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We present a simple parton-model interpretation of the approach to scaling observed in lepton scattering off
protons and deuterons. Different final-state configurations are classified and their behavior predicted using

quark-counting rules. Good fits to the proton data are obtained. Using a relativistic description of the

deuteron, its elastic form factor and inelastic structure function are analyzed. An extraction of the neutron

structure function is performed by fitting the deuteron data. Several characteristics of the resulting

parametrizations are shown to support our general model. Further experimental consequences are described.

I. INTRODUCTION

The approximate validity af Bjorken scalmg in
deep-inelastic eleetroproduction' has had a con-
siderable influence on the theory of hadrons. The
currently most popular view of hadrons is that
they are composite states of (almost) pointlike
objects. The success of such of a picture and the
models it leads to in interpreting the major fea-
tures of both weak interactions' and certain limit-
ing behaviors of electromagnetic and strong inter-
actions (the mass spectra and the large mass and

large transverse momentum behavior, for exam-
ple) is striking and perhaps even better than one
should expect. The next problem is to find the
set of fundamental theories that leads to models
in the above successful class.

The observation that asymptotically free gauge
theori. of strong interactions are capable of ex-
hibiting '.ling to within logarithmic factors whose
powers axe controlled by the anomalous dimen-
sions in the theory was an important step in this
direction. The next question is whether or not
these theories can quantitatively fit the various
features of the data. This task has been undertaken
by several groups who have stressed the impor-
tance of studying the nonsealing, or rather the
approach to (approximate) scaling, behavior of
the inelastic structure functions and of comparing
features of the observed behavior with the predic-
tions of a basic theory. In particular, Tung' has
compared the predictions of asymptotically free
theories to those of conventional theories and

De Hujula, Georgi, Bnd Politzer' have examined
and defended a study using asymptotically free
quantum chromodynamics (@CD) theory in a series
of papers and talks. The practical problems of
carrying out such a program have been discussed
by Gross, Treiman, and Wilczek, ' who have ex-
amined uncertainties in making mass-dependent
corrections. Other authors' have discussed pos-
sible difficulties in using perturbation theory with
the operator-product expansion. This program is

indeed an extremely important one for weak, elec-
tromagnetic, and strong interactions.

Our purpose in this paper is quite modest in
comparison to the total program of the above au-
thors. We only wish to point out that there are
certain scale-breaking effects that are very simple
from a physical point of view and which would
seem to be present in any theory susceptible to a
parton interpretation. These terms are a priori
expected to be important for large x, the Bjorken
sealing variable. At small x, they do not neces-
sarily dominate from general arguments, and there
are many additional effects that could become im-
portant. Indeed, the data indicate that the terms
under consideration are certainly not dominant
there.

These contributions show up first in the twist-6
terms in the language of the operator-product ex-
pansion and would thereby be normally neglected.
However, they would be expected to be large from
physical arguments. While they fall rapidly in q',
their coefficient is expected to be large. They do
not correspond to interference terms between
various final-state configurations that tend to pop-
ulate different regions of the final phase space.
If such "trivial" scale-breaking terms are present
in the data with their necessarily finite q' range,
lt ls certainly impol tant to recognize their effect
before asking more fundamental and specific ques-
tions of such data since these terms should be
present in almost any theory.

These contributions to scale breaking are most
easily described in the parton-quark language.
The structure functions will be written as a sum
over final states in which all the quarks have low
transverse momenta except for (a) one quark which
recoils with momentum =q, (b) two quarks that
recoil with a total of -q but each has a finite frac-
tion of q, (c) three quarks that recoil with a total
of -q, etc. The above classification neglects the
coherence between such states and should be ap-
plicable for sufficiently large q values where the
final configurations become incoherent. The im-
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portance af type (b) terms, for example, will be
shown to be the fact that while they fall in q at
fixed x, they vanish less rapidly than type (a)
terms for fixed q' as x-1. Vfe should point out
that the partons in our model do not have form fac-
tors as used in the extended parton model of Chan-
owitz and Drell' (but our two-quark system does).

A perhaps more physical application of the above
classification scheme is to deep-inelastic scatter-
ing from the deuteron in which (a) a fragment of
one of the baryons recoils with -q, (b) one baryon
recoils with -q (guasielastic scattering), and final-
ly (c) both nucleons recoil. together (elastic orres-
onance scattering). This case will be treated in
detail in this paper when the neutron structure
function is extracted from the data. " This ex-
traction will be gone using a fully relativistic mod-
el for the deuteron, which we do not believe has
been done before. As a check on our assumed wave
function, the deutex on elastic form factor and
structure functions will be considered in some de-
tail and compared to experimental data. "

One point worth mentioning is that there are
many variables that asymptotically become equal
to the Bjorken x, and which make data at small
q2 satisfy scaling to different degrees. One often
used is the Bloom-Giiman x' [=x(1 +M2/2Mv) '].
Most of these improved scaling variables, how-
evex, do not have a clear theoretical significance.
%e shall neg&ect such effects for the most part,
although an estimate of both mass and initial-state
effects will be mentioned. Our puxpose is to see
if one can fit the approach to scaling with terms
that have a clearer and more direct physical in-
terpretation.

The payer is organized as follows. In See. II we
discuss the yxoton structure function, separating
the different contributions according to the differ-
ent possible final states. Vfe use dimensional-
counting rules to get the general form of these
texms as a function of x and q', and then fit the
experimental data. The threshold limit is analyzed
in Sec. III (the DreQ-Yan-West relation). Sec. IV
contains a relativistic description of the deuteron,
and explicit expressions for the distribution func-
tion of nucleons in the deuteron (essential in in-
elastic scattering) and for its form factor are
given. The parameters ip the deuteron wave func-
tion are determined by fitting the resulting elastic
fox m factor. In sec. VI we discuss the deuteron
stxucture function. As was done before fox" the
proton, the different final-state contributions are
separated. For large q' and/or x~ & —,', we have only
inelastic contributions, and by fitting the data for
the deuteron in this range, we can extract the
neutron structure function. Then we include the
quasieiastic term (important for low q' and x~

around -„and the possibility of strong- final-state
interactions between proton and neutron (important
for x~-I). Finally, some conclusions are pre-
sented in see. VI.

II. PROTON STRUCTURE FUNCTION

In order to illustrate the physical point that we
wish to make without obscuring the issue with
algebra, we will treat only the spin-averaged case
and hence wiQ neglect the spin of the quarks in
the formulation of the model. Following the class-
ification discussed in the Introduction, the contri-
butions to the proton structure function to be con-
sidered here are illustrated in Fig. l. Our anal-
ysis is very much in the spirit of the constituent-
interchange model (CIM) of hadron collisions, " in
the sense that it is clearly necessary to consider
all possible final states in order to extract those
configurations that are expected to dominate in a
particular region of phase space. And also as in
the CIM, we shall use dimensional counting to
predict the behavior of form factors" and general-
ized structure functions. '4

In Fig. 1(a), one quark absorbs all the momen-

FIG. l. Contributions to the proton structure function,
vrith one (a), bvo (b), and three (c) quarks recoihng co-
herently.
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turn q carried by the virtual photon. This is the
dominant diagram of the parton model. In Fig.
1(b), the photon is absorbed by a two-quark sys-
tem which then recoils, each quark having a finite
fraction of q. This diquark state need not be
thought of necessarily as a bound system, but a
photon striking a virtual meson in the target that
remains bound will also be of this type. In Fig.
l(c), the photon is absorbed by a triquark, or
baryon, system and this obviously involves the
form factors for nucleon elastic scattering and
resonance production. This latter contribution is
very small in the region of interest and will be
neglected.

Since the diagram in Fig. 1(a) approximately
scales, for the present purposes its contribution
to vW, {x), or rather E,(x), will be written in the
for m

F;,=A, (x)(1 -x)',
where A, {x) is a rather slowly varying function of
x which is expected to peak such that the most like-
ly quark momentum is near (or less than) —,. A, (x)
may also be a very slowly varying function of q'.
Such slow variations can arise from a fundamental
scale breaking, such as @CD, or from the kinemat-
ic effects of the binding of the quarks. This latter
effect could be called a mass effect, an off-mass-
shell effect, or a wave-function effect, as the

reader prefers. It has been estimated using a
choice for the relativistic bound-state wave func-
tion that was successful in other contexts" and a
version of which will be used in Sec. III to describe
the deuteron. %e find an effect which goes in the
opposite direction from that to be discussed short-
ly. Such effects will be neglected here but if they
were included, it would simply increase the nor-
malization of our explicit nonscaling term. Our
object here is to see if the observed scale break-
ing at moderate and large x values (x a —,') can be
explained with an A, (x) that does not depend strong-
ly onq.

In the first diagram of Fig. 1(b), the photon is
absorbed by a diquark system that has a form fac-
tor f, (q') that falls as I/q' from dimensional count-
ing. The x dependence is quite easy to infer from
the graph. This contribution must vanish as (1 —x)
for x-1 since there is only one spectator quark.
Now the most likel. y diquark momentum fraction
is -3, and this follows automatically if the non-
scaling term is chosen to have the form calculated
for the valence constituent:

F;p(x, q') =A y,'(q')x'(I —x) .
This has all the desired hmiting properties if f,
is parametrized as

(q2) d 2(d 2 q2)-1

0.24—

F~ (proton }

I I I

0.32

0.50

0.18—

0.16

Note that, if a virtual meson abosrbs the photon and
remains bound, as in the second diagram in Fig.
l(b), the structure function will have the same q'
dependence as above arising from the pion form
factor but lt will fall as (1 —x) . It is estimated to
have a small overall normalization for x& 3. Hence
it will be neglected in our fits.

The total structure function in this approximation
is

F,&=F;~(x)+F ~(x, q'),
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FIG. 2. Fits to the data of the proton structure function
+2 g, q2), for different values of x, as a function of q2.
See Eq. (4).

and higher terms have been neglected. Fits to the
proton data" are shown in Fig. 2, and one sees
that it is possible to have both a consistent and
simple picture of the approach to scaling in this
framework for large enough x and (-q') ~ 2 GeV'.
If scale breaking is to differentiate between spec-
ific basic theories, it evidently must be studied
at small x & 0.3, not at large x where the observed
scale breaking can be simply explained in terms
of physically expected effects in any scale-invari-
ant theory with even an approximate parton inter-
pretation. This is not to say that our term neces-
sarily explains all the scale breaking observed in
this region, but without prior prejudice and infor-
mation, it is not possible to decide how much is to
be ascribed to the more fundamental (and interest-
ing) properties of the theory under consideration.
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FIG. 3. Scaling part of the proton structure function
fE~2 {x}],and coefficient A, {x}of this same function.

III. DRELL-YAN-WEST RELATION

The threshold limit of the structure functions
should be smoothly connected, in the sense of
Bloom-Gilman duality, "to the elastic or reson-
ance form factors G(q3). According to the Drell-
Yan-Nest relation, "as x approaches one from
below [x=1+ (m'-M')/q', where m is the missing
mass and M is the proton mass], one has

(-q') G33(q3) =— dm3E»(x, q'),

The parameters used in the above fits are
A„=2.5, d' = 2. A, (x) is quite slowly varying in x,
with an average value of &.9. Graphs of E»(x) and

A, (x) are given in Fig. 3. The value of d' we find
uncomfortably large, but it is necessary in order
to fit the data at small q3(&2 GeV'). A value of
d'=1 fits for q3&3 GeV'. Since', (1)w0, E, satis-
fies the Drell-Y3, n-Nest relation for x-1.

