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Low-energy inon-nucleon scattering
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Using the divergence of the axial-vector current as the pion interpolating field and a soft-pion limit we

derive a once-subtracted Low equation for the off-mass-shell m N amplitude. The cr commutator term and the

once-subtracted z graphs are the main isoscalar and isovector driving terms. The calculated 5-wave phase

shifts are in good agreement with the experimental data when we use ~g (4M ) = 11,69 and 25.5 MeV

for the 0. commutator term,

It has been more than twenty years since Low'
and Chew and Low' (CL) developed a nonperturb-
ative formalism which, with several approxima-
tions, describes the prominent dynamical features
of the pion-nucleon P-wave interaction at low en-
ergy. But analyses of experiments carried out at
the meson factories have repeatedly shown that a
more complete description of the pion-nucleon in-
teraction is needed for the proper interpretation
of many pionic processes. To this end we have
proposed' a theory of ~N scattering which is a
logical extension of the work of Chew and Low.

In this theory we use the Low equation obtained
from the Lehmann-Symanzik-Zimmermann {LSZ)
reduction formalism, but in contrast to CL we do
not use the static approximation, and we retain
the seagull terms and the antinucleon-intermedi-
ate-state contribution. %e use the divergence of
the axial-vector current as the interpolating pion
field. A soft-pion limit is used to eliminate the
isoscalar part of the seagull term and obtain a
once-subtracted form of the Low equation. This
equation allows the evaluation of both the physical
mN amplitude as well as the off-mass-shell ampli-
tude' once the remaining dynamical inputs are
specified. These include the isovector part of the
seagull term, the pion-nucleon form factor, and

the a commutator term which appears in the soft-
pion limit. The theory describes all mX partial

waves and formally is valid for all energies.
In this note we apply our theory to calculate the

low-energy S-wave phase shifts. ' Qf the several
earlier efforts' on this problem, two are close to
ours in spirit. These are the works of Drell,
Friedman, and Zachariasen' and Hackman, ' both
based on the Chew-Low formalism. Unlike the
calculation of Drell et al. , our approach is not de-
pendent on a phenomenological Lagrangian for the
low-energy S-wave interactions. In contrast to the
work of Hackman, we include nucleon recoil and
antinucleon contributions in intermediate states
and handle the seagull terms in a completely dif-
ferent manner. As a result we obtain better agree-
ment in the S-wave phase shifts over a wider ener-
gy range than these earlier works.

Our approach is based on the off-mass-shell am-
plitude

Z,.(P, , P„a)=i d'xe".( +~„')
& &Py I T(ge(x)j. (O))IP;)

with IP,.) and IPy) physical nucleon states, and
where the interpolating pion field is given in terms
of the divergence of the axial-vector current by
y, ( )=xmas A'„( )ixf„j.{x)=(H+~.')p„(x), Pand
a are isospin indices, and f, is the pion decay con-
stant, taken to be 0.939m, '. ~e can rewrite this as

Pe (k)= fd'xe"*(P~I (x,)[Pe(x),j (0)]k, +i (x,)[Pe(x),j (0)]IP)+i d'xe' *(Pf Ir(je(x)j (0))IP).

For brevity we exhibit only the pion four-momentum k as the argument of I'. The first two terms on the
right-hand side, the seagull terms, are taken to have the form

{P~Iie e„(k+0') Y'(0)+&,Z(0) IP,.),
where' isascalar-isoscalar operator, Y~is a vector-isovector operator and k' =kg+I'& —P, In phenomeno-
logical Lagrangian models, Z' and Y are associated with the t-channel exchange of scalar-isoscalar and
vector-isovector bosons, respectively.

We eliminate Z by subtracting from (2) the soft-pion limit'
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Ps, (0) =lim [limP~ (0)],
g~

i.e, the limit in which one pion is soft while the other has momentum 4 =Pz —P, This differs from the
more familiar soft-pion limit" where one lets (tt+)t )- 0. Using the Ward identity we find

)",.(0)= —,'(t-, ')&p,
l

(0i)il&';» , ((. (-)))( (0) (p-) ~. 4~~'r~. + 4MP' ~i ~i}ii(p)
r

where t = (Pz- P,.)' and

The other term in (4) is the nucleon pole term in the soft-pion limit. There are no other contributions;
this expression for the soft-pion amplitude is exact. The quantity g,(t) is defined by

(P, ij.(0)iz,.) =tg, (t)u(P, )y,~.u(P,.).
From the definitions of Q, and j we have g, (0) = &t2Min, 'g„(0)/f, and using g„(0)=1.25 gives g, (0) =12.7.
Upon subtraction we have

)",.())=F,.(0) &)', l»i.„»'( )I 0&+)f&ii" &P*, l)'('i*,(*)i (O))l)', &. f&*-&)', I)'(ii(*)i (o))I&&.

For the integrals in (5) we insert a complete set of physical states between the current operators in both
teims of the time-ordered product. %e retain those states felt to be the most important. These include
the states iN), i') and the disconnected parts (z graphs) arising from the iNNN) terms, where N=nuc-
leon, N =antinucleon. In the c.m. frame, the first integral in (5}becomes

i d'xe"'(Pt iT(j~(x)j (0))iP,)= ' ~ ' ' u(Pt)(1 —y,)rp u(P,).0 g ((Py —P) )g.((P; —P)')
0 10

+g,((P& —I)')g, ((P; —I)')+ ' ', ' ', u( P)t[(/, P(o Pt,-)y, +M-]r 7,u(P, )

gg(( fP+ P) kg((P(+ P) ) —
(P )(S)) p ) (P )2(a, +s„+p, )s',

g, ((Pt+I)')g, ((P(+I)')„-(P )(g P ),„(P )
2I,(P(, + I, 0,)—

r, „z, f d'q, d'q„M (Ptl js(o) Iq„s, q,y)(q„s, q,ytj (0) IP ) 55 q, + qs+ p + it

&Pq, &Pq„M (Ptlj, (0) l q„s,q,y)(q„s, q,ylj))(0) IP()g g f I N & ~ N y

(q~+ qg+ k p]) y
(2v) 2'40 qi()o q)io+ 40 (Q 0

(6)

where I, I, and P pre four-momenta of physical
nucleons with l= —l =-k- k' and P=O. The last
taro terms are the direct and the crossed one-
pion- one-nucleon contributions. The first two
terms are the direct and crossed nucleon pole
terms. The third and the fourth are the crossed
and direct antinucleon terms (z graphs). In the
original expression, these terms contained factors
like
—[(oij (0) iN(P;), 7)„„(N(P },Pij (0) i0)

+ (oij.(o) iN(p, ),R),„, (N(p,},N ij,(0) i 0)]

which involve Re[g,((P, + N)')g,*((Pt+Ã)')]. Since
there is considerable uncertainty in our knowledge

of g, for t & 4M'," in Eq. (6) we have made the
simplifying assumption. of replacing the real part
of the product of the tvro complex form factors by
the product of two real functions, described fur-
ther belovr.

The corresponding expression for the final in-
tegral in Eq. (5) is obtained from Eq. (6) by drop-
ping the nucleon-pole terms, setting (k„k) = 0, and
replacing the 4-vector P by (P, —Pt) and I by

(P;0, —I&().

By omitting the 8-wave inelastic states from the
complete sum we have limited the range of appli-
cability of our theory to the elastic region. Be-
cause the scattering amplitude is given by an equa-
tion with a once-subtracted form, the neglect of
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these high-mass states will have a weaker effect
on the low-energy elastic amplitude than what
occurs in an unsubtracted equation (e.g. , the Chew-
Low equation).

Using (6) and its analog for the k- 0 limit (soft
terms) in (5) and setting k„= (k'+m, ')' ', we obtain
a nonlinear integral equation for the off-mass-
shell amplitude, „„(P&,kp~y (0) ~P,.). At present we
have studied the solution of this equation for the
S maves only. It should be noted that because we
include nucleon recoil the integral equation for
each partial-wave amplitude is coupled to all par-
tial waves. This coupling arises from the crossed
one-pion-one-nucleon term in (6) and, more im-
portantly, from the soft terms, both direct and
crossed.

The P-wave contribution to the S-wave equation
is calculated by including inelasticity and para-
metrizing the absorptive part in a factorable form
as [4mtV(q)/M]cr„(q) P(k) &f&(k')/$2(q) with the form
factor

where & is the I'-wave channel index, r„ is the
total cross section in channel &, and W(q) is the
c.m. energy. 0„ is computed using the CERN the-
oretical fit." As expected, the higher partial
waves mere found to contribute negligibly to the
low- energy S-wave amplitude.

Tge assume that fhe isovector seagull term P~
=0 (no p meson terms) -"The o co.mmutator is
parametrized as

The S-wave phase shifts are very sensitive to
the parameters g, and g, . 5» is particularly sen-
sitive to these quantities because of the cancella-
tion between the repulsive o commutator term and
the attractive, once-subtracted z graphs. The
phase shifts are less sensitive to the form-factor
masses. We settled on the values g=8m, (P
wave), g, = g2 = 8.24m„u, = 7.5m, (&r commutator),
and m, =8.6m, [g,(f), and g, (t)]. As discussed be-
low our value of g, is close to the value of 26 MeV
obtained by Huang et al."and is in the range given
by Reya. " The form-factor masses p,„p„p3 are
compatible with the mass of the broad, sealar-
isoscalar vv resonance'6 e(1200).

%e demanded a very good fit to 5„ for pion lab
energy T, &100 Mev. In the figure we present our
calculated phase shifts (dashed curves) for three
sets of g, and g, . These are (a) 25 MeV and 11.85,
(b) 25. 5 MeV and 11.69, and (c) 26 MeV and 11.54.
The three sets give identical results for 63$ The
solid curves are the energy-dependent fits of Zi-
dell, Roper, and Amdt " The flagged circles ar
the energy- independent fits of Carter, Bugg, and
Carter. " Our agreement with the experimental
5» is excellent up to T, =100 MeV. For 5» we
note first the marked sensitivity of our calculated
phase shifts to the parameters g, and g, . The ex-

u(P&)u(P, )g,

,) 1—,)
1—,)

(8)

For g, (t), with which we approximate the role of

g, (f) for t & 4M', we use

g, (f) =g, [1+ (f - 4M')/4m, '] ',
whereg, = ~g, (4M') ~. For g, (t), t&0, we use

g, (t) =g, (0)[1+t(f —4M )/4M'm, '] ' ~ (1

(9)

Because of the small contribution of the nueleon-
pole term to the low-energy S-wave problem me
use the same form-factor mass in (10) and (9).
Using Padd approximants me succeeded in con-
structing solutions of the nonlinear integral equa-
tion for the 8-wave amplitudes f2&, z(k, k'), k and
k' being the magnitudes of the on- and off-shell
momenta. %hen substituted into the integral equa-
tion the solutions reproduced themselves within
5% for k, k'&2. 2m, . ~e bel, ieve that our phase
shifts are reliable to 1%. The numerical method
will be described in a longer paper which is in

preparation.
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FIG. 1. Phase shifts 6~& and 6&~. The dashed lines are
our results. The solid lines give the results of Ref. 17,
while solid circles with error bars are from Ref. 18.
Dashed lines {a), (b) and (c) represent different choices
for g~ and g~, as discussed in the text.



LO%-ENERGY PION-NUCI. EON SCATTERING 1337

perimental 5» obtained by the energy-dependent
fit" shows a sharp change of slope at T, -60 MeV.
The energy-independent fit,"using a smaller set
of data, appears to have a gentler curvature, a
feature which we easily obtain. %e could not re-
produce the qualitative features of 5» of the ener-
gy-dependent fit without spoiling the agreement
for 5», even with substantial changes of all param-
eters. We have chosen the set (b) as our "best'*
set because of the quality of agreement with the
energy-independent fit. %ith this choice our scatter-
ing lengths and effective ranges are -0.143m, ' and
0 98m x for S,x and 0 095m ' and 5 35m, ' for Ssx.

In our theory we have not used the current alge-
bra but have only used the weaker condition that

1 6(x, —y,)[A;(x),AS(y)]d'x is divergenceless.
This fact establishes that the a commutator term
is isoscalar. So current algebra can still be used
as a check of our dynamical theory. This is done
as follows: Setting P, = P& we evaluate the soft-
pion limit of the quantity [F~,(k) —E,B(k)]/k, in two
ways, by using the current algebra and by using the
Low expansion [Eq. (2) and (6)]. Equating the two
expressions for P, = 9&=0 one obtains the following
sum rule for the off-mass-shell amplitudes
f2'. ~z(q~ 0):

(W2)' m. '

M q'dq
6v u(q)E(q)

I f„(q, 0)l' —If»(q, 0) I'
[w(q) M]'

Qur off-shell amplitudes satisfy the sum rule to
better than 3%, and, naturally, our charge-ex-
change scattering length a' '=0.0793m, ' agrees
very well with the current-algebra result, xo

0.0786m, '.
In summary, we have prese~ted a theory of mN

scattering with o commutator term and the once-
subtracted z graphs as the main isoscalar and iso-
vector driving terms in. the S wave. The advantages
of a once-subtracted Low equation over an un-
subtracted one are also essential for a practical
theory.

The current practice in the study of n nucleus
scattering is to use a simple parametrized form
for the fully off-mass-shell wN amplitude. The
limitations of such approaches and the critical
need for a better knowledge of the fully off-mass-
shell nN amplitude have been pointed out. "' %'e
believe that the present theory provides the vital
first step towards that goal.
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