c}does not contribute to
nondiagonal electromagnetic leptonic transitions.
Parenthetically, it may be mentioned that, in the
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(e[E,M T", [lL) =(e[f' M V [p.) =0 . (2.67)

hadronic case, the smallness of the KIK~ mass
difference and of the rate for the decay K~ - p, p,

similarly prohibits a lowest-order nondiagonal
Zsd vertex. By the argument given above, the ab-
sence of such a vertex can be guaranteed naturally
only if all quarks of a given charge and chirality
have the same value of weak T3.

Let us consider next the W graphs l(a) and l(b).
For the p. -ey decay, the LL, RR part of these
graphs will, in general, give a contribution to
F» "(0) of order eG»m„'/(8 'w), while the LR, RL
part will give a contribution of order e G„mLm„/
(8w'), where again, mL denotes the mass of a
generic internal virtual lepton (specifically, the
maximum mass in the case of widely disparate
masses) in Figs. 1(a), and 1(b). Thus the LL, RR
part will produce a p. - ey branching ratio of order
(a/w}, while the LR, RL part, if present, will yield
an even larger rate of the order (a/w)(mL/m„)'.
We must therefore require that the corresponding
matrix elements (e)9', C, ;""7',

~ lL), (e~V'", C, , "
X V", )lL), (e)I,C, ";"MDf, (lL), and (e)f'", C, ,'e
xMDH~p, ) all vanish to leading order. Here, in
contrast to Eqs. (2.30)-(2.33), there is no implied
sum over both upper and lower signs, i.e. , each
matrix element must vanish for each sign choice.
Now to leading order, the matrices C, , "~ are
proportional to the identity matrix in each charge
sector. Therefore, for upper and lower sign
choices individually, the LL, RR matrix elements
can be written

(e~TLCLL, RBVLi )

~ (e( &', &', lu) =4 &e([(&'}' (&s)'+-&', ](lL). (2.66)

In order for this matrix element to vanish, in gen-
eral, (7' )' and v', must be diagonal in the y, -e
subspace. Again, if this is to be true for an arbi-
trary beginning mass matrix M, (1' )' and T, must
actually be multiples of the identity in the Q = -1
charge sector. The same argument and conclusion
apply to (7'"}'and v', . We thus find from the re-
quirement that the LL, RR Wgraph contributions
do not give too large a branching ratio for the de-
cay p, ey that leptons of charge Q=-1 and a given
chirality must have the same value of weak T and

T3. As mentioned before, this is in fact precisely
the condition on lepton representation content
which guarantees natural conservation of Q = -1
leptonic flavors by the weak neutral current.

Proceeding to the analysis of the LR, RL matrix
elements in the W graph contributions to p, - ey,
we note that, as in the LL, RR case, to leading or-
der, C, "," are proportional to the identity matrix
in each charge subspace. Consequently we require
that for each sign choice individually

F,(0)ee ~ G»meomq . (2.69)

In contrast, in the WS model, with only LL, RR
contributions,

F,(0)ws~ G„m~' . (2.70)

The large LR contribution in the Georgi-Glashow
model was in fact used to set a phenomenologically
important upper bound on the heavy lepton mass

13m~0.
Finally, consider the C, matrices, which do not

contribute to p. - ey but do to p. -eee. The same
conditions which gua, rantee that the p. - ey branch-
ing ratio is not too large also ensure that graph
1(a) gives a reasonable contribution. However,
this is not true of diagram l(b) becuase of the
presence of the ln(1/e, ) in (CsI, ) ) L ee, as given in
Eq. (2.57)." Assuming that the other conditions
are satisfied, in particular the condition that all
leptons of charge Q =-1 have the same weak T
and T„this la(1/e;) will produce a BR(p, -eel)
-(a/w)'e ln'(mL, '/mL '), where L, , are generic
doubly charged leptons, and c is a product of mix-
ing angles. Unless m~ and m~, are very close to
being degenerate and/or the mixing angle(s) is
very small, such a branching ratio would conflict
with the present experimental limit. In view of
this. it is therefore desirable to avoid the pos-
sibility of an LL, RR contribution from diagram
1(b). This requires, in particular, that there be no
doubly negatively charged leptons which communi-
cate with e and p, in such a way as to yield non-

This implies, by the same reasoning a.s was given
before, that

(l, (Q = -1)
~
7'~M~ f, ~ l, (Q = -1))

= (l, (Q = -1)
~
'T,MD 9;

~ l, (Q = -1)) = 0, (2.68)

where l, , are arbitrary leptons.
This is thus a special case of the second condi-

tion for microweak CP violation discussed else-
where (for quarks). ' In words, this condition,
for leptons, is that, for at least one chiral-
ity, leptons of charge q and q+ 1 do not belong to
the same weak isomultiplet. In the specific case
of the p. e matrix element it is necessary that lep-
tons of charge Q = 0 and Q = -2 do not belong to the
same weak isomultiplet as electrons and muons,
for at least one chirality.

In passing, we mention that the LR, RL contribu-
tion in the diagonal case is also larger than that of
the LL, RR terms, at least in the experimentally
interesting case in which m, '(=m, ') «mL'. For ex-
ample, in the Georgi-Glashow model such an
LR, RL contribution is present and yields an anom-
alous magnetic moment proportional to a heavy
lepton mass, as in Eqs. (2.33a) and (2.33b):
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zero matrix elements (e~y, c, , "v ~p.) or
(e (

+RgLL, RB gR
~

III. GAUGE MODELS

In order to illustrate how certain features of p, —

and e- type lepton- number nonconservation depend
on characteristics of the underlying gauge theory,
we shall apply the general formulas derived in the
preceding section to a variety of SU(2) x U(1) gauge
models. Subsequently, we shall focus upon the
V- A six-quark KM model. The leptonic represen-
tation content of these models is depicted in Table
I. In this table,

( cose sing)
(3.1)

sing cos() 1
and tt is a 3 && 3 unitary matrix (which depends on
four parameters; see below).

Model (a) is the original Weinberg-Salam model
of leptons, ' generalized to allow for nonzero neu-
trino mass. Given that the neutrino mass eigen-
states v, and v, are nondegenerate, they will mix
by an arbitrary rotation A, through an angle 6} to
form the weak eigenstates v, and v . (The spinors
(v„v~), (v„v,) in Table l(a) are used solely for no-
tational convenience and do not represent doublets
of any group. ) We include model (a) only to illus-
trate the fact that with the present experimenta. l
upper limits on the neutrino masses, it cannot ac-
count for a branching ratio for p, -ey larger than
-10 ".Henceforth, we shall accordingly restrict
two of the neutral leptons which couple to e~ and p, ~
to be massless by decreeing that they have no

right-handed components.
The rest of the models include heavy lepions.

Model (b), the KM model, " is obtained by expand-
ing the minimal model with the addition of neutral
and singly charged heavy leptons L' and L, as
shown in Table I. The left-handed component of L'
is distributed among the left-handed neutral weak
eigenstates via the unitary mapping'. One merit
of this model is that it would incorporate in a. natu-
ral way the heavy lepton discovered at SPEAR" and
cor robora ted by DESY" if in fact this heavy lep ton
is found to decay via a V-A current. Lepton-quark
universality and the cancellation of anomalies are
easily achieved by postulating that the hadronic
sector also consists of three left-handed doublets,
(ud, d)~, (u„s)z, and (u~, b)~, where

anomalous y distribution in inclusive antineutrino-
nucleon scattering reported by the Harvard-Penn-
sylvania-97iscons in- Fermilab experiment" and re-
cently supported by the Ca, ltech-Fermilab experi-
ment. "'" (See, however, the note added in proof,
Ref. 26. )

The fact that& is unitary is equivalent to the fact

TABLE I. Lepton multiplets in the models considered.
See the text for an explanation of the R& and%, matrices.
The mixing of L~& and L2+ to form L~& and L„& in model
(d) is determined by R2(8). Similarly, in model (e) the
mixings of L&l, and Lz& to form L~& and L„I.and of L fg
and L2z to form L~z and L„z are determined respec-
tively by R2(8z) and R&(8&). These mixing formulas are
omitted for brevity. See the text for the mixing in mod-
el (f).

where

where

(()v,),
~ ~

(v&),
~

()vJ, [=«,), [.
'i (Nz) 1 k(L, O)~1

(c)
(

e p e~ p~

L~ g L„L, Lgg Lpg

where

(3.2)

with 'U a unitary matrix. With such a quark sector,
however, the KM model cannot account for the
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that the model has natural flavor conservation by
the neutral current. This ls clear since the fix'st
condition for flavor conservation by J z is true if
and only if the matrices U~ and Us in Eq. (2.9) are
unitary not just in toto, but also when restricted to
any (T, T» q) subspace. But tt is precisely the re-
striction of the matrix U~~ to the Q =0 subspace,
and so the equivalence asserted above is proved.
(A similar remark applies to the unitarity of 'U. )
Allowing for redefinition of the phases of fermion
fields and the extraction of a single overall unob-
servable phase, the matrix%, depends on four pa-
rameters. Since a 3 & 3 orthogonal matrix only de-
pends on three parameters this leaves an additional
one, which we can choose as a (CP-violating)
phase. For generality we shall denote the elements
of qi by'll;J and avoid using any explicit trigonome-
tric forms.

As in the S model with massless quarks we
shall denote the normalized linear combination of
the zex'o-mass physical fields v, and v, which cou-
ple to e and p by v, and v„:

&2~ vi++m vz

( le„ l
'+ i e„I

'}"' (3.3b)

There are several important features to note here.
First, in the WS model, with either massless or
massive neutrinos, the T=&, 7, =& weak gauge
group eigenstates, which in that ease are v, and v„,
a.re orthonormal. The analogous 7.'= &, T, =

& weak
eigenstates N„N„, and N& in the KM model are
similarly orthonormal, so that tL is unitary. How-
ever, the zero-mass linear combinations ~, , v,
+'I» v„j=1,2, which couple to e and p. , respec-
tively, are neither of unit norm nor orthogonal. Qf
course there is no reason why they should be ortho-
normal, since they do not constitute complete
weak-gauge-group eigenstates. " %'ith our defini-
tions (3.3a) and (3.3b) of v, and v, the deviation
from unit norm is rendered explicit; for example
the W'ev vertex is

The inner product of v, and v„ is

( i'u'„
I
'+ le „i')"'(le i

'+ i'll i')"'
(3.3c)

where we have used the fact that Z&'u»'lt» = 0.
Since the couplings of e to v, and p. to v„are not in
general equal, the KM model violates p, —e univer-
sality. Moreover, in consequence of the fact that
v, and v„are not orthogonal, there is neutrino

mixing. However, since the neutrinos are degen-
erate this mixing is not time-dependent, i.e., there
are no neutrino oseillations. " In See. P the phe-
nomenological implications of the KM model will
be examined in greater detail. Hex"e we shall sim-
ply observe that there are three important experi-
mental constraints on the amount of mixing which
can be allowed in the KM model. First, one must
respect e p, universality, i.e., the equality of g~,„'
and g~„„2, where g and g are the coupling
constants for the Wev, and Wp, v, vertices. The
most accurate test of this comes from a compari-
son of the rates for the decays n ev and m p.v„.29

Second, there is the requirement that g~~„' sec' 0~
=g~~„'as determined by measurement of the rate
of P decay versus p, decay and by the measurement
of the Cabibbo angle from hyperon decay or K- pP„
versus 7t - p, P„. Finally, the amount of nonortho-
gonality between v, and v„ is restricted by the non-
observation of e from an incident beam of v„scat-
tering off nucleons. ' As will be shown in See. P,
these constraints allow rnixings

f~„/- f~„/~0.33 .
The next model (c) proposed recently by Wilczek

and Zee (WZ) contains two left-handed triplets ln
which the 7.;= —1 states I.,~ and I.„~ are mixtures
of the heavy leptons states I.,~ and I.,~. For the
cancellation of anomalies (between quark and lepton
sectors} it is necessary to postulate new quax'ks.
However, since these quarks are a, peripheral is-
sue here we shall not discuss them in detail. Qn
another mattex' there is a more immediate require-
ment; the experimental fact that to the precision of
-one percent, the coupling constant for the MW
vertex, multiplied by sec&, is equal to that for the
P„pW vertex. Because model (c}places the left-
handed leptons in triplets rather than doublets, the
v,eS' vertex increases in strength from g to M2g.
Qf coux'se this just induces a trivial redefinition of
g' in terms of 6~ m~', but it. has the nontrivial ef-
fect of forcing the u~ and d~ quarks to be placed in
a tx"iplet to retain quark-lepton universality for the
weak coupling constant. Furthermore, in order to
maintain the naturality of the hadronic sectox', this
also forces the c and s quarks to be placed in a
triplet.

The WZ model (d)" is similar to model (c) in that
it adds two new I. leptons to serve as intermediate
states for the p.-e transition. However, in contrast
with model (c), it places these in two right-handed
doublets, with their weak hypercharge shifted down

by two units in order to ensux'e naturalness. This
is the leptonic analogue of a model for the hadron
sector discussed recently in connection with CP
violation" and nonscaling anoma, lies in (anti) neu-
trino scattering. " Model (e) is included to illus-
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trate the effect of an unsuppressed p. -e transition
of the form p~ (L, ~ 2)rI (L ) 2)s 8R or ps- (L, ,)s, (L, ,)~ - e~. We will find that such a
left-right transition gives much too large a rate for
the decay p, ey.

Model (f) is an interesting model proposed re-
cently by Cheng and I i, 'o and further discussed by
a number of authors, " involving two neutral heavy
leptons. The right-handed components are ar-
ranged in two doublets with

((&.).) ~ (,),|'(&,).l (3.4}
((1v'„).~ ((~,).j

'The left-handed components of N, and X, are dis-
tributed among two singlets ¹~and ¹~',and the T,
=+& members of two doublets, N,'~ and N„'&.

All of these models except (f) satisfy both condi-
tions for natural leptonic-flavor conservation by
the weak neutral current. The fact that models
(a)-(c) meet the first condition is obvious from Ta-
ble I; to show the validity of the second requires a
description of the Higgs content in each model.
Before doing this, me note that, as is again evident
from Table I, all the models except (e) and (f} sat-
isfy the condition that leptons of charge q and q+ I
do not belong to the same weak isomultiplet for at
least one chirality. In model (a) one complex dou-
blet. (~o) suffices to give mass to 8 and p. This
doublet is sufficient in model (b) to give mass to e,
p, and I.; another, (~o. ), is needed to produce a

s for Jo It is economical, but not necessary,
to take this second doublet as the SU(2)-trans-
formed charge conjugate of the first:

« -& E~ &

Model (c) requires two Higgs triplets,

for the e and p. masses, and

for the L, and I,, masses. In model (d) we need a
slightly more complicated Higgs structure, (~~o),

for the L, , masses and a triplet, which can be
written as in a traceless (~, ~) matrix representa-
tion

for the e and p. masses. The Higgs content of mod-
el (e) consists of a triplet and doublet; although
there are neutral Higgs fields contained in both of
these multiplets, they couple to leptons of different
charge.

The Cheng-Li (CL) model (f) fails to satisfy the
first condition for the neutral (Q =0) sector, the
second condition for the lepton mass term, and the
last condition; transitions e, p, -N„X„can take
place through both chiralities. Nevertheless, this
model, in the form presented, is adequate to sup-
press e-3nd p -lepton-number nonconservation to the
desired level, thanks to a special property of the
Higgs system. Specifically, the neutral leptons re-
ceive their masses both from their couplings to a
Higgs doublet (~~-),

+—'g~'(P', P') +sins ' +cos8m, „, , I'X,) 1V„

(~).
and from the gauge-invariant bare mass term

.(~...-),
~

' ~ .(&;,u).
~

I'x,), (x„)
(~i.

However, the crucial point is that only one Higgs
doublet is involved in giving masses to the leptons;
as a consequence, there is a natural zeroth-order
relation among the lepton masses and the mixing of
the neutral leptons. This relation guarantees that
the neutral current is diagonal in Q=-1 leptonic
flavors down to the level Qzn, as in a fully natural
model. Note that if one started with more than one
doublet of Higgs, one could always redefine the
Higgs doublets so that one and only one picks up a
vacuum expectation value and hence is involved with

giving mass to the leptons. If, however, the Higgs
representation content mere expanded to include
triplets or higher-dimensional multiplets, then the
q=0 leptons would indeed receive their masses
from couplings to more than one neutral Higgs
field, and the zeroth-order relation constraining
the mixing of neutral leptons mould no longer be
valid.

In this theory the four' left-handed weak eigen-
states ¹~,X„'~, N~, and X~' are unitary trans-
forms of the mass eigenstates v, ~, ~,s, &,~, and

N,~, while the two neutral right-handed weak ei-
genstates N,& and N z are unitary transforms of
N,z and X,z, as prescribed in Table I and Eq.
(3.1). When one diagonalizes the mass matrix and

expresses the neutral weak eigenstates in terms of
mass eigenstates, one finds that the mixing is sup-
pressed by the small factors m, /m~ or m„/m~ and
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m,c -m, s
(3.7)

m, s m,c

As mentioned before, to leading order, t. ,"'" is
proportional to the identity in each charge sub-
space. Moreover, in Eqs. (2.31a) and (2.31b) only
the lower sign choice, a = —,contributes to the e p
matrix element of Fv'"(0), corresponding to the
fact that the only available intermediate lepton
state has charge Q =0, not Q=-2. Accordingly,
reexpressing Eqs. (2.31a) and (2.31b) in terms of
T, '" and M, and using the fact that

ll&=ll ), l=e, p, (3.8)

we have, for the dominant part of (F2v(0))~~'s~,

(Fv(0))Lsd RL (Fv (Q))IRIRI

=(ezlT MT, lp„&+( el
TM'z',

l
p, )

=a (Nli IM lN, s&+2 (N s IM'lN'z, &.

(3.9)

But with M as given in Eq. (3.7),

(3.10)

=0.
The same argument applies to (F",(0))z„"'"z, and
thus the dominant LR, RL contributions to
(F, "(0))„vanish, as asserted. If the leading LR,
RL term in F, '"(0) had not vanished, it would have
given much too large a branching ratio for p, - ey.
In passing, it may be recalled that the LR, RL
transitions do not give a leading contribution to the
nondiagonal charge radius which enters into the p,

-eee amplitude, as is evident from Eqs. (2.34) and
(2.35).

The crucial property of M used in Eq. (3.10) is
the fact that M„=0. Note that even if the bare
mass terms had originally included cross terms

is just such that the leading induced LR, RL con-
tribution to F,"'"(0) vanishes. The remaining, sub-
dominant LR, RL contribution, which will be given
in the next section, is of the same order as the
LL, RR part. One can easily see this without ac-
tually having to diagonalize the mass matrix and
compute the mixing explicitly, by using the original
weak eigenbasis and nondiagonal matrix M. Writ-
ing out the mass terms listed above, we have for
the neutral lepton mass terms in the CL model,

ge = (N'z-, N'q, Nz, Nz')Ml '
l

+H.c. , (3.6)
N„sf

where (with s = sin8, c = cos8)

m, 0

of the form

e(N' e}I, ~'
'

l

+5(N'
R

which would lead to nonzero M» and M» (as well as
direct e p, mixing in the Q = -1 sector of the mass
matrix), it would always be possible to eliminate
such cross terms by unitary transformations of the
left-handed doublets and, separately, of the two
right-handed doublets. In contrast, however, if
there are one or more Higgs triplets then there
will in general be mass terms arising from Higgs
couplings of the form

+—(N,', p} r ~ 4 yl + &l
' +H.c.,

where the Higgs triplet is written as a (traceless)
matrix

and

4'/v 2

-co/Wr
(3.11)

0 -v,
(3.12)

N, i = v, +—cosg N, +—sing N, ,
m m

1 2

N'~=v — ' sing N, + "cosg N, ,uL u m m
1 2

(3.13)

where v, and v„are defined as the linear combina-
tions of (the degenerate) v, and v, which couple to
N,'~ and N„'~, respectively.

IV. THE DECAYS @~ed AND p, ~eee

We shall now compare the rates predicted for the
decays p, -ey and p, -eee by the various models
described in the preceding section. We begin with

In this case it would not be possible to eliminate the
cross terms proportional to P and y by allowed re-
definitions of fields. We have already observed that
the presence of such Higgs triplet(s) in addition to
the Higgs doublet(s} violates the second condition
for natural flavor conservation by the neutral cur-
rent. We see now that such triplet(s) would also
yields a nonzero M12 and thereby lead to much too
large a p. -ey rate in the CL model.

For reference, we list below the expressions for
the weak eigenstates N,'~ and N„'~ in terms of the
mass eigenstates v„v„N„and N, . The coeffi-
cients are accurate to lowest order in m„'/mz'.
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the WS theory, as modified to include nondegener-
ate neutrinos. In this model, C, = (C,"')LL'R". The
weak-isospin-raising operator is a 4 x 4 matrix
which in the mass eigenbasis ordered as
(v,L, v, L, eL, p, L) takes the form

serve as intermediate states for the p, -e transi-
tion. In the KM model again only diagram 1(a) con-
tributes, and we find

Fv(0) FR(0)

f0 R,-'(8) )
1", =ULT U

&0 0
(4.1)

Hence

eG~ m„m~om 2 2

2 2 13 23
32)I v 2

(4.8)

since UL=R, '(8). Thus"

(e
l

ef L cLL, RR
l

ef L ~)

m 2 2

With mw= 60 GeV and i~is tt2o I
=0.5 x 10-' 0.5

x10 ' (see Sec. V)

(4 9)

-eG~ am„2
sin(9 cosg

32m'VT m w'
(4.2)

sing cosg [(CLL RR) (C LL RR) ]
ee(x- »)„=(04» )o '-oe x )o-")(

(4.10}
and hence

F,"(0),„=F,"(0)„
-eG~ m„2 hm„2

sing cosg,
32w 2 w

(4.3)

where dm„'=mo, ' —mo, '. Using Eq. (2.65), we ob-
tain the rate

B()L-ey),„,&2.2 x 10 ', (4.11)

For m~0 = &0 GeV the range of branching ratios
corresponding to the above range of I'll»'ll 23I is

B()I-ey)«- 0.4 x 10 ' 0.4 x 10 ".

These values are safely smaller than the present
experimental limit, "

3n Am 2'
F(tI —ey)— sin'8 cos'g

3277 m gf

x F(y. -eP, v, ),
where

(4 4)

but are not so small as to be without experimental
inte res t.

The next two models, (c) and (d), give a com-
parable rate for the decay p, -ey. In the first WZ
model, (c),""

G~m„'F(tIev, „v192 ' (4.5) 75@ 4m ''
B(iL- ey)(, )

—— L sin'8 cos'8 . (4.12)

The present upper limit on bm„2, which comes
from the nonobservation of neutrino oscillations,
is34

(25 ey (4.6)

Using this limit and the value m~=60 GeV, we
compute for the branching ratio (denoted B)

hm 2

))(x-e») —(2.6 x lo ")(25e+2 (4.7)

which is far smaller than the level which could be
detected by any foreseeable experiment.

The situation with the other models is quite dif-
ferent since they have heavy leptons which can

The branching ratio is the same in the second WZ
model, (d}, in terms of the mixing angle 8 and
heavy lepton masses of that model.

Model (e) provides an instructive illustration of
the effect of unsuppressed left-right transitions of
the form p, L

- (L, ,)L, (L, ,)R - eR, or iIR - (L, ,)R,
(L, ,}-eL. When such LR, RL transitions occur,
the chiral projection operators in the vertices do
not clear the numerators of the Feynman integrals
of the virtual heavy lepton masses as they do in the
I.I., RR case. Consequently, the leptonic QIM me-
chanism does not operate effectively. The rate is
found to be

3o. (mL, —mr, ,)' (m +mLL)o)
F(P ey}( )

=
2 ( L R+ R I} + o (cLRR —eRRL) F(P ev, vt. ) (4.13)

where c~ = cosg~, s~ = sing~, etc. Unless to high
precision c~s„=c„s~and m, =m, this rate is in
conflict with experiment. Hence, this theory, al-
though it satisfies both conditions for natural flavor
conservation by the neutral current, fails to satisfy

I

condition (2.67) and hence is ruled out.
Finally, we consider the CL model, (f). For the

LL, , RR contribution to the p, -ey decay amplitude
we find that only the RR part is present. This is
again most easily seen by working with the weak,



rather than mass, eigenstates and the nondiagonal
matrix M; to leading order, i.e., order (eG«m„/
v2)(n.m, '/m '),

&& jy'p" "&'jV& =const x{X jMM'IX

=O. (4.14)

(F«(0))IlyRR (Fk(0))LLy ss

sing cosg

B(p, -ey) = 32, sin 8cos 8,75m hrnq2 2

F fthm 'p
(4.18)

which is a factor of 25 larger than the result originally
givenby Chengand Li." Thisbranching ratio is, for
4m~'-a few QeV', in agreement with experiment.
Thus, taking m~=60 GeV, ~~'= j. GeV',
and sin'8 cos'8 = &, we have 8 (p -ey) c~ = 1.0
x j.o-'0.

In addition to the total xate there ax'e several in-
teresting and informative correlation terms which
can in principle be measured in the decay p. -ey.
First~ considex' Rn experiment in which R polRrized
muon decays in the ey mode. The decay angular
distribution in the muon rest frame is given by

~ ~g (8)„,„=4 (1+nP cos8),
I dF

(4.19)

where P =En is the pola. rization vectox of the muon
and cosg =n.p» with P, being the three-momentum
of the electron in the muon. rest frame. The asym-
metry parameter is

(4.15)

(where 4m~'=mq, '-m~, '). The I,R, RI, contribu-
tion (which was omitted in Ref. 10) is

(F (0«))IRy IB(F8{0))Is&RL

(& jy RgisiBLM gL
j ~& (4 16)

The (e jV' C2 's~Mny;"
j p& term is smaller by the

factor (m, /m„} and is thus negligible. The right-
hand side of Eq. (4.16) is

(@ j~scls, st ~s

av'v 2 2~w'
jM'MM'jib' &uL

Bw v2 ~w'

Thus the total transition foxm factors are

(F;(0)).„=-(F".{0)).„

sing cosg5eCy m„' hm q2

32v'v 2 «nw'

fx'om which it follows that

2 Be(F.«(0),„F",(0),*,)
i F«(0),„I'+ IF",(0),„I' (4.20)

and serves to measure the amount of parity viola-
tion in the decay. Fox' theories with purely left-
handed charged currents such as the WS, KM, and (c}
models, the decay amplitude is of the form
u(P, )io„„q"»"Ru(P,), where R =-,'(1+y, ), and hence
Q =+i. The opposite is true if the decRy p, ep
arises from an BR transition; accordingly, in
model (d) G = —1. In the CL model, interestingly,
although thexe are both RR and I.B contributions to
the amplitude, the signs in Eqs. {2.33a) and (2.33b)
relative to those in Eqs. (2.31a) and (2.31b) are
such that e = -1. Thus in the decay angular dis-
tr ibutlon from R polRrized muon, the isotroplc
component determines lF«(0),„I'+lF~2(0), I', while
the component proportional to cosg yields the rela-
tive phase between F,"(0),„and F,"(0)„.

Qne couM Rlso consKler measul lng the polariza-
tion of the photon from the decaying muon. The ex-
pression for the angular distribution, assuming
that the muon is polarized, and neglecting terms of
order (m, /«n„), is

——(8, »)„,„=—[» ~ » (1+nPcos8)

1dA 8g m„m '
2n ' m,

+ Pg'sg + Pg's2
tPl PB

(4.22)

where we hRve dropped terms of 11lghex' ox"dex" ln

(I,/m„) and for symmetry reasons have left the

+iq ~ (» &«')(P cos8+ n)] .

(4.21)

In this equation, e, P, and cosg =n p2 are as in
Eqs. (4.19) and (4.20) and q=-p, and» are the
three-momentum and polarization vector of the
photon in the muon rest frame. All foux corxela-
tion terms are time reversal invariant; & ~ & and
iq ~ (» x «')n P, are even under parity, while
» ~ » n p and iq ~ (» x»') are odd (and accordingly
are multiplied by n). Observe that even if the de-
caying muon is unpolarized, one ca,n. still obtain
Be(F«(0},F,"(0);„)by measuring the iq . (» x» ')
te rrn.

Finally, we note that to obtain information from
the measurement of the electron spin would be quite
difficult since the electr'on spill coI'I'elRtlon tex'ms
are suppressed by the factor (m, /m„) relative to
the dominant angu1ar correlation terms. For ex-
ample, the angular distribution. in the case where
one measures the polarization of the muon and the
electron, but not that of the photon, is
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FIG. 3. Diagrams contributing in a general gauge
model to the nondiagonal p-e self-energy. The cross
represents a counterterm.
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FIG. 2. Diagrams contributing to a general SU{2)x Ug. )
model to the decay p eel. In graph {b)~, the virtual
lepton, can only be L, . In graphs (c) and {d) the rec-
tangular box denotes a nondiagonal lepton self-energy
insertion; for the graphs contributing to this, see Fig. 3.
Each graph represents a difference of bvo graphs, re-
lated to each other by interchange of final electron
momenta.

expression in terms of the (pseudo) scalar products
of the four-momenta P, and P, with s, and s„ the
spin vectors of the muon and electron, respective-
lyo

%'e next proceed to consider the decay p, - eee,
concentrating on the KM model. We exclude theo-
ries which gave hopelessly small p, - ey rates
(e.g. , the WS model} and theories which give
p. —ey rates so large as to be in conflict with ex-
periment [e.g. , the illustrative model (e)]. There
are three classes of graphs, as shown in Fig. 2,

which contribute to this decay. These include,
first, diagrams 2(a)„-2(d)„with a photon as the
virtual gauge boson which creates the ee pair.
Graphs 2(a)„and 2(b)„are just the analogs of
graphs l(a) and 1(b) with a virtual rather than real
photon. The nondiagonal lepton self-energy inser-
tions in graphs (c)„and (d)„are depicted in Fig. 3;
actually (see below} they do not contribute to
p, —eee decay. The second class of diagrams con-
sists of Figs. 2(a}z-2(d)z with Z as the virtual
gauge boson which creates the ee pair. Here the
nondiagonal self-energy graphs do contribute.
Finally, the third class consists of the W'8' ex-
change diagrams shown in Figs. 2(e) 2(h). In Figs.
2(a), 2(b), and 2(e)-2(h) the generic symbols I.'
and L, are used to refer to all neutral and doubly
negatively charged leptons which can couple in

these graphs. Qf course in theories without doubly
charged leptons which couple to both e and p. only
graphs 2(a), 2(b)z, 2(c), 2(d), and 2(g) are present. On

the other hand, inmodels such as (c) and (d) in

which the p, -e transition proceeds only via I.
leptons, graphs 2(e), 2(f), and 2(g) are absent.
Each diagram in Fig. 2 is understood to represent
thedifference of two graphs; the second is related
to the first by interchange of final electron lines,
in accord with the requirement of antisymmetry for
identical fermions.

Let us begin with the class of virtual-photon
graphs 2(a)„-2(d)„. As is shown in the Appendix,
the self-energy graphs only contribute to the re-
normaiization of E»'"(0) Since &e

~
E.)»' "(0)

~
p& = 0

they therefore do not affect the p. -eee amplitude.
Now, taking account of the fact that q'«m~', we
expand E» "((I') in a Taylor series and use Eqs.
(2.»a), (2.23b), (2.»a), and (2.25b), t e la~~sr
two of which enaMe us to ca1culate the vector
and axial-vector charge radii dE» "(0)Id@' in terms
of E» "(0), as discussed in Sec. II. The virtual-
photon amplitude is thus

(4.23)

where, in analogy with the notation of Itef. 2, IE"(p„p,) denotes the full one-loop effective ype vertex:
2 io

Eo" (p2, p, ) = —yo(- E3"(0), + E3 (0)o„y,)+ —(E2"(0),„+E, (0)o„y,)

Since 4's m ' E'"' is of the same order as E» "(0) in the KM model,

(4.24)
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eG m'E&»- F'"(0)-m F'"(0)-
cg 2 $k 3 am' ~w'

Evaluating E&I. (4.24) for the KM model we find

(4.25)

ms 2

%&")(i&-eee)„„=i,~ '»,%.*»u,(p, ) y, Q-', ——,'ln))+ 'e, "R(--,') u„(p, )u,(l,)y &),(I,)

(4.26)

For the Z and 8"8" exchange graphs, me can simply use, vrith appropriate changes, the results of our
previous general R~ gauge calculations, "letting $ -0 match the $-limiting procedure used for the photon
graphs. Note that the only W'W graph is Fig. 2(g). In contrast to the case with the photon graphs, in the
Z and W'W graphs there is no reason why the leading y and y, y, terms [the analogs of E» "(0),„]must
vanish, and indeed they do not. They dominate over the io, 8q~ and io,~q~y, terms by a power of (m~'/
m„'), since in order to form the latter terms one loses one, and hence by symmetric integration, two
powers of loop momenta in the Feynman integrals. As in the photon graphs, the q„and q„y, terms give
zero contribution.

Denoting the full one-loop effective Zi).e vertex by iE' )(ep„p,), we calculate the Z-exchange amplitude
to be

~ fg g
%&e)=iu,(p,)E'e)(p„p, )u„(p,), , [i(g'+g")'I']u, (l,)(--,'yef, +sin'6~ye)&), (l,) —(p, —l,), (4.27)

q —Big

(4.28)
2/ 2+ t2il /2

gpssg(s) g &g +g & Lo ~ ~g ln~wm2»» mr w Io
Since the leading y, term does not vanish, E'e) is larger than E'"' by the factor (mv'/m„'). However, the
actual amplitudes %'"' and %&e) are of the same order (up to logarithms) because the Z propagator is
smaller than the photon propagator by the factor (m„'/m~'). Observe also that E'e) arises, to leading
order, only from the wreak isospin current in J~ = Jos —sin28w J, , as is evident from the absence of any
term proportional to sin'8~ in E&I. (4.28}. Indeed, the contribution of the electromagnetic current to E'e)
is just sin'HwE'"', which is negligible in comparison.

The W'W exchange amplitude arises in the KM model from graph 2(g). We find that

gg( ww)
~

Cv E Lo

2

xii, (p,)y, L „(),)(—In —-', + —,'In()ic, (),)-', y iv(l, ) —(),—r, ). ,fPl J

The total amplitude is then

3R(p -eee)„„=%'"'+%&e)+%&~~)

(4.29)

2 m
m 2 %»+23 u P2y Iu P, u, l2y L~ l, — P2 l2 (4.30)

This amplitude is independent of the non-Abelian
gauge parameter g, as it must be. Observe that
the cancellation of the lnE term occurs between the
Z and 8"%' graphs for the part proportional to g2
and between the Z and y graphs for the part. pro-
portional to e'(=g' sin'6~}.

In order to calculate the decay rate from the
amplitude (4.30), we shall make the approximation
of retaining only the logarithm. This gives for the
p, - eee rate in the KM model

PR w

(4.31)

B(i&, —eee)„,&6 x 10 '. (4.32)

For m, = 10 GeV, m = 60 Gep, and
~
%»~»

~

m the
range 0.05-0.005 this branching ratio is in the
range 2x10 "-2x10". This is safely below the
present experimental upper bound"
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It is of interest to form the ratio of the p, —eee
and p-ey decay rates; in the KM model we have

r((( — 2)„„2, ')
r(i&, -ey),„» "

m, ,'
(4.33)

Q 2 PP1 LB(p, —eee)(,
&

—- , ln' ~2 sin'8 cos'8.
Lq

(4.34)

In order for this branching ratio to be smaller
than the experimental limit (4.32), m~ and m~
must be very close to being degenerate and/or the
mixing angle 6} must be very small, both rather
special conditions. Specifically, it is necessary
that

sin'8 cos'8ln' 2 &3.3 x 10 '.m
PPl L

2
(4.35)

Equation (4.34) also applies to model (d}, where
L, and L, are the corresponding heavy leptons
and 8 is the mixing angle in that model. " ]3ecause
of the fact that the natural suppression mechanism
does work effectively for the p. —ey decay in the WZ
models, the ratio of the p. —eee and u —ey decay
rates is much larger than the value (c(/»}:

r(», —eee)(,
& (~& 32 n m(v' ' ~, mq,

'
r(2- y)„, („225 5 '

I 5 'I) '

(4.36)

which is independent of the product of mixing
parameters I'u„'a,*,I. For the values of r»~, and

m~ selected above the ratio (4.33) is equal to
-0.06. This ratio, which is formally of order
(n/»), is actually somewhat enhanced by the
ln2(m~2/m~, 2) factor. The origin of this log term
can be traced to the Z-exchange amplitude (4.27)
and (4.28}.

In the WZ models the p, -e+y„,. t y
transition

proceeds by way of doubly negatively charged
heavy leptons. Thus diagram 2(b)„contributes,
and gives an unsuppressed In(m~'/m~ ') term,
where j=1,2, in (C~~ ""),[cf. Eq. (2.47)]. This
means that the leptonic GIM mechanism does not
operate nearly as effectively as it would if the leading
term were independent of mL. The V and A charge
radius part of the virtual-photon amplitude %'"' is
larger than in a fully GIM-suppressed model such
as the KM model by roughly the factor (m~2/&m~'). "
The F2'" terms are still adequately suppressed to
the level eG~m„2(6m~2/m~'), so that Ã(y& is com-
pletely dominated by the charge radius terms.
Moreover 3R(z) and ~(ww) are not enhanced
consequently 3R(p, —eee) =K(y&. We calculate a
branching ratio in model (c),

For mL, =2 GeV, rnL, = GeV, and w-60 GeV
the ratio (4.35) is =10'.

The decay p, - eee in the CL model has
been calculated approximately in Ref. 32 and
we shall not duplicate this work here. For
reference it is found, from a leading logarithm ap-
proximation, that for In(m~/m~) = 3, where m~
= -,' (m ~ + m ~ ), and sin28~ = -,',

r(&&, - eee)c~
r(i —ey)„

(5.1)

In a natural model such as this it is a convention
whether one takes the T, =-,' or T, =--,' fermions to
be both mass eigenstates and weak eigenstates.
(With no loss of generality in a natural model one
can always choose one or the other option. ) In or-
der to maintain the formal similarity between
quark and lepton sectors we have chosen to con-
sider the T, =-,' quarks as mixtures of mass eigen-
states. This mixing is prescribed by Eq. (3.2),
where the 3 x 3 unitary matrix 'U, like its leptonic
analog ~, is in general a function of four angles,
one of which violates CP. The CP-violating phase
angle can of course be set equal to zero by decree;
in both the leptonic and hadronic cases we prefer
to retain the most general form of %t and 'U, allow-
ing for the possibility of CP violation.

It is useful to consider the experimental con-
straints on the mixing angles in this theory. One
may observe first that there are really several
ways to define the Fermi constant, all of which
coincide in the minimal WS model, but are in

general different in the KM theory. From nuclear
beta decay one can define

g8 2—e cos8c = g, u„(
I
e„I2+

I
+„I2)'~'. (5.2)

A symmetrized version of this constant which in-
cludes the u-s coupling as well as the u-d coupling
xs

(5.3)

V. PHENOMENOLOGY OF THE KM MODEL

A. Constraints on mixing angles

In this section we shall briefly discuss a number
of phenomenological aspects of the KM model.

The representation content of the quark sector
in this theory is analogous to that of the leptonic
sector, shown in Table I(b) (except for the absence
of v(e and v, s in the leptonic case):
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Alternatively, the Fermi constant can be deter-
mined from a measurement of the muon decay
rate; in this case what is measured is

Gfs 2 .(I& I'+la-I')"'(la. I'+I&. l'}'"

(N, I v, )
8/@ (N Iv )

(I ca I2+ I ca I2)l/2

( I ti„ I'+
I ti.„I')"' (5.10)

(5.4)

Consider the special case in vrhich the I and c
quarks mix only among themselves, and similarly
with v, and v„so thai

The radiative corrections" reduce the theoretical
prediction for the ratio by - -3.9%. From the ex-
perimentally measured ratio" of (1.247+0.028)
x 10 4 one infers that at the one standard deviation
level,

0.983 &p, ( & 1.005 . (5.11)

cosmic —sin6lc 0

'0= sine eose 0 (5.5)

and similarly with%, in terms of the corresponding
leptonic angle 8. In this case, where the "old"
quark and old lepton sectors of the KM model
coincide with those of the%S theory, G~=G~=C~
= Gr, with G„as defined in Eq. (2.48).

The Cabibbo angle is given by

tanec =
ll

(5.6)

tango=-'U, /'0

(5.7}

(5.8)

%hh this notation established, we can now state
the experimental constraints on the leptonic and
hadronic mixing matrices %, and g. First, there
is the observed p.-e universality, which is best
tested by a comparison Qf g eII and g pP„de-
cays. The ratio of the decay rates in the KM
model is, in the absence of radiative corrections,

Accordingly, a measurement of nuclear beta decay
alone only yieMs the combination 1)» = cos8c(le» I'
+ IQ» I')'/', which is not sufficient by itself to de-
termine ec. Similar comments apply to semilep-
tonic hyperon decays and the meson decays E- lP„
g - lP„ taken individually. This situation con-
trasts with that in the minimal model where any
of these measurements couM in principle (modulo
different radiative corrections, etc.}be used to
determine ec. It is convenient to define another
weak coupling constant G'„and another angle ec
in analogy with Eqs. (5.3) and (5.5) but based on
the coupling of the e quark to the d and s quarks: (N, l v„&

'
(N„I v„)

=f1./: l&v. I v.&l'

=I& .I .&I' ~ (5.12)

The main experimental background consists of the
small v, contamination in the v„beam. The Gar-
gamelle bubble-chamber experiment finds elec-
tron events at the level (0.50+0.08)/o, while the
estimated background is (0.46+ 0.10)%, and con-
cludes that at the 90% confidence level, '5,

& „
&0.3/0." %e ean therefore infer the bound

Ie„a,*, I

( I'u I'+ I a„I')'/'( I n I'+ I 'u ")'/'

Note that this constraint, taken alone, is compati-
ble with large mixing parameters I%,» I

and I'a»
I
as

long as they are sufficiently close to being equal.
The second experimental constraint delimits the

size of (the product of) these two parameters.
This input is provided by neutrino experiments
which search for electrons produced from the
scattering of an incident beam of v„off a nucleon
target. Several such searches have recently been
made, primarily with the motivation of looking for
neutrino oseiBations. " These osci11ations cause
an original beam which is composed puxely of v„
to develop a nonvanishing component of v, if the
corresponding mass eigenstates are not degene-
rate and the mixing angles are nonzero. As was
menti. oned before, in the KM model there are no
neutrino oscillations since by assumption m„, = m„.,
=0. However, the neutxino states v, and v„are
nonorthogonal; the matrix element (v,

l
v„& is pro-

portional to%, *„%„+@,*,„= -%,„%,„, as given in
Eq. (3.3c}." The relative cross section for an in
cident v„beam to produce electrons rather than
muons is thus given by

g (v„N - e Q)
//(v N- p X)

1"(r-ev,},m, ' (1-m,'/ns, '}'
1"(w- p p ) '/" ~ * (1'- m„'/m, '}" (5.9) & 0.055 . (5.13)

where
The third constraint is that of the "universality"

of the weak-interaction coupling strength among
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quarks and leptons. Qf course at a fundamental
level this universality is automatically built into a
unified gauge theory since weak quark eigenstates
and weak lepton eigenstates in multiplets of equal
dimensionality couple to 8"with the same
strength. A.s conventionally stated, this prin-
ciple is the equality

=1.
G~ secg~

(5.14)

This equality is realized automatically in the
Cabibbo-WS theory; in the KM model, it must be
explicitly enforced. In terms of & and 'D this
Cabibbo universality is the condi. tion that

(5.15a)

Experimentally, 4'

R~(q -—1.01, (5.15b)

sin6}~ = 0.230 a 0.003 . (5.16)

An analogous condition would be that g~ defined
by Eq. (5.8} be equal to ac, i.e. , (&„/&«) =-('U„/
'U»). Experiments on decays of charmed particles
are not nearly accurate enough yet to test this
seriously. From a comparison of the invariant

where the model-dependent nuclear radiative cor-
rections are of order 1'fo. Note that the conven-
tional form of quark-lepton universality in Eq.
(5.14) leaves much of 'lt and 'U unconstrained. In
particular, it is consistent with large values of

I &» I
and, independently,

I V» I. Furthermore,
one should note that even large values of I'a„I and

are allowed, as long as
I u»

I

=
I

U23
I
so that

Eq. (5.15) remains satisfied to the level of accu-
racy demonstrated by experiment. Parentheti-
cally, we mention that one might postulate a more
sweeping form of universality such as ~='U. '4

There is no experimental evidence for this; how-
ever, it seems not to be inconsistent with present
data.

The fourth constraint is that the relative strength
and phase of the u-d and u-s couplings agree with
the successful Cabibbo theory, i.e. , that the angle
defined by Eq. (5.6) be in fact equal to the experi-
mentally measured Cabibbo angle. This angle can
be measured from a combination of ~S =0 and

ICOSI=1 semileptonic baryon decays, such as nu-
clear beta decay and semileptonic hyperon decays,
or from the relative rates for E-lv, and ~-lv, .
Note that this is true in the KM model as well as
in the minimal model since the factor (I%,„I'
+ I'tt„I')'/' at the Iye P, vertex [or in the meson
case also (I%,„I'+ I%„I'}'/' at the w//p„vertex]
cancels out in ratios. A recent comparison of hy-
peron and nuclear beta decay data yields"

mass plots for decays of the D'(1865} into v'If '
channels versus the z'z channel one might crudely
estimate" that tan'g~ & 0.1. An even stronger
universality assumption would be that 0„='U„,
which, together with the equation g~= g~, implies
'U„= -'U„. Again it should be stressed that there
is no theoretical reason in the context of the KM
model for these equalities or the g~= g~ relation.
In contrast, in the special case (5.5) for 'U (and
similarly for 'll), they are all automatically valid.

Taken together, these four experimental con-
straints significantly limit the amount by which
the quark sector can differ from the Cabibbo-WS
model and the way in which vy v2, and L' can mix
to form N„N„, and N~. For the purpose of our
present calculations of p, — and e-number noncon-
serving processes, perhaps the most important
constraint is the one on I&»%,*, I, Eq. (5.13), since
this factor controls the rate of decays such as
p, - ey, p, - eee, E~- p, e, and X - p ee.

B. Rare K decays

Let us recall first that, as was shown by Gaillard
and Lee, ' the GIM mechanism in the WS model
works not only at the tree level to ensure the ab-
sence of direct lowest-order nondiagonal Z-quark
couplings; it also operates adequately at the one-
loop level to suppress processes such as K~ - p. p.

and K' —K' (which gives rise to the K~K~ mass
difference). Indeed it succeeds in doing this while
at the same time allowing other, nonsuppressed
decays such as K« - yy, E~ - p'yy, and E- & ee to proceed at their experimentally ob-
served rates. Since the KM model, like the mini-
mal WS theory, satisfies the two conditions for
natural flavor conservation by the neutral current
and also the condition (2.67), it also succeeds in

accounting for the relative rates of the various
E decays. The free quark approximation used in

Ref. 2 will again be satisfactory for our purposes
here.

We shall compute first the decay rate for K~- p, e and compare it with that for the analogous
p, — and e-lepton-number-conserving rare decay
E~- p. p, . The graph for the elementary process
sd- ep, in the KM model is shown in Fig. 4; as in

Figs. 2 and 3 the symbol L'refers to all the neutral
leptonswhichcancouple, namely, v] v2 and the
particular heavy lepton L'. An interesting aspect
of the calculation is that there are GIN mechanisms
operating on both the quark and lepton sides of the
graph. However, as will be evident, the graph
is not suppressed any more than it would be if
there were only a GIM cancellation on one side,
as is the case for K~- p, p, , for example. This is
quite analogous to the situation regarding the
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K~K~ mass difference' (sd-sd transition), where
a double GIM mechanism only suppresses the
amplitude by a single power of (m, ' —m„')/m~'.
The explanation lies in the infrared behavior of

the relevant Feynman integral, which has a pole
rather thM just a logarithmic divergence for zero
fermion mass (see below).

We calculate the amplitude for sd - ep, to be

2

5R(sd-ep)=, f~(dy Ls)(ey Lp)%»'Rf, 'U, p3,*&I(f~,f, ),
2l 2 2/ 2where &L=m~ /m~, &,~=m,

~
/'m~, q123 Q c, t, and

By using Eqs. (5.3) and (5.6)-(5.8), and the unitarity of '0, one can recast this amplitude in the form

3R(sd-ep) = 2, m~, '(dy Ls)(ey Lij.)r 11 + 12

x [(G"}'(cos8 sine*, ) [I(f f ) I(f —f ) I (G')—'(sin8' cos8'*)(I(f, f ) —I(f, f )H, (5.19)

which exhibits more explicitly the GIM cancellation operating among the u, c, and E quark contributions.
In order to illustrate the statement about the double GIM mechanism, it is convenient to consider the
special case of the KM model where '0 has the form (5.5) while 'u is still arbitrary, subject to the various
experimental constraints discussed previously. In this case, neglecting m„' relative to m, ', we have

2 2

5 (Rsd-eg)=, r 'a»a,*, sin8ccos8c(dy Ls)(ey Lg) ~ ' ln
I, gc mc

(5.20)

Thus the double GIM mechanism has indeed produced the product q~q, in the numerator; however, one
power of f is essentially canceled by the infrared pole of the Feynman integral, 1/(f ~ —f,). [By infrared
pole, we mean a pole in X as one scales f ~ and f, down by the factor x; the total expression in Eq. (5.20)
is, of course, regular as f~-f, .]

Reverting to the general form of the amplitude again, we use the fact that

& lsy LdIK'&=2 fr(pr)
to obtain the result

(5.21)

i 'G m 3

(5.22)

lt is interesting to compare this amplitude for K~ —ep, with the analogous
l
6S

l

= 1 neutral K decay which
conserves e- and p. -lepton number, K~ - p, p, . In order to get an estimate of the relative rates, it suffices
to take the special case of the KM model in which the mixing in the hadronic sector is prescribed by Eq.
(5.5). Then the free quark approximation to the decay amplitude is (again dropping m„')

2

5R(K~- P P) =
6 ~ Gr frm„f, sin8c cos8c['L~%f~e~I(f ~, f,) —2] Py, P, . (5.23)

Making the plausible assumption that I(f~, f,) is of
order unity, we therefore have for the ratio of
rates in the free quark approximation

the term proportional to 'R, 3'R,*, in Eq. (5.23), or
equivalently, in the WS model, one finds (normal-
izing to a typical K decay)

(5.24}

However, as was discussed in Ref. 2, the main
contribution to the K~ - p. p, amplitude comes not
from the short-distance free quark graphs but
rather from the conventional long-distance K~
—yy —p, p, process. Indeed, if one calculates the
part of the K~- p, p. rate due to the elementary
quark contribution in the KM model, neglecting

If(K~- p, y,)„„,„~=0.'I x 10 ". (5.26)

The unitarity bound on the K~-p, p, rate is deter-
mined by computing the contribution of the 2y in-

r(K -p, v) 2v' c (1 —m„'/m ')'r'
(5.25)

from which it follows that
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FIG. 4. Graph for the transition sd —eIJ, in the KM
Model.

termediate state to the imaginary part of the
amplitude. In fact, the 2y contribution dominates
this imaginary part; it can be calculated from the
measured rate for the decay K~ -yy and yields
the bound"

F(Ki- pp, ) & I"(Ki-pp),„„,„,
= (1.2x10 ')I'(K~ yy)

= (6x10 ')I'(K~ all}. (5.27)

The actual rate is comparable to this bound":

F(K~ —pp. ),„p
= (1.0+ 0.3}x10 8.

Thus evidently the short-distance free-quark pro-
cesses contribute only about a fraction 10 ' of the
total rate for K~- p. p, .

In view of this fact, if one wishes to estimate
the actual decay rate for K~-ep. , it is of some
importance to ascertain whether the short-dis-
tance, free-quark contribution to this decay is
similarly only a small part of the total rate, and

to attempt to compute a unitarity bound from what-
ever is the dominant intermediate state contri-
bution. %e mill see that in fact the relative sizes
of the direct sd-ep quark process and the phe-
nomenological K~ —yy- e p. process are reversed,
compared to the order of importance of sd- p, p,

and K~ -yy-pp. in the decay K~ -&p. . Conse-
quently, modulo short-distance strong-interaction
corrections, the elementary reaction sg-ep.
probably provides a lower bound not too far belom
the actual rate for K~ ep, . Thus for the total
rates we estimate (fq denotes free quark contribu-
tion)

ronic side of the graph is then calculable, just as
it was for K~ - p, p, , in terms of the rate for E~
-yy. However, the amplitude for yy-ep, is far
smaller then the one for yy- p, p, . The Feynman
diagrams for the equivalent process pe- yy are
shown in Fig. 5. There are three general classes
of graphs; the first consists of graphs 5(a} and

5(b) in which one photon is emitted via the transi-
tion magnetic and electric dipole moment coupling
(2.63) and the other is emitted directly. The sec-
ond set is comprised of the graphs 5(c), 5(d), and

5(e) in which both photons are emitted directly
and the p, -e transition proceeds by may of a non-
diagonal self-energy insertion. Finally, there are
irreducible graphs symbolized by Fig. 5(f) and

depicted explicitly in Fig. 6. For the reaction
pe —yy, each of the graphs in Figs. 5 and 6 repre-
sents a sum of two separate graphs related to each
other by interchange of final photon momenta.
The quark analogs of these graphs have been
analyzed previously' in order to determine an ef-

fectivee

Lagrangian for the process sd - yy, of
relevance to K~ »yy decay. It was pointed out that
the quark counterpart of graph 6(a) (with I re-
placed by u and c) dominates over all the other
graphs and yi, ejds an amplitude of order
-(o'/&)G~mr f~sin6ccos&c. In the present case,
however, graphs 6(a) and 6(b) are absent, and

hence the amplitude is more severely suppressed
by the leptonic GIM mechanism. A detailed cal-
culation of the graphs of Figs. 5, 6(c), and 6(d)

I}e

F(K~-eu)~. ~ F(Ki-&}j)fq
r(K, —qq)... 10'r(K, p, p),, -

=10 'Iw, pa,*,I' (5.29)

from which it follows that, for I+»e»j'- 10 '-10 ',
B,(K~-ep)„, = 10 "-10 ". (5.30)

Unfortunately, if these estimates are reliable,
the E~ -ep, decay is beyond experimental reach
at present.

The statement that I'(K~ = ep)„, = F(K~ -eg},,
is demonstrated by estimating the contribution of
the dominant conventional decay chain K~ - 2y- ep, to the imaginary part of the decay amplitude.
Since the yhotons are on the mass sheQ, the had-

FIG. 5. Graphs contributing in a general SU(2) & U (1) mod-
el to the p e yy amplitude. The heavy dots in (a) and (b)
represent insertions of the p e+ y one-loop amplitude.
The rectangular boxes in (c)-(e) denote nondiagonal p-e
self-energy insertions (see Fig. 3). The heavy dot in
Fig. (f) is the sum of graphs in Fig. 6.
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L'I

(c)

FIG. 6. Graphs contributing in a general 3U(2) x U(1)
model to the irreducible part of the pe yy amplitude.

&(KL, &p)yy, absorptive 1
g g q2 ~~0

r(K, -)j,p)„„,~~~, v ' ' ' rn,

xi~,.~;,I'. (5.31)

would be rather involved; from considerations of
(electromagnetic) gauge invariance, we estimate
that the total amplitude is of order (u/v )G„mr f~
x(m~2/mv2)~, 3'af, . In contrast, the p, p-yy ampli-
tude is simply of order e'. Accordingly, we esti-
mate that the ratio of the squares of the imaginary
parts of the E~ -ep, and K~- p, p, amplitudes arising
from the two-photon intermediate state is

Indeed, even without the GIM suppression factor
(m~o'/mv') ~'u»a,*,~' this ratio would be of the order
10 ". These are admittedly very rough estimates,
but they show that because of the p. - and e-type
lepton-number-violating nature of the decay K~- ep. the elementary free quax"k process s2- e p,

probably dominates the total amplitude, as was
claimed.

We next turn to K decays of the form K- me p, and
compare them with the corresponding muon- and
electron-number conserving decays K-wee. Since
our primary interest is in p, - and e-number non-
conservation effects, we again choose V to have
the form given in Eq. (5.5). The fundamental quark
transitions involved are respectively s-dep, and
s -dec. The graph for the former process is just
Fig. 4 with the d quark line crossed, and the re-
sulting amplitude in the KM model is given by the
crossed version of Eq. (5.20) for SR(sl-ep). The
diagrams contributing to s dec are the counter-
parts of Figs. 2(a)-2(d) and 2(g), with appropriate
replacements of leptons by quarks. The calcula-
tion is similar to the one performed previously. '
The dominant contribution to the amplitude comes
from the unsuppressed logarithm in the vector
and axial-vector charge radius arising from the
quark analog of diagram 2(b)„. This can be calcu-
lated via a Fierz transform in terms of the quan-
tum electrodynamics vacuum polarization integral;
the result is the same as in the %8 model and

yields an amplitude

2l Q Q~ Hl~3R(s-d+e+e)= —Q, — ~ In ', sin8ccos8c
3 'm V2 m~

Using (m~0/mv)= $, ~a„~,)s.05, and Eq. (5.27),
we find that

[I'(KI, -ep, )„„,b ~~)/I"(K~ -all) ' 10

x(Zy I,s)(ey"e),

where Q, = &.
Using Eqs. (5.20) and (5.32), we find

(5.32)

F(K -n' ep. ) F(Id~-v'ep)
I'(K -& ee) F(K~-w'ee)

(5.33)

For m, =1.5 GeV, m, o=10 GeV, m~=60 GeV,
sin'8v- &, and (%»uf, j2s. 05', the ratio (5.33) is
-10 '. The free-quark approximation for Q(K
-v ee) calculated' from Eq. (5.32) is

8 (K -v ee), = 5 x 10 ' . (5.34)

In contrast to the case with the short-distance,
free-quark contribution to E~- p, p, , this is com-
parable to the measured value

B(K -v ee),„~ = (2.6+0.5) x10 '.
Therefore, from Eqs. (5.33) and (5.34) we esti-
mate using the same values of parameters that

a(K -v ep) —10 ", (5.36)

which again is too small to be of much experiment-
al interest. A similar comment applies to the de-
cay Eg ~ +ep, .

In the case of the decay K~ -r'ee, Cp conserva-
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tion forbids the occurrence of the quark analogs
of the y- and Z-exchange diagrams, 2(a) and 2(b}z
and 2(a)w-2(d)w. (This decay is CP conserving
even if %L contains a CP-violating phase, as long
as g itself is CP conserving. ) Thus, only the

exchange diagram contributes, and in con-
trast to (the charge radius term in) graph 2(b),
it is fully suppressed by the GIM mechanism. In-
deed, the local form of the interaction (i.e. , the
form in which external momenta are neglected
relative to mv) due to W'W exchange is also of
the current x current type, and consequently CP
lnvar1ance lmplles that 1ts hBdronxc matr1x ele-
ment vanishes. This is true for both of the decays
K~-w'ee and K~-w'ep, (or K~-w'ep). Nonlocal
effects are present at the level (me'/mv'} and

they do in principle allow these processes. %e
expect that

I'(K~ - w'e p, ) = I~„'u,*,I'I'(K~ -w'ee);

both rates however, are extremely small. For
the larger one, normalizing to a dominant semi-
leptonic decay mode, we have, for the free quark
approximation,

I'(K~ -w'ee)/I" (K~ w'e v, )

-(n/w) '(m, '/mv ')'(mw'/m v')'

~]0 20

much smaller than 10 '-10 "and/or (b) the KM
model represents only a part of the presumed
complete gauge model, and J is not the SPEAR-
DESY heavy lepton. Accordingly, there is no
strong theoretical or experimental reason why the
L, cannot have a greater mass than the J'. In-
deed some of the trimuon events recently ob-
served in the Caltech-Fermilab" and Harvard-
Pennsylvania-Wisconsin-Fermilab" neutrino ex-
periments may be due to the sequential production
and decay chain

v„+N-I, +X

I,'+ p. + v&

(5.37}

If one identifies the two heavy leptons in this pro-
cess with the J and J' of the KM model, then of
course it is necessary that mL - & m~0. In a
phenomenological spirit we shall consider both
orderings of I. and L,' masses.

Let us first consider production mechanisms for
the J and L'." The L, can be produced in the
reaction e'e - L,'L with a well-known cross sec-
tion. The ep. events seen at SPEAR would arise
from the process

Even if the estimated branching ratio were non-
negligible, the m' in the final state would render it
experimentally difficult to set a very stringent
upper bound on the decay K~ -m'ep, .

Thus, the effects of p, - and e-type lepton-num-
ber nonconservation in K meson decays may well
be too small to measure. %e shall proceed to
consider certain lepton-hadron reactions and de-
cays of hevy leptons, mhere such effects are
probably more easily observable.

C. Production and decay of Lo and L

If the decay p, -ey is indeed detected at the
10 '-10 ' level in branching ratio it mould be
reasonable to consider the heavy lepton Jo in the
KM model to have a mass m~0-10 GeV. For ex-
ample, if B(p, -ey) =10 9, mv =60 GeV, and
I'a,~'afsl'=0. 3&10 ', then m~0=12 GeV. Moreover,
as was mentioned earlier, it is plausible, although
not necessary, to entertain the possibility that I,
is the heavy lepton observed at SPEAR and DESY."
If one chooses to make this identification then
rn J.- = 1.9 GeV, substantially lighter than the L'.
A crucial test of this hypothesis regarding L is to
determine whether the experimentally observed
heavy lepton decays via a V-A coupling. Of course
it is entirely possible that (a) the decay p, - ez, if
it exists at all, proceeds with a branching ratio

'4.~.+ &»~2
(l~ I'+ l~ I')"' (5.39)

in analogy with Egs. (3.2a) and (3.2b) for v, and

v&. The J ' can also be produced in the high-
energy neutrino-nucleon reactions

~ ~e&r.

v~ + hadrons

and the corresponding reaction with incident v„.
The cross section is suppressed by the mixing
parameters; well above threshold for L produc-
tion the relative rate is given by

o(v„lV-L +X) c(v„N-I' +X)
o(v„N- p. +X) o(v„N- p. '+X)

I as|'u2i+ &f2'u22 I'

lw, I'+ I&..l'

= I"a23I'. (5.41)

(5.38)

mhere we define v~ to be the unit-normalized
linear combination of v, and v, which couples to
L
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Thus the L production cross section is & 5 & 10 '
of the corresponding ordinary charged-cur-
rent cross section. Furthermore, the leptonic
decay modes are expected to comprise &40%
of the total, so that the signal will be present at
the 10 '-10 ' level. Reaction (5.40) will be dif-
ficult to observe in counter experiments because
the p, decay mode simulates an ordinary charged-
current reaction, the e is not detectable with
present counter apparatus, and the semileptonic
decay simulates a neutral-current event. The
same statements apply to the reaction v„N» L'
+X. Because both the leptonic and hadronic
charged currents in the KM model are purely
V -A, in the valence-quark model, which serves
as a reasonable approximation, o(v„N-L +X)
= 3o(v„N- L'+X). In heavy liquid bubble-chamber
experiments it is feasible to search for the elec-
tron decay mode of the L" produced in reaction
(5.40). Indeed if the L is sufficiently light and/or
the time dilation factor is sufficiently large its
tracks may be visible in the bubble chamber (see
below). Characteristic kinematic features of heavy
lepton production via reaction (5.40} include, first,
a threshold behavior as a function of incident neu-
trino energy E and, for a fixed E, as a function
of W, the invariant mass of the hadrons produced
by the W boson-nucleon interaction at the "lower"
vertex. Second, one would measure large values
of y„,= 1 —(E„ /E) since a considerable portion
of the incident energy is carried off by unobserved
neutrinos. Moreover, the semileptonic decay of
the outgoing L will yield hadrons with significant
fractions of the initial beam energy. If m~ &mLO
the sequential decay scheme of Eq. (5.3V) will
yield trimuon events, as was mentioned. Finally,
note that since the neutral current is diagonal in
flavors in the KM model, it is not possible to pro-
duce the L in a reaction such as p. +N-L +X
at a non-negligible rate.

The neutral heavy lepton L' is more difficult to
produce than the L . Among e'e reactions the one
with the lowest threshold is e'e -L'v„which
proceeds via W exchange in the t channel. Unfor-
tunately, in addition to being a weak process, its
cross section is further suppressed by the factor
I'II„I'. There is also a neutral-current
reaction e'e -L L which is not suppressed by
any small mixing angles. Of course until the ener-
gy is reasonably far above the respective thresh-
olds these reactions will be suppressed by small
phase-space factors. Since the cross sections in

both cases are of the order G~'s, in order for
them to be significant one needs center-of-mass
energies equal at least to the value Ms- 36 GeV
to be attained at PEP and PETRA. The L cannot
be produced via the neutrino reaction v„N- L'+X
for the reason given previously. It can be pro-
duced in the charged-current reaction p. +N-L'
+X; however, the electromagnetic background
from p. +N- p +X is severe, and again the cross
section is proportional to the mixing parameter
eter I"J.„l', which may be rather small.

The branching ratios for the various decay modes
of the L and L' depend on their relative masses
and on the mixing parameters in the matrix'R. We
consider first the leptonic decays of L and as-
sume that it is lighter than the L'. Then for the
decay mode L -ev, v~ we have

I"(p- ev, v„) m„(IM„I'+ I'Ii„l') '

For small mixing this ratio is approximately equal
to (m -/m„)'(I&„l'+ I&„l'), i e. (I'll

I
+ llL

I )
=1. The same formula applies for the
decay modes L - pv„v~ with the replacement of
(I&2i I'+

I
u22I'} by (I&„I'+ l&i. I'}

then the decay L - ev,L' occurs, at a rate given
by

I'(L - eve ) m~
' I&„l2 m~o

I'(p, - ev, v„) m„(l'It„l'+ 1%,„I') m~

(5.43)

where

f(x) = (1 —x')(x' —K'+ 1)+ 24x' In(1/x), (5.44)

withx=(m~o/m~ ). The rate for L -eve' is in
one way enhanced relative to that for L - ev,v~
because

I
Itss I' 1 whereas (

I ass I
'+

I
tt as I

) 10-'.
However, in another way it is suppressed by the
phase-space factor f(m~o/m~ ); for example,
f(-, ) = 0.16. Equation (5.43) also applies to the
decay mode L - p,v„L' with the replacement given
above. In order to estimate the semileptonic
modes we shall use the free-quark model or,
equivalently to our order of approximation, the
SPEAR results on R = o(eF- hadrons)/o(ed- g p).
If m~ ~ 2 GeV then the decay channels which in-
volve the t or b quarks are not open, and the
V(s, d) channels are either below or only slightly
above threshold. Consequently,

I'(L -v~+hadrons), ~, ~
3 mz

' (I&„I + lu, l')(IM„I + IM„I')
I'(p- ev,v„) I'(p- ev,v„) m„(I%.„1'+ I'll„ I')(I u„l '+ I'a„l ') ' (5.45}

where the factor of 3 comes from the sum over quark colors. The ratio (5.45) is approximately equal to
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(5.46)

3(m -/rn„)'(IRL»I'+ I'li»I'). Next consider the case of m &m„m, . Then the L - v~Vq, v Fq, decay chan-
nels are open (where q =d, s, b). In the simple case where all quark masses are small compared to m~-
the dependence upon Q disappears and we find

(I'u„l'+ le»i')
I'( p - ev,v„) m„( le „I

'+ le121')(l 'L21 I
'+

1 &221')
'

whereas if m&-» mzo, m„ this ratio is approxi-
mately y I ~

For the low-mass case, summing the leptonic
and semileptonic decay modes, we find

=)( ') ((~~„~~*+ ~~„~~'), ().48)

where we have used the approximation that (I~» I

'
+ I'u&,

I

') = 1 for j= 1,2. At the other extreme of

yla g I h thth pp l-
imation that

('(L a))) m .)'—11I'(p, -ev, v„) m„

This relative decay rate is larger by at least a
factor of 10' than the rate for small I," DIass, Eq.
(5.48). The interesting thing to observe is that
in the case of small m~ the rate is substantially
suppressed by small mixing angles and conse-
quently th« 's longer 11ved by a factor of (I&» I

'
+ I'll»I2) '-102 than a naive scaling from m„ to
m~

' would indicate. Numerically, Kq. (5.48) gives
a lifetime for the small mass (sm) case of

y(8&) ~ 6 y 1o~lo

The lifetime in the large-mass case is

1GeV '
~(~~ 2 7„1O-ia 1GeV

Wl I

(5.50)

(5.51)

The major factor in determining the lifetime is
whether the I. -I '+ ' ' ~ transitions can occur,
and if so, how much they are suppressed by phase
space.

The analysis of the I. decay modes is quite simi-
lar and for brevity the details will be omitted.
Note that if m~o is sufficiently large the decay
modes I" I I-'vI can occur. However, since

If also m~ »m~o the dependence upon & in the
numerator of the ratio (5.46) disappears and this
ratio becomes approximately 9(mz /m, )'. Thus if
ml - —2 GeV, with m~ &m~o, m, ~ the ratios of lep-
tonic to semileptonic decays are

I'(I, vt, e p ), I (I vt, g vt()
I'(I -all) I'(I - all)

the sum of the rates for these modes is propor-
tional to (I a» I'+

I
tt»I*} they wt» n«m»e a very

large contribution to the decay rate even if ml, o

» 2ml, . The lifetimes in the low- and high-mass
cases are thus given byEqs. (5.50) and (5.51) with
the replacement L -I,o.

In addition to these dominant decay modes there
will be other, rarer decay modes. %e shall not
consider these here since they will be extremely
difficult to observe. Yet another way in which the
lepton I', if light enough, may make its existence
manifest is in the leptonie decays of charmed
pseudosealar mesons, D, I"'- 1.'E', where
E= e, p. .52

D. Other processes

Ne shall mention here two other interesting
processes involving p, - and e-type lepton-number
nonconservation. The first is the reaction p, +N- e+N, in which a slow muon is absorbed in mat-
ter and decays to an electron in the Coulomb field
of a nucleus. This reaction was proposed and
studied long ago as a means of testing for muon-
and electron-number violation. " The signal is a
high-energy electron emitted with Ip, I „b-m„.
The rate can be calculated from the general for-
mulas of Ref. 53 together with our expression for

p, - ~+ &v,r,„a, ampbtude. A recent analysis
yields an interestingly large ratio of rates in the
KM model, "R(~- ef)l')/R(p -ey}-26.

Second, there is the precise analog of E'-F'
1111xillg (8d sd} wllicll gives rise 'to 'tile X1 -Kg
mass difference, for the pe bound state, muonium,
namely the transition pV pe." %'e find that in
contrast to the case with E'-P' mixing, a pV bound
state will decay long before it has a significant
probability to make a transition to p,e. This is
easily seen as follows. The diagonal elements of
the mass matrix I—il /2 are dominated by the
contribution to iI' arising from ordinary p, decay:
I'-Gz'm '/(192v'). The main contribution to the
off-diagonal matrix elements arises from the

exchange diagram, shown in Fig. 7, which is
the leptonic counterpart of the graph for s2 Vd.
Other contributions to the off-diagonal matrix
elements suchas VF-(yy)„„„„-i1e are negligible
in comparison. Diagram (7) gives a mass differ-
ence between the CP eigenstates (pf a ge)/1 2 of
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FIG. 7. Diagrams contributing in a general STJ(2) x U(] )

model to the transition pe-pe.

dm GE L2 qk13qt2*3
2 0 2 (5.52)

where $(0) is the muonium wave function in the
ground state. Using

I
nil'll sl2 Io ', m

and
I
$(0)I'= n'm, '/v, we find that ~m/I'-10 ".

VI. CONCLUSIONS

In this work we have analyzed p, - and e-type
lepton-number conservation, viewed an approxi-
mate symmetry such as strangeness conservation
by neutral currents, or CI' invariance. %e have
pointed out the special set of circumstances which
guarantees exact p.- and e-lepton-number conser-
vation in the minimal Weinberg-Salam model and
have investigated the ways in which this invariance
is violated, as it usually is, when one generalizes
the minimal model. It has been stressed that al-
though, a priori, one would expect violations of the
three symmetries mentioned above to occur in
order G~n, in fact experimentally such violations
are further suppressed. Extending earlier work, "
we have proposed a unified approach to these three
approximate symmetries based on a mechanism
which naturally suppresses the violation of a par-
ticular symmetry.

By calculating the p. —ey and p, —~eV decay rates
in a general formalism applicable to any SU(2}
&& U(1}gauge theory, we have derived a set of con-
ditions which ensures that, for arbitrary values
of the parameters of the theory and thus a com-
pletely general mass matrix M, the nonconserva-
tion of p, - and e-type lepton number is naturally
suppressed. These conditions are that (1) leptons
of a given charge and chirality have the same weak
T and T, ; (2) leptons of a given charge receive
their masses from their couplings to a single
neutral Higgs field, and (3) leptons of charge
q and leptons of charge q +1 do not belong
to the same weak isomultiplet for at least one
chirality. The first two conditions are essentially

the Glashow-Weinberg criteria' for natural lep-
tonic-flavor conservation by the neutral current.
The last condition is the leptonic analog of the
criterion for microweak CP violation derived pre-
viously. ' Furthermore, in order for a model' to
have a branching ratio for p- ey of order 10 "or
larger, it must include at least one neutral or
doubly negatively charged heavy lepton which is
coupled to both e and p, .

We have considered several models which meet
these conditions, focusing on the V -A. three-doub-
let model of Kobayashi and Maskawa. " In the KM
model, for a wide range of parameters (mixing
angles and heavy-lepton masses) the branching
ratio for the decay p, - ey is in accord with, but
not extremely small compared to, the present
experimental limit; specifically, assuming that
I+a.+231 =Io II(p-ey)=1.7x 10 "(m /10
GeV)'. In addition to measuring the total decay
rate, it will be very useful to determine the angu-
lar distribution when the muon is polarized and
also the photon polarization, the latter even if the
muon is unpolarized. This will give information
on the relative sizes and signs of E, (0), and
E", (0), .

The decay p, - eee is estimated to proceed with
a rate I'(p, —eee)x„—-0.061'(p, - ey)«. In contrast,
in models with doubly negatively charged heavy
leptons which coup1.e to both e and p, , such as the
Wilczek-Zee models, "while the decay p, - ey is
still fully suppressed by the leptonic GIM mecha-
nism, the decay p.-eee is not. Consequently in such
models I'(p, —eee) is considerably larger than I"(p,- ey) [see e.g. Eg. (4.36)j. In order to keep the p, - eee
decay rate below the experimental upper limit, it is
necessary that the heavy-lepton masses be very close
to each other and/or their mixing angles be small.
Our analysis also shows that in models such as that of
Cheng and I.i xo in which the mass matxix M is
not completely arbitrary, owing to restrictions
on the representation content of the Higgs bosons,
the general conditions for naturally suppressed
p. - and e-lepton-number violation can be weak-
ened.

The mixing of mass eigenstates to form weak
eigenstates in the KM model mill in general cause
not just muon- and electron-lepton-number viola-
tion but also small violations of p, -e universality,
the hadron-lepton weak universality equabty
G~ sec8~ = G~, and the Cabibbo theory of weak de-
cays of baryons. It is thus of continuing interest
to improve the experimental limits on such viola-
tions. Furthermore, in this model v, and v„are
not orthogonal, so that one may expect to observe,
at some level, the reaction v„+N-e +X, where
the electron comes from the leptonic vertex. The
heavy leptons in the KM model could be produced
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in e'e reactions such as e'e -L'L and e'e -L'v„
or in neutrino reactions such as v„+N- L +X;
in the last case the cascade decay L -L'p v„- p'p. p v„v„would produce trimuon events.

Thus the present experimental limits on decays
such as p. -ey, p, -eee, and other p. —and e-type
lepton-number-violating processes can already be
used to constrain models of weak interactions.
Further experimental searches with improved
sensitivity, whether they yield null or positive
results, promise to contribute substantially to the
understanding of the structure of weak interac-
tions.
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APPENDIX

We shall give here a proof that the self-energy
terms in Figs. 2 and 3 contribute only to the re-
normalization of E, '"(0) and therefore have no
effect on the g- ey amplitude or on SR'"'(p, - eel),
the virtual-photon contribution to the p.- eee am-
plitude. We start with the electromagnetic Ward-
Takahashi identity

q"VX'"(Pl P2, q) = @~E "(P'1) —~"(P'2)I, (»)
where iV„ is the proper (single-particle-irredu-
cible) photon-fermion vertex between an initial
and a final fermion of momentum p„and p„re-
spectively, and q = P, —P„as in the text. Equation
(Al) holds separately for the parity-conserving parts
V„and Z', and for the parity-violating parts V~

and Z~.
The effective vertex, including off-diagonal

fermion self-energy insertions, is

iE,' "= iv,'"+ iQy,
' iz"'(P, )

2

+ iZ "~(P',)

u, V, (q)u, =s,V„'(P„P,;q)s, ~p2 2, 2 2. (A3)

Note first that the contribution of off-diagonal
self-energy insertions is q' independent. The
form of V~(q) is

V,"(q)=y„V,(q)+io~„q'V, (q')+ q, V,(q'). (A4)

By taking the matrix element of Eq. (Al) between
the spinors u, (P,) and u, (p, ), and making use of
Eqs. (3,4) we find that

V(0) q
'(,)- '(,)

ml —m

Combining now Eqs. (A2), (A4), and (A5)

4(P.) &'. ,(P, )=,(P,) b. tV, (q') —V, (0)]

(AS)

+ io„~"V,(q')

+q„V,(q'))n, (P,). (A6)

Equations (A5) and (A6) prove our assertions at the
beginning of this Appendix; note further that V, (q')
—V, (0) is finite whether or not V„and Z' have
been renormalized.

We shall concentrate on the parity-conserving
part iE~; the same argument applies for the par-
ity-violating part. We note that

u, (p,)iE,u, (p, )~~ a

=~,(p, )f v,'(q) Qy-„' ' ~, (p, ),
Z'(m, ) —Z'(m, )

mg m2

(A2)

where
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