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On-shell prescription in three-particle scattering

T. H. Rihan~
Atomic Energy Establishment, Tripoli-Libya

(Received 23 March 1976)

The scattering of three identical particles initiated from a particle incident on a bound state is considered. A
prescription is suggested for approximate evaluation of the physical amplitude in terms of on-shell and half-on-
shell two-particle amplitudes adopting the first-order Alt-Grassberger-Sandhas perturbation treatment. The
half-on-shell two-particle amplitudes can in turn be given in terms of their on-shell versions and the
knowledge of two-particle interactions using the Kowalski-Noyes prescription. Sloan's first-order unitary
model is also considered. Using our prescription, it is shown that with such a model, the elastic and
rearrangernent amplitudes are completely determined from on-shell two-particle amplitudes, while for the
break-up process, half-on-shell two-particle amplitudes inevitably appear.

I. INTRODUCTION

The separable approximation for the off-shell
two-particle amplitudes appearing in the three-
particle Faddeev' equations has enjoyed wide
application. ' With such an approximation the
whole coxnplexity of the problem is x'educed to the
solution of one-dimensional coupled integral equa-
tions. ' The usual practice is then to consider
only bound-state-pole and resonance-pole contri-
butions in the two-body amplitudes. ' These forms
are then taken to represent practically the off-
shell two-body amplitudes for all values of their
relevant parametric energies. However, the two=
particle resonance-pole dominance (in the three-
body problem) was fully investigated by Bolle
et al.' and was found rather defective. Moreover,
based on Weinberg's quasiparticle theory, ' Alt,
Grassberger, and Sandhas' (hereafter referred to
as AGS) showed that the above concept of bound-
state-pole and resonance-pole dominance repre-
sents only the zeroth-order tex m in a more gen-
eral iteration scheme. Actually, the kernels of
the Faddeev-type equations, ' being of the Hilbert-
Schmidt type, can be approximated by a sum of
finite-rank operators separable in all variables. '
But in general, this sum should be infinite. In any
case, keeping only a few terms in this sum (that
correspond to bound-state and resonance poles in
the two-body subsystems) will necessarily have
only relative success. Indeed such models predict
unreliable results for polarization. Typically,
in three-body calculations, the separability of the
two-body transition amplitudes results from as-
suming the separability of the two-body interaction
potentials. However, the sepax able potentials
confine their dynamics to the long-range (eternal-
triangle) region, and therefore may give reason-
able results for the scattering process, but unre-
liable three-body binding energies. ' Further, the

construction of Weinberg states, essential for
practical three-body calculations, proves to be
complicated especially above the three-particle
threshold. ' In passing, we also note that in any
realistic calculations of low-energy nucleon-deu-
teron scattering the inclusion of I'-wave compo-
nents of the two-nucleon amplitudes (which do not
represent any bound or resonant states) seems to
be essential. 'o

In the present work we shall consider the scat-
tering process of three identical particles initiated
from a particle incident on a bound state. How-
ever, the identity of particles will not constitute
a barrier for other special cases of interest to be
studied. What will concern us mostly is that the
two-particle bound states appearing in the problem
can be described by the same nucleax intex action.
The underlying philosophy of our approach is to
try to work directly with observable on-shell
two-particle amplitudes whenever possible. It is
of course more advantageous to make our three-
body amplitudes depend on measurable or at least
knowable two-body amplitudes, rather than as-
suming some form for the interparticle forces.
However, this policy will lead us to face the old
and difficult problem of determining average two-
body amplitudes. " We shall in the present work
treat this problem in a more reliable way that
will contain corrections to previous results" and
is more suitable in the presence of two-particle
resonances. This mill constitute our main approx-
imation. We shall generally work within the AGS
effective two-particle foxmulation of the three-
body problem, ' considering only the first-order
perturbation approximation. However, matters
mill be much simpler and more convenient for
practical calculations within Sloan's first-order
unitary approximation. " On some occasions, es-
pecially for the break-up process, we shall be
forced to consider half-on-shell two-particle am-



plitudes. These i.n turn can be given in terms of
their corresponding on-shell amplitudes and the
knowledge of the phenomenological two-particle
interaction using the techniques of Kowalski" and
Noyes" (hereafter referred to as KN). Our aim
will be to make a detailed study of the nucleon-
deuteron scattering process (say) in the first-
ordex unitary model and compare our results with
the Rl.ready existing calculations'0 based on ra,nk-
one separable potentials. Calculations to that end
al e lQ progx'ess.

In Sec. II we briefly review the AGS approach
specifying our choice fox' the separable part of the
two-particle amplitudes. We then discuss our
mRln approxlmatlon fol the BvRluRtlon of tI1e phys-
ical scattering axnplitude in terms of on-shell
two-particle amplitudes assuming particle identi-
ty. In Sec. III we evaluate the three-particle scat-
tering amplitude in the first-order unitary approx-
imation adopting our pxescription for identical
particles.

II. APPROXrMATE THREE-SOm' EgUATIOWS

Throughout this work we shall consider three-
identical-pax'ticle scattering initiated from a par-
ticle incident on a bound state. As is well known,
the AGS thx ee-body formulation represents the
most practical basis fox a perturbation treatment
of the problem. " We shall therefore adopt that
method. Further, since the three-body problem
has been formulated many times in the AGS ap-
proach we can Iluote only (whenever possible) the
final equations. On the other hand, to ma, ke the
present treatment self-contained, we have to out-
llDe some aspects of thRt approach. Moreovex', to
keep oux discussion as simple as possible, we
SI1Rll neglect splD complicRtloQs. We SI1Rll label
in the usual way p the relative momentum of the
pair py and the particle Q.'in the total center-of-
mass system. q will define the relRtlve momen-
tum of the particles p and y in theix' own center-of-
mass system. Consequently, the kinetic energy of
the three free particles is E,= (5'/2l' )p '+ (@'/
2il )q, ', where v and il are the corresponding
reduced masses. jet us now call channel & the
asymptotic configuration in which particle & is
freewhlle the other pRlr p j' ls bound„and chRQQel,

0 the configuration with Rll particles free. There-
fore, the channel states ~@ „(E „)) (o(i'0) can be
given by

(2.la)

and where
~
g„& corresponds to the two-body bound

stRte wltll elge11VRllle t „(&0), Fol' c( = 0 we 'thell

have

(2.ib)

We now proceed to follow the AGS three-body
formulation. These authors introduce transition
operators U& for the three-body scattering prob-
lem which are slightly diffexent from those of
Faddeev' and/or Lovelace'; however, they yield
the same scattering amplitude when their matrix
elements are put on the energy shell. These oper-
ators satisfy the Faddeev-type equations'

(2.3)

Let us xeca.ll for the sake of completeness that
the transition operator T (z) acting on three-par-
ticle space is related to the actual two-body tran-
sition matrix f (in the two-body momentum space)
by"

Ta (Pa(la ~Paqa (~)

In the AGS perturbation approximation, ' an essen-
tial aspect is the decomposition of the two-paxticle
transition operator T into a separable part T'
and a weak nonseparable part T' via

T (z) = T' (z) T'+(z). (2.5)

The separable part is then tx'eated in an exact
fashion, while the nonseparable part is treated
perturbatively. T'his procedux e leads to the fol-
lowing set of equations fox the operators Uz .

(2.6a)

while U& will be given by

where 6s„= l —5s„, G,(z) is the three-free-Particle
propagator, and z is the complex parametric ener-
gy. T (z) is the two-particle scattering operator
(defined in the three-particle Hilbert space). The
physical three-particle transition amplitude Tz„
is then given in terms of the scattering opex'atox'

Uzo via

(2.6b)

Namely, Uz satisfies the same Faddeev-type
8(luatlons (2.2) Rs does Usa, but wltll tile (Rssll1118d)
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small nonseparable part T„' instead of the full
operator T„. Therefore it is expected that a
determination of UB by iteration is justified.
Choosing the separable part T„' in correspondence
with all bound and resonant states will ensure the
convergence of the perturbation treatment for
the nonperturbative part T„'.' However, as was
mentioned in the introduction, the concept of two-
psrticle resonance-pole dominance in three-par-
ticle scattering is rather vague. ' Moreover, vari-
ous attempts to introduce resonant states in the
same way as bound states" in the full off-shell
two-particle amplitudes (in the sense of the spec-
tral representation), although very appealing in
the description of the two-particle resonance be-
havior off the energy shell, will complicate the
analytic structure of the nonseparable background
term which also seems unknowