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The s- and p-wave mm phase shifts from the elastic threshold up to the KK inelastic threshold are
calculated by means of the unitary Fade approximant constructed from the perturbation series for the partial-
wave amplitudes computed from a chiral [SU(2) X SU(2)] Lagrangian containing pions„kaons, and nucleons.

Significant phenomenological improvement over previous calculations is obtained.

I. INTRODUCTION

We have been engaged for some time in a pro-
gram' to compute phase shifts and resonance pa-
rameters for meson-meson and meson. -baryon
systems starting from a chiral Lagrangian (o mod-
el). The essential ingredients of these calculations
are as follows: (i) A renormalizable chiral-in-
variant [SU(2) x SU(2)] Lagrangian containing
pseudoscalar mesons and spin-~ baryons, and the
scalar mesons required for a linear realization of
the chiral symmetry and renormalizability. (ii)
Symmetry breaking which yields partial conserva-
tion of axial-vector current (PCAC) for the pion
and the associated low-energy theorems for pro-
cesses with external pions. (iii) A truncation pro-
cedure in which the scalar-meson masses are
taken. to be very large. Thus these unstable parti-
cles are removed from the theory. In particular,
they are not identified with any scalar-meson res-
onances claimed in the Particle Data Group Ta-
bles. Any such physical resonances are to be re-
sults of the calculation, not input. But the (unde-
termined) input scalar-meson masses remain as
effective cutoff parameters. [We will refer to cal-
culations which incorporate (iii) as nonlinear o-
model (NLoM) calculations —as opposed to linear
o-model (LoM) calculations which attempt to iden-
tify the input scalar mesons with physical reso-
nances. ] (iv) Padb approximants constructed from
the perturbation series for the partial-wave am-
plitudes. These enforce unitarity so that one has
an approximation in. which one can compute phase
shifts and find resonances as results of the calcu-
lation.

The use of Pads approximants for l.ow-energy
meson-meson and meson-baryon scattering calcu-
lations predates' the advent of chiral dynamics,
but very little phenomenological success was had
before the successes of PCAC and SU(2) x SU(2)
current algebra made clear the importance of
(softly broken) chiral invariance in pion physics.

Then Basdevant and Lee' did a LoM calculation of
mm scattering based on the simplest LvM Lagran-
gian. , i.e. , containing only n and o. This calcula-
tion. got the general properties right —positive 5«,
small negative 52„and 5» which passes through
90'—but was not quantitatively successful; the
calculated width of the P-wave resonance was much
too small (35 Mep) and the s-wave phase shift
reached a maximum at 700 or 800 MeV (c.m. en-
ergy). Then Jhung and Willey (JW, Ref. I) did a
NLo'M calculation of mn scattering starting from a
LoM Lagrangian which included the nucleon as
well. as m and 0. The inclusion of the N l.ed to
dramatic improvement in, the calculated 5». With
essentially on.e adjustable parameter, both m, and

Fp were obtained in agreement w ith the exper i-
mental values. The calculated 5«was slightly im-
proved over that of Ref. 3, but it still flattened
out at a value of about 90' at 700 or 800 Me&. In
the meantime phase- shift analyses of high- statis-
tics production experiments revealed the dramatic
effect (S*) associated with the opening of the KK
channel at 990 MeV —5po shoots up rapidly through
180' and there is a sharp drop in the elasticity
function q«. This suggested that it would be im-
portant to include the K in calculation of the I= 0
s-wave wm phase shift. There are two sources of
kaon contribution: (i) Feynman diagrams including
kaon loops contribute to the perturbation series
for the wm- mm amplitude from which the Pade ap-
proximants are computed. These terms contribute
both above and below the KK threshold. (ii) Above
the KK threshold, unitarity requires a coupled-
channel approach. Coupled-channel unitarity can
be incorporated in a matrix Pads calculation. We
have carried out these calculations and find that
4«below the KK threshold can be successfully
calculated including just (i) above, and the drama-
tic behavior of 5» above the KK threshold can be
calculated by including (ii) also. In this paper we
give the chiral Lagrangian, including m, K, and N,
which is the starting point of all of these calcula-
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tions, outliae the renormalization and calculation,
of all one-loop diagrams which contribute to the
elastic channel, and give the results of the single-
channel calculation up to the KK threshoM. In a
later paper we will report the renormalization and
calculation of the one-loop diagrams which contri-
bute to the inelastic channels and the matrix Pads
calculation of 6oo above the KK threshold, as well
as the mK s-wave phase shifts.

II. CHIRAL LAGRANGIAN

We ask for a renormailzable chiral SU(2) x SU(2)
invariant Lagrangian including m, K, ¹ Renormal-
izability requires a linear realization. of the chiral
symmetry and hence the addition of scalar mesons:
an isoscalar o [chiral partner of the II in (1, 1)] and
RII isosplIlol' K [ch11'Rl pRI'tiler of E 111 (a, 0) + (0, g) ].
The gen. eral Lagrangian satisfying these criteria,

i.e. , including all S'U(2) x SU(2) invariant couplings of these particles of dimension less than or equal
to four is

&„,= 2[(84)'+ (sx)']- 5iI.'(4'+ x')+»'»+ 85'&h u, '(k-'k+ 5'5)+ 4iy 84 .4~.-(4'+ x')' ~,(k-'k+ 5'5)'

-X (kI(+ $ k)' —X,(y'+)p)(kIk+ (I()—k, ((Iy( —kI(k —i(~T ~ yk+ikTT ~ y() —g y(}t —iy, T ~ y)y. (2.1)

~aa = ~o&. (2.2)

We Rssl11118 tllR't ln 'tile spmmetrp lilI11't (co = 0) tile
chiral symmetry is realized in the Nambu-Gold-
stone mode, Le. , p,,'&0 and {Q~}(~Q)=v,. The La-
grangian is rewritten in terms of the translated
scalar field

&niacin&=0.

Then in. the symmetry limit the pion is massless
and the nucleon has acquired a mass. The pion
mass is proportional to the symmetry-breaking

Here p is the canonical unrenormalized II field,
and similarly g(o},k(E), $ (a), ${iV). In the context
of this Lagrangian model, PCS is simply achieved
by adding the symmetry-breaking term

parameter co.
To carry out the calculations it is necessary to

have the renormalized perturbation theory, con-
sistent with the (broken) chiral symmetry. There
are by now several different approaches to renor-
malization, all presumably leading to the same
physical consequences. For the purpose of calcu-
lation with a theory possessed of a broken symme-
try, perhaps the most convenient is the Bogoliubov-
Parasiuk- Hepp- Zimmermann (BPHZ} scheme' in
which the (finite) counterterms are determined by
a combination of conventional renormalization can-
ditions and the Ward identities formally implied
by the chiral invariance of the Lagrangian. ' The
BPHZ effective Lagrangian which effects the re-
normalization of (2.1), (2.2), and (2.3) is

Z„,=-,'(1 —p, )(&~)' —p(iI'+ o.,)~II +-,'(I p,)(so)'- g(M, '+ n,)o'+ (1 —p~)SETSE- (iI~'+ nr)KE
+(1—p„)eaTS~ —(M„'+ o.„)~'~+{1—p„)Fiy ~ SN —(m+ n„)NN (G —i})Ã(o——iy, T ~)N

- (X, —y, )no(P+ o') —k(X, —y, )(~n' + o')' —(X,r - y, r) (P+ o')(ETE+ zIs) —[2(A.,r- y,r)v —(k —6')]oETE

-[2(X,r- y, r)v+ (k —5')]a~Tz+i(k- P)(~'T ~ wE ETT m) -(1.„-yr)-(ETE+ ~Ta}2 —(X» —yr)(E'~+ ~TE)'.

The effective Lagrangian (2.4) contains 28 con-
stants. They are accounted for as follows: ts„e„
PE, &z, P„,&„are fixed by the conventional on- shell
renormalization conditions for the pion, kaon. , and
nucleon propagator s. The Ward identities which
follow from the SU(2) x SU(2) commutation rela-
tions and PCAC provide the relations' (through
one-loop order)

(2.5)
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[The Ward identity D, (q'= 0) = -v/f, u' provides a
nonlinear algebraic equation for v in terms of
f„u, , m, etc. To an accuracy of l%%uo the solution
through one-loop order is the last formula of
(2.5)]. The counterterms y37, 6 do not enter
through the one- loop order. The counterterms
y, ~, yI„6' and the coupling constants A.~, A.~ do not
enter the m~- mm amplitude through the one-loop
order. (They will enter the w«-KK and KI7-KK
amplitudes needed for the coupled- channel calcu-
lation. ) The masses u, u«, m are known. This
leaves four undetermined parameters M„M„, ~,&, y, .

III. ONE-LOOP PERTURBATION CALCULATION
OF THE nm AMPLITUDE

The momentum and isospin variables are illus-
trated in Fig. 1 along with the decomposition of the
wn. —mn amplitude into its a-pole terms and its one-
particle irreducible part. The isospin decomposi-
tion. is

qp, c qg, d
/6

/

q, , o q&, b

9"-6"63 + g

s = (q, + q,)', t = (q, —q,}', u = (q, —q,)'.

The chiral perturbation expansion is

A =A "'+A "'+A "'+ (2-loop) a ~ ~ ~

The Born term (tree diagram) is

(3.2)

(3.3)

2A. v'&"'(7„7., 7., 7,7=-».(7-M l
a

(3.4)

F&G. ].. Kinematics of the» mx invariant matrix
element and its decomposition into 0-pole terms and
one-particle irreducible terms.

3 «(q„q. , q„q,) = 6„6„A(q„q„q„q.)
+ 5 53«A(-q47q37q37 q, )

+ 6„6„A(-q„q„-q„q,), (3.1)

The one-loop contributions computed from the La-
grangian (2.4) with the renormalization conditions
and Ward-identity constraints given in the previous
section are'

(z) 1A3"'(q„q„q„q,) = (2A.,v)3
3)3 Zp'(s) + 2X,v 3 [V,",,'(q„q,)+ V,",,'(q„q,)],

Z,"'(s) = 2y v'+ o.,+ P,s+ 6X, v'I ~~(s) + 18K,'v'I~'(s) + 2f«,3Iz~z~(s) + 2f„, I„'3 (s) + 4G'(s —4m3)I«3„'(s),

n = 4X 'v'[I'3'(u') —u, I,', (u, ')] 4h'[I' '(u') u'I' (u')]+ 4G'u'I' (u )

P, =-4~,'v'I.', (u') —4h'I«. (u') —4G'[I««(u')+ u'I'««(u'})

(3.5)

(3.6)

(3.7a)

(3.71)

We have defined the combinations

f«, = 2X,«v —h, f„,= 2X,«v+ h,

V,",,' (q „q,) = 2y, v —8X,3v3[K,",,'(q„q, ) + 3K,",,'(q„q, ) ] —10K,'vI '„"(s)-6X,3vI,",' (s)

-4X,'v[I '„3' (q, ') I,'„+(q3)] 3— 4 f «, h'K„'«'«'(q„q, ) —4 f„,h'K«„„(q„q,) —4f «,k, «1'z~z' (s)

4f„,x, I„'„"(s)+8G'm[2I„"„'(s)+(s q,
'

q, ')K»„(q„q,)] .

A&~ (3q, q, qq ) = 2y, —(2X } [—I, (s)+I, (t)+I, (u) + 3 I~~ (s)] —(2X 3) [2I««(s)+ 2I„„(s}]
—(2X,)'v'[K,",,' (q„q,) + K,",,' (q„q,) + K,",,'(q „q,) + K,",,' (q„q,) +K,",,' (q„—q, )

+K,",,'(q„-q, ) +K.",,'(q„-q3)+K.",,' (q„-q,)]
8y, h'[K„'" (q„q,)+K„"«(q„q,)+K''„„'(q„q,)+K"„„'(q„q,)]
(2X, v)'[H,",,',(q„q„q„q, ) + H,",,', (q„q„q„q,)]

4h [H ««(qi q3 q3-q4}+H ««(qi q3 «q3}—H ««(q3 «q3
(o) (o) (o)+ H,„,„(q„q„q„q,) + H,„,„(q„q„q„q,) H«„«„(q„-q„q„-—q, ) ]

+ 4G'[4 I„'„"(s) + 2 (s q, ' q, '}K„»(q„q,}+ 2(s —q, '- q,3)K»„(q„q,)

(3.8)

(3 8)

+ (q, 'q, '+q, 'q, ' —st )H„„„„(q»q„q„q,)+ (q, q3 + q3 q s33)H„„„„(q„q„q4,q3)—

—(q3 q3 +q3 q4 —")H«s«s(q7 -q~ q3 -q3}l . (3.10)
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The Feynman integrals which occur in these formulas are

I„(s)= i (dk)
1

f(k+q, )'- M, '][(k —q, )' —M,'] '

1

[k' M, '][(k+ q,)'- M,'] [(k q, )' M,']
1

H„,~( q„q„q„q,) =i (dk)
[k —M, '] f(k+ q, ) —M, '] [(k+ q, —q, ).

' —M, '] [(k q, )' —M ']

(3.1la)

(3.11b)

(3.11c)

dk
dk) =

(2 )4

The superscript zero in parentheses indicates one
subtl actLon at zero external four- momentum»

eg»

K,",,'(q„q,) =K„,(q„q,) —K,„,(0, 0), etc. (3.12)

A detailed discussion of the properties of these
integrals is given in Appendix C of J%.

Equations (3.4) and (3.5) include pole terms cor-
responding to a real stable scalar meson. Since
there is no real stable 0 particle, we want to elim-
inate it. We do this by letting M, become very
large. In the no-loop terms we can take t;he limit
M, - ~. The fifth Ward-identity constraint of (2.5)
requires that X, also goes to infinity in this limit.
Then

&'"(q„q„q„q.)= —„, (s- ~')

which is just the %einberg' low-energy wn ampli-
tude or the Born term of the nonlinear 0 model. In
the one-loop terms, one cannot simply take the
limit of M, (and M„) going to infinity, because that
limit does not exist —a reflection of the convention-
al nonrenormalizability of the nonlinear 0 model.

The procedure to eliminate the v and the z from
the one-loop terms is the following. First, all
the Feynman momentum integrals are evaluated
(the M, —~ limit cannot be taken inside the in-
finite-momentum integrations). Then asymptotic
expansions are made for the Feynman-parameter
integrals. This leads to a double power series
in M, ' and inM, (or M„' and lnM„). All negative
powers are legislated to zero. This leaves terms
independent of M and also terms with positive
powers of M' and lnM. %hen all the terms from
(3.5) to (3.10) are added together, all but the lnM
terms (and the terms independent of M) ca,ncel
out. These are kept as two (lnM„ lnM„) arbitrary
parameters of the theory. This procedure was
orlglnally proposed by Bessis and Zlnn- Justj. n
as a regularization procedure for the nonlinear
o model. A detailed description of the procedure,
asymptotic expansions of the integrals, etc. , as
well as some improvement with regard to the
treatment of the chiral-invariant (p-0) limit is
contained in JW. To carry this procedure through
to eliminate the v-particle contributions, as well
as the 0-particle contributions, is tedious but
offers no new features. (This is not true of the
~7|.-KK and KK-KK amplitudes, but this dis-
cussion is deferred to the subsequent paper. ) The
result is (for all q,.'= tJ, ')

A( t,s)=u—, (s —p, )
1

+ ~ (--,' (s' p')I,',"(s)+[' st+ —' tu+ —' p'(s —u) —p4]I„'"(t)

+ [-' su+ ' ut+ —' tt2(s t) p']I, ',"(u)
+ [- —, (s —2p ) + p(s —p )(s —2u') —2p (s —p') ]Is'r"(s)

+ [ ' t(s u)+ ' gr'(s u)]ir'ro'(t)+ [-—'u(s t)+ ' Pr'(s t)]is'so'(u) 4m'sI„'„'(s)

+ 4(2 p,
' —st )m'H„(s, t, u)+ 4(2g' —su)m H„(s,u, t) 4(2@~-ut)m'H„(u, t, s)+ 4-m'(s- u') ll, 'IIN„(p')

+ 2 [(- —' I. +—'+ 2I',)s'+ (- —L+ —')tu+ (-' I. ——' —4l', ) p, 's+ (- -+ 21', )u

+L'( ' s'
—,', tu- ' g's+ ' p')+ pL'(s p')(2p, ' s)

+(2p--'~)(s- t ')(s-2~')- —'s'+-'«+ ~'s--' t']] . (3.14)
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Quantities not previously defined which appear in (3.14}are

p= lim (g /y —,
' a),

a = M„'/M, ',
L = ln(M, '/p'),
L' = ln(M„ /pr') =L+ In(ay /pz') (not an independent parameter),

y, = (I/16v'v') I', M,'+ O(I!v') (definition of 1;),

(3.15a)

(3.15b)

(3.15c)

(3.15d)

(3.15e)

f)I(N (s&=4x(s& f~nr(-& & Hs(s t u&=HNx~x(q) q2 qs q4&~('= '. (3.16)

A very important check on (3.14) follows from the observation that it is determined, except for the poly-
nomial terms, by unitarity, crossing, analyticity, and the chiral Born terms for mn-mn, nm-KK, and
vw-NN. The chiral Born terms are obtained by computing the tree diagrams from the Lagrangian (2.4)
and taking the limit M,', M„-~ (with the finite ratio a):

vv-vv: A"'(s, t, u) = ~ (s —p'),

wv-KI7: M~(s, t, )u=, (*(5,~[4p(s —i(')+ t+u 2 pz']+ —,[7„7',] (u —t)) g, (3.17b)

ww )))): M, (s, &, )=G' ()") —(), + —,'y(l), —q, ) (). . .+;,)
1

m —m —q2 —m

1 1
-fPl —g —P?2

(3.17c)

The general, on- shell polynomial (undetermined

by unitarity, crossing, and analyticity) is

P(s, t, u)=, 4 (a+ hs+ cs'+ dtu) .
16m'v4 (3.18)

The truncation procedure which leads from the
L&rM amplitude (3.5) to (3.10)to the NLaM ampli-
tude (3.14) provides the values of the coefficients
in (3.18) in terms of the coupling constant and

(finite) counterterms of the LaM:

The chiral low ene-rgy theorems (Ad1erAd, ler-
Weisberger-Weinberg) imply a, b- 0 for i(-0,

A(s, t, u)=, s+O(s', t2, u') for p=0. (3.19)
1

is determined by consideration of the chiral-sym-
metry limit (p-0; see JW). This limit provides
no other constraints on the parameters in (3.14).
Thus, at this point, the four undetermined param-
eters M„M„,X,~, y, appear in the one-loop mm- nm amplitude in the combinations I., a, P, I', de-
fined in (3.15) and (3.20). Chiral SU(3) x SU(3)
invariance would fix the values of a and P. %e do
not impose this symmetry. However, our con-
sideration of the KK channel does lead to a con-
straint relating' a| and P.

IV. ISOSPIN AND PARTIAL-VfAVE AMPLITUDES,
PADS APPROXIMANTS, AND PHASE SHIFTS

The isospin and partial-wave amplitudes are
a= [~ L+ (-' —2P)L'+2I', —i'+4P- n] p

I)=[- -'L+(- —,'+3P)L, ' —4I', —~~ —6P+ 3 a] tu,
(3.20)

c= ~ L+ (—' —P)L'+2l', + —', +2P ——,
' a,

1 I t+ T3

3 12 36
Here

I;=g I.+1, .
T', is finite in the limit p, - 0, otherwise arbitrary.
This dependence of the counterterm on ln(M, '/p')

s= %2=4(q'+ p'), t = -2q'(1 —x),
u=-2q'(1+x), x= cos8.

M, (s, t, u) = 3A(s, t, u) + A(t, s, u& +A(u, t, s),
M, (s, t, u) =A(t, s, u) —A ',u, t, s),
M, (s, t, u) =A (t, s, u) +A (u, t, s},

[A(s, t, u) =A(s, u, t)]
1

Az(s) = —,
' dx P~(x)M(s, t),

a1
(4.2)

(4 3)
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FIG. 4. The & =0, s-wave phase shift. The vertical
bars above 400 MeV are values from Ref. 10. The verti-
calbarsbelow400MeV are from Ref. 19. The circles
above 400 MeV are from Ref. 15, and below 400 MeV are
from Ref. 18. The boxes are from Ref. 16. The crosses
are from Ref. 17. The dashed line at 496 MeV repre-
sents our estimate of ~po from the &-27( data.

0 I

600 800

~s (MeV)

l 000 perturbation amplitude. By virtue of perturbative
unitarity

FIG. 2. The I =1, p-wave phase shift. The curve is
the result of the calculation described in the text. The
vertical dashes represent experimental values from Ref.
10.

Formulas for the integrals encountered in making
the partial-wave projections (4.2) from the invari-
ant matrix elements (4.1), determined from (3.14),
are given in detail in JW.

The [1,1] pads approximant constructed from the
first two terms in a perturbation series is

(for two identical particles) (4.5)

the [1,1] Pads approximants satisfy elastic uni-
tarity exactly

fmA"" (s) = —IA"'" (s)iz y6& &z re (4.6)

Thus below inelastic thresholds (experimentallythe
7t7t -47t inelasticity is very small below the KK
threshold) the phase shift can be computed from

fA(o) (s) I e

A'"(s) —A'"(s) B 6t fS '

51 1)
[1,1] Im A IJ'

I,T

(4. 7)

where B=A z'(ls) is the (real) Born term andri, S
are the real and imaginary parts of the one-loop

(MeV )

600
I I

600 1000
I

—IO

0—20

0—30

—40

FIG. 3. The I =2, s-wave phase shift. The experimen-
tal values are form Ref. 12 (+), Ref. 13 (0), and Ref.
14 (( ).

The resulting I= 0 and 2 s-wave and I= 1 P-wave
phase shifts are given in Figs. 2-4.

V. RESULTS AND DISCUSSION

The calculated [1,1] pads phase shifts depend
on the three parameters L, P, I, which correspond
to the cutoff which regulates the NLOM, the mK

coupling constant, and the 7Tn - ~~ finite counter-
term (i.e. , the value of the m7t-n. m amplitude at
some conventionally chosen renormalization point).
All three phase shifts depend on all three param-
eters; but roughly, P is chosen to fit the overall
shape of 600 (e.g'. , turning up below the fCf7 thres-
hold) and I", and L are chosen to make 6„pass
through 90' at 773 MeP and 5» pass through 90
somewhere between 800 and 900 MeV. The values
of the parameters, and known physical constants,
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for the calculated phase shifts displayed in Figs.
2-4 are

P=1.0, I.= 5.03, I', =3.5075 (+ =16.5), (5.la)

f, =0.68p, , p, =138 MeV, p,, =3.592', , m=6. 802', .

(5.1b)

The calculated p-wave shift plotted in Fig. 2 is
seen to agree in detail with the rather well de-
termined experimental values from 550 to 1200
MeV. %e have plotted the experimental points
from the phase-shift analysis of the LBL experi-
ment" of protopopescu et af. (w'p- 5"w'w ). The
phase- shift analyses of the high- statistics CERN-
Munich experiment, Hyams et al." (w P- w'w n)
give very similar results for the P-wave phase
shifts. %e make a couple of comments on the dif-
ference between this calculation and the earlier
JW claculation. In both calculation. s the p wave is
relatively insensitive to the value of the param-
eter J . (In the chiral-invariant limit, p-0,
it is independent of I, Se Appen. dix E of JW. ) In
the JW calculation a special s, t, u symmetry of the
divergent part of the single-pion- loop unrenormal-
ized integrals was used to determine I', (discussion.
at the end of Appendix 8 of JW). Thus JW had
essentially no parameters to fit 6» and in fact had
to adjust the effective wN coupling constant (with
a hand-waving appeal to higher-order calculations)
to get a fit to 5» and the p parameters. In the
present ca1culation, with the inclusion of kaon loops,
loops, the special symmetry of the single-pion
loops is lost, and I', is a free parameter, which
primarily determines the mass of the p. G=m/

f, is fixed at its proper value to be the chiral per-
trubation-expansion parameter, and the width of the

p (= 160 MeV) comes out essentially with no free
parameter (as mentioned above it is relatively in-
sensitive to I.) and P is chosen primarily for the
shape of 500

The calculated I= 2 s-wave phase shift is plotted
in Fig. 3 along with some of the more recently
published experimental data. "" The calculation
and the experimental analyses agree that the phase
shift is small and negative with negative slope.
Above 700 to 800 MeV the calculated phase shift
has become somewhat more negative than is in-
dicated by the experimental analyses.

The calculated I= 0 s-wave phase shift is plotted
in Fig. 4 along with the results of two different
phase-shift analyses"" of the CERN-Munich ex-
periment, the results of the phase-shift analysis of
the LBL" experiment, and the results of the
Argonne-Notre Dame" experiment. (The two ana-
lyses of the CERN-Munich experiment reproduced

here represent the extremes of five different ana-
lyses presented in Ref. 16.) Also plotted is the
value of 600 at v s = mr determined from the ana-
lysis of the final-state interaction in K-2m de-
cays, and the low-energy values of 500 from the
K„decay experiments of Beier et al."and Rosse-
let et al." The existence of these experimental
values determined from the final-state interactions
of the two pions from K decays is important, not
only because they cover a generally different
(lower) energy range, but also because all of the
high-statistics phase-shift analyses above 400
MeV are indirect, i.e. , they are extracted from
production processes with three hadrons in the
final state and require extrapolation to the virtual
pion pole after subtraction of background not due
to single-pion exchange. Although the more recent
experimental analyses have high statistical ac-
curacy, the question of possible systematic error
(in the analyses) is very difficult to assess" (c.f.
our Fig. 4 or the original Fig. 31 of Ref. 16 in
which phase shifts obtained from different ana-
lyses of the same experiment differ by consider-
ably more than the statistical errors).

Comparison of the decay rates of the different
charge states of K-2m gives the value of 6«- 620
at Ws =mr if one assumes that the oI = —' ampli-

2
tude is negligible compared to the weak h, I= ~ and
—, amplitudes. In the conventional weak- inter-
action theory there is no lowest-order &I =-,"-

term in the weak nonloptonic Hamiltonian; it
must be of order Gn. This would suffice except
that, empirically, nonleptonic ~I= —, decays are
suppressed (relative to O I =-, ); so the question be-
comes arguable. Nelgecting the &I=-, amplitude
and using K-2r data from the 1976 Particle Data
Group comprlatson, we fend {500- 52o =58

~ con
sistent, within a fairly large uncertainty, with the
values, for that energy, obtained from the produc-
tion experiments. If we accept that 520 is in the
range -8' to -14' at v s = mw, as indicated by the
more recent production experiments, "' then this
value of 6~ favors the (larger) phase shift of the
Estabrooks and Martin analysis" over the other
analyses of the CERN-Munich experiment in the
region of the kaon mass. It is also a little larger
than the Argonne-Notre Dame result. Our calcu-
lated value is 47'+ 9'= 56 . The analysis to ex-
tract the low-energy mm phase shifts from the final-
state interaction. of the two pions from K„decays
is genera11y straightforward, the prob1em in. this
case being to get sufficiently good statistics from
these rare decay events. It is seen from the fig-
ure that the calculated phase shift is consistent
with the experimental phase shifts (from these
three different sources) over the entire energy
range from the elastic threshold (276 MeV) up to



1346 K. H. CHUNG AND R. S. WILLEY 16

the inelastic threshold (991 MeV).
The success of the 6„and 5» calculations ren-

ders the calculated scattering lengths of some in-
terest.

A(l& 13 lim Q[lt 1]1
I 2J+1 IJ

a~o

A&0& 1 Aro (4p )
A'"( P )

IO

(&f/dq2)A & & & (4p2)
I~ I (&f/d ')A &O&(4 2)

(5.2a)

where the tree-diagram scattering lengths AI"'
are the Weinberg' scattering lengths

2

A()o' = —7p, l=0 15
32&& f

A(o) 1 4~3~003~3
32' f,'

2

(5.3)

In the present calcul. ation we find

AO= 1.70AG' —-0.26M '

A, = 1.40Al"' = 0.04'

A, =1.09A2 '= —0.05', '.
(5.4)

(The large fractional change in the numerical value
of A, from A&'& is largely due to rounding off. )

As already mentioned in the Introduction, in a
subsequent paper we will report the results' of a
coupled-channel (&&&&,KK) matrix Pads calculation
of Goo above the KK thr esho 1d, and the wK s -wave
phase shifts. Another direction in which this cal-
culation can be expanded is to include the other
"stable" pseudoscalarmesons &), &)' (the &i' does have
a strong decay channel gnn, but it is very close to
threshold and very narrow), and the other stable
spin-& baryons A, Z, ". This leads to a considera-
tion of chiral SU(2) x SU(2) versus chiral SU(3)
&& SU(3). We believe the empirical case for chiral
SU(2) x SU(2) as a good approximate (Nambu-
Goldstone) symmetry of hadron physics is per-
suasive, "and we regard the success of the calcu-
lations reported here as further evidence in its
favor (we are by now well beyond soft-pion theo-
rems, particularly with the p and the coupled-
channel calculation of the S* phenomena). We re-
gard the status of chiral SU(3) x SU(3) as unclear.
There exists a very detailed LoM SU(3) && SU(3)
Pad6 calculation by Chan and Haymaker" (CH)

which is relevant. Chiral SU(3) x SU(3) symmetry,
with only linear symmetry breaking, is very re-
strictive; thus CH have very few parameters. They
are able to fit the observed pattern of pseudo-
scalar masses and a number of meson decay con-
stants, but their calculated phase shifts are quite
different from the experimental ones (5O, reaches
a maximum and turns over, as in the original LOM

calculation of Ref. 3; there is no S* effect, even in
a coupled-channel calculation; the calculated p is
very narrow —again, as in Ref. 3). We take these
results of CH as an indication that chiral SU(3)
x SU(3) is strongly broken, perhaps too strongly
to be useful for this kind of dynamical calculation.
There are, of course, other possibilities. The
approximation of the partial-wave amplitudes by
the [1,1] Padb approximants may be failing. A

priori the convergence properties of the Padb ap-
proximants in a real field theory are unknown.

But a posteriori there is the success of the phase-
shift calculations of the present paper, achieved
with just one more free parameter. As another
example, in our calculation we find that the nu-

cleon loop plays a non-negligible role in the gen-
eration of the p resonance (although it is no longer
the dominant factor as in the previous JW calcula-
tion); the CH calculation includes only mesons.
There is also the question of what would happen in

an SU(3) x SU(3) NL&7M calculation" [in the sense of
(iii) of the Introduction of this paper]. In consider-
ing this possibility one immediately runs into the
problem that chiral SU(3) && SU(3) with only linear
symmetry breaking does not admit the mass pattern
p,, & p~ «M„M„required for a NLOM calculation
regulated by the scalar masses. Thus if a chiral
SU(3) && SU(3) NLoM calculation is to be carried out

it will require bilinear symmetry breaking as well
as linear. Whether this can be consistently carried
out is not yet known. The alternative is to include
the additional particles, but only classify them in

chiral SU(2) && SU(2) multiplets. Of course this
leaves more free parameters (coupling constants
and scalar masses) and no low-energy theorems
for external pseudoscalars other than the pion.
Finally, we note that our calculation is consistent
with the indication from CH that chiral SU(3)
x SU(3) is badly broken, in the sense that the values
of our parameters which give successful fits are
very far from the SU(3) &&SU(3)-symmetry-limit
values (P, = —,', a, =l). Of course, in the SU(3)
&& SU(3) symmetry limit the calculation would in-
clude contributions from additional diagrams in-
volving g, g', etc. , so the best-fit parameters
would presumably change some; how much cannot
be determined before the calculation is done.
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