Nhi. le the data&0, i6 for +x have not been fully an-
alyzed, we have found that the scaling terms in
E, and F, extracted by the above procedure agree
better with the Callan-Gross" relation (xEf=E;)
than the total structure function at low q'. Since
the diquark term is an effectively integer spin
object, it could break this relation for the full
(unseparated) structure functions in regions where
it is important.

and the integral runs roughly from the nucleon
mass M up to the effective threshold for pions. "
Thus the nonscaling terms contribute to the lead-
ing asymptotic behavior of the form factors and
for our fit, dominate. The above is clearly not
the complete story since there are other contribu-
tions, especially interference terms, that become
coherent in the limit x- 1 and also contribute to
leading order in q'. This is necessary since 6
must contain a coherent sum over charges, where-
as the contribution to the usual structure functions
involves the sum of the squares of the charges of
the elementary constituents. The nonscaling terms
A„contain some of the interference effects, but
not all. In any case, the relation (5) is approxi-
mately satisfied if m is integrated from M to the
threshold for two pions, M+2p. .

Finally, we note that if the above connection also
holds for the neutron, with the same integration
region and G~(q3)/G„(q3) = constant, then if the scal-
ing term dominates one has (i), /pe)3=—[A,"(I)/A3(1}],
whereas if the nonscaling term dominates, which
is the case in our fits, then ((((„/1(3)3= (A,",/A3„).
Otherwise the value is an intermediate one. Our
fit for the first ratio will be shown in a later sec-
tion to be -0.40, whereas the ratio for the non-
scaling term is -0.33. Both of these are some-
what below the square of the experimental ratio of
magnetic moments (-0.47} but are consistent within
the errors of our extraction. This relation is not
to be taken too quantitatively because of the coher-
ence problems alluded to above.

IV. THE RELATIVISTIC DEUTERON

In order to describe the deuteron in a relativistic
manner, which is necessary for our present pur-
poses, one needs to have to have some knowledge
of the Bethe-Salpeter wave function with one part-
icle on-shell. A general relativistic description
of nuclear bound states has been given elsewhere, "
and its connection to the familiar nonrelativistic
description was presented in detail. " In terms of
the deuteron wave function (J),(x, kr), the probability
function is given by ((3= neutron or proton)

x
G, f,(x, kr) —

( ), ) ~g, (x, kr) ~3,

and the deuteron form factor at a four-momentum
transfer q (= -q3r) is given by

dx d2k~ x
E3(q3) = QE, (q3)

( )3 ( )
g3'(x, kr+ (1 —x}qr)

a

+A„d4(m -M')],

where E,(q') has been replaced by its on-shell val-
ue; the integral multiplying it is then the intrinsic
body form factor of the deuteron.
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I I I I I the total (fractional) momentum of the deuteron.
Note that if 6 is symmetric around x= -', this is
equivalent to the condition

lo 2

IO

—IO4

Io ~

I
O-6

0 I 2 3 4 5 6 7

-q (Gev )
FIG. 4. Fit to the (deuteron form factor) Hef. 2.

In Ref 15 it was shown that a good fit to quasi-
elastic scattering processes involving the deuteron
could be achieved by choosing

q(x, i,) = X(x)(1 —x}e([P,+M'(x)][a', +M'(x)+ 9]
x [u', +M'(x)+ n,']]-',

M'(x) =M' —x(1 —x}M;,

where M is the nucleon mass, the deuteron mass
is M~, and N(x) is a slowly varying function of x.
Since g describes one on-shell and one off-shell
particle, neither g nor G is necessarily symmetric
around x=-,'. Isospin symmetry implies that
Gq~~(x) = G„)~(x), not that Gq~~(x) = G„(~(1—x), al-
though the latter relation may be a reasonable
approximation in certain circumstances.

Now since G,«(x, kr) is the probabiltiy of finding
the constituent a in the deuteron with longitudinal
momentum fraction x and transverse momentum
A;~, it must be related in some way to the square
of the nonrelativistie wave function for low mo-
mentum. Such a relation follows by writing
x= (M+0,)/M~ and expanding in powers of k,. The
corresponding nonrelativistic probability function
is easily seen to be the square of a generalized
Hulthdn wave function. This approximate connection
can be used to estimate the values of the constants
5,' and 5,'.

The normalization constant of g can be computed
by the condition

gf d d*a„xc „(*i,)=i, . ,

which expresses the fact that the sum of the frac-
tional momenta of the proton and the neutron is

which follows from the fact that the number of par-
ticles is fixed and G„&e(x, kr}= G~ &~(l —x, fe„).

The deuteron form factox can now be computed
from p(x, kr). A fit that can be achieved for our
spinless model is given in Fig. 4 for the values

5'=25', =400M&,

where & is the binding energy of the deuteron, and
the isosealar form factor was taken to be equal to
the proton form factor for all q'. The data are
from Ref. 11. The fit is not very sensitive to the
value of 5, and 5,; for example, the set 5', =5',
= 200M& also provides a reasonable fit. If spin
were put into the model, and especially if d-state
effects wexe then included, the fit could be made
much better since the quadrupole contribution
naturally gives a shape that is similar to that of
the data. points. The form factor has the asymp-
totic behavior in q' given by quark counting. "

The deuteron structure function in x is given in
terms of

xa „(x) f.d*a,x=G. „(x,k„),

which behaves as (for x =0 or 1}

-X'(x)x'(1 —x)'.
We have chosen f(t(x) =N~' for the calculation, but
setting N = constant has no significant effect on the
results given here.

V. THE NEUTRON-STRUCTURE-FUNCTION EXTRACTION

Just as was argued in the proton case, inelastic
scattering from the deutexon has several distinct
contributions. At very large q', on expects that
the dominant term has one quark absorbing the
photon momentum; as q' decreases, more and
more components of the deuteron will participate.
In order to untangle the many terms that contribute
in this case, we shall start our fit at large q' and
then extend it to lower values by adding in the ex-
pected next terms. We shall check at each stage
that the fit of the previous stage still holds. We
shall work in terms of the natural Bjorken vari-
able for the deuteron,

x~=-q /2M~v,

which is one-half the x defined in terms of the nu-
cleon mass. The following procedure should be
compared with that used by Atwood and West."
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I I I I l

8 (x)=
F2 p(x)

G,»(y) is strongly peaked aty--,', one has the
very approximate relation

E-&x. q') 2+2.(». q'»( '- x-.)

l l I I I I l

FIG. 5. Batio of the scaling parts of the neutron and
proton structuxe functions EB2„(x)/E~& g).

where certain off-shell effects in E„have been
neglected. This formula has been discussed in
the scal1ng limit by Landshoff and Polklnghorne
for several types of reactions. Note that since

Fp j deuteron)

I I I I I I I

Large q2. In this limit, the scattering from the
constituent nucleons is highly inelastic and the
photon momentum is absorbed by one and perhaps
two quarks as was discussed in the proton case.
The term in which three quarks share the photon

q will be considered separately (quasielastic scat-
tering). Thus for large q' we can write (neglecting
small-kr' effects)

which strictly hoMs only in the limit of zero bind-
ing but has a si.mply physical interpretation. It
turns out that this approximation ovex'estimates
the deuteron function by 5-10%.

Since G, «(x) is known with some accuracy, the
more exact relation (10) wtli be used to extract the
neutron structure function E2„(x~ q ) from the large
q deuteron data. In order to carry out the fit in a
convenient form, define

E,„(x,q') =E;„(x)+ E „(x,q'),

E;„(x)=B,(x)E;~(x),

E,„(x,q') =B,(x)E2~(x, q') .
A fit to the data can be achieved with the B,(x) giv-
en in Fig. 5 and with B,(x) = constant = 3. We have
restricted the extraction to x„&& in order to de-
crease the sensitivity to the assumed form of
G,«(y). The resultant fit to data" in this region
18 g1ven 1n Flg. 6. The sepRx'Rted SCR11ng Rnd Qon-
scaling parts (for q'=-S GeV') of the structure
functions for the neutron and proton are given in
Fig. V.

There Rl e Sevex'Rl points worth mentioning, The
function B,(x) is slowly varying over the range of

I I I I I

oA4—
I I I I I

ll

I l I I

2 4 6 8 IO

o.o6—
I I I I I I

6 8 IO l2 l4 6
I I

8 IO

xd=0.575 xd=O.4
G.G I

o. I 6
l28 IO l2 I4 l6 IB

—q~ (GeV~)

I4 l6

FIG. 6. Fits to the deuteron structure function I 2& g, q2),
fox diffexent values of g, as a function of q2, used in the
extraction of the neutron data. Note ucifded in, Pmof. The
vertical scale for x~ = 0.4 shouM be divided by ten.

FIG. 7. Comparison of the neutron and proton sealing
and nonsealing contributions |for @2=-8 Ge7~] to the
structure functions.



IVAN A. SCHMIDT AND R. BLANKENBKCLER 16

lOO

lO-l =- io-l =-

lo 2 =

tic

F2d

lO-5 =-

l.o
I.5

l.75
2.0
Zi5

~0

0

0

i Poucher et al. ==
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FIG. S. Prediction for the deuteron structure function
for very large q2. The data are from Befs. 10 and 11.

FIG. 10. The same three contributions for q =
-1 GeV'.

x considered, x&0.25. The average value of B,(x)
around the valence peak (x= &} is roughly consis-
tent with —'„which is the ratio of the sum of the
stluares of the valence quark charges, neutron/
proton=P}/1. However, at large x, B,(x) is drop-
ping but still safely extrapolates to be larger than
the lower bound of —,

' at x = 1, which holds in the
valence-quark model. " The value of 3 found for
B (x) is the ratio of the sum of the squares of the2

2valence diguark charges, neutron/proton= (-,)/2.
[A slightly better fit can be obtained by taking
B,(x) to be slowly varying, with an average value

lOO =

io-l =

of —,.] These three features of the fit are evidence
of the consistency of our interpretation and fit (but
certainly not its uniqueness).

Moderate q2. Using only the above terms, we
can now compute F~(x~, q') for all values of x~
using Eg. (10). The result labeled inelastic is
given in Fig. 8 at large q' and in Figs. 9 and 10
at moderate q' as a, function of

1 M'
22'

which has been used in the presentation of the data
of Schutz et a/."At thisstage our curveforthein-
elastic contribution falls belch the present data for
(-q') ~2 GeV' for l&&o' &-,'(x~-1). Thisisnotsur-
prising since the quasielastic and fully coherent
"resonance" contributions have not been included.
Quasielastic scattering should be important for
x,- 2 and for the lower range of q' values.

This contribution which should be added to the
FM(x~, q'} given by Eg. (10) is

F2d
lO-4 =

= 4.o
-5

lO 6 =-6.O Resonance

eV)2
et al. ==

t al. :
at.

lO-'
0

I i I i I [ I

42
&u'= I-W~/q2

FIG. 9. The three contributions to the deuteron struc-
ture function (inelastic, quasielastic, resonance), for
~2 6 Gey'2

F~~(x~, q') =Q x~G, ),(x,)F,'(q') . (12)

It has 'been plotted separately in Figs. 9 and 10 for
(-q') = 6 and 1 GeV', respectively. For the smaller
q' value there is a clear quasielastic peak which
has been suppressed at the larger q' value by the
nucleon form factor. It would be very interesting
to have data in this region that would allow us to
explore the properties of the quasielastic peak.

In the region of x„very close to 1, the data are
clearly larger than the sum of the contributions
considered so far, even if the experimental res-
olution is used to smear the prediction. ln Ref. 11,
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the suggestion is made that this could be due to a
final-state resonance in which the two nucleons
share the momentum of the virtual photon. This
contribution can be fitted to the data if written in
the form

E2s„(x„q')= (-q')E, '(q')10' "u*,

which for q' = -6 and 1 GeV' is shown in Figs. 9
and 10. %e are not sure that this is a correct in-
terpretation, but a contribution which roughly has
the above structure was predicted by Jankus" in
scattering from the deuteron near the inelastic
threshold. Jankus found a strong localized en-
hancement in this region that was due to nonreson-
ant (scattering length) final-state interactions.
Such an effect was found experimentally. " It would
be very interesting to compute this effect with a
relativistic treatment of the deuteron to check its
consistency with the data. A different approach
to fitting this data has been described by Frank-
furt and Strikman. "

VI. CONCLUSIONS

In this paper we have shown that the ordinary
parton model, which normally is assumed to scale
(except for mass corrections), has physically
identifiable terms that do not scale. The final
states that were of most interest here were one
quark recoiling with the photon momentum and two
quarks sharing this momentum. The predicted
form of the structure functions and form factors
for these terms were shown to provide a reason-
able fit to the proton and neutron data for x & 3 and
(-q') & 2 GeV'. The ratios between the proton and
neutron are as expected in the model. Owingtothe
uncertainties involved, our parameters should be
considered as having "typical" values. The errors
are correlated between the parameters of the scal-
ing and nonscaling terms and no systematic error
analysis has been made.

Our model and fit is certainly not the only way
to understand the nonscaling behavior of the struc-
ture function at large x. This behavior is also fit-
ted by using "f scaling "29 plus asymptotic-freedom
models. "However, there should be experimen-
tally measurable differences between this approach
and ours. W'hile we do not know precisely what the
latter models predict, if our explanation is correct
there should be protons in the photon-fragmenta-
tion region for large x. The single-quark-recoil
or scaling term should tend to decay to mesons
[the leading mesons would then have a (1-x) de-
cay-function behavior]. The diquark-recoil term
should decay not only to mesons but also should
decay strongly to baryons [the leading baryons
should also have a (1 —x) decay function behaviorj.

Therefore if our explanation is correct, the pro-
ton/pion ratio should follcmr the ratio of the non-
scaling term to the full structure function. The
observation of recoil protons arising from a pre-
ferred x value of —', and a q' behavior of (-q~) ~

would be confirmation of our general picture. The
absence of such protons may be more consistent
with asymptotic freedom models. At the present
time, the proton/pion ratio cannot be predicted
since we do not know the decay probability func-
tions for a diquark system to produce pions and
protons. These functions can be measured in
principle in several independent ways, however,
such as in e e annihilation and in the target-frag-
mentation region of deep-inelastic lepton scatter-
ing i

The scaling terms in E, and I"~ were found to be
in reasonable agreement with the Callan-Gross"
relation. If the diquark system is predominantly
spin one, then one expects large asymmetry effects in
deep-inelastic lepton scattering with polarized
beam and target. 30

It is clearly possible to ascribe the lack of scal-
ing at large x to either our model or to asymptotic
freedom models or to any linear combination. This
is not the case at small x. Our model is not able
to explain the probable rise in q' at small x of the
structure function suggested by high-energy p,

scattering" or the nonscaling behavior at small
x seen in neutrino scattering. 3' (A general fit to
all these data has been given in Ref. $3.) This be-
havior is strong evidence for asymptotic freedom
and/or the production of new, heavy quarks, and/
or Regge-duality effects, ~ but this is unfortunately
in a region where it is difficult to make quantitative
calculations. However, since the diquark terms
can be used to decrease the size of the nonscaling
effects due to asymptotic freedom at large x, then
there may not be enough rise left at small x to ex-
plain the data in such theories.

A relativistic model of the deuteron has been
developed and used to extract the neutron structure
functions. %e do not believe this has been done
before. Our method is easily susceptible to a more
accurate treatment (especially important here would
be the inclusion of spin effects). We have checked
our deuteron model by comparing it with the meas-
ured elastic form factor and inelastic data for all
Xg 0

To conclude, we have shown that a simple exten-
sion of the parton model, together with dimension-
al counting, provides a reasonable fit to the non-
scaling behavior of the proton and neutron struc-
tuxe functions for x larger than the valence quark
peak at 3. The model can be tested by looking at
the proton yield in the photon-fragmentation
region.
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+le therefore conclude that if one wants to differen-
tiate between basic theories of hadrons by studying
only the structure functions, it must be done at
small x where the above nonscaling terms are
probably unimportant. Even in this region of x,
however, one is faced with the problem of demon-
strating that such effects are indeed small, es-

pecially if one is making a quantitative comparison
with a particular basic theory.
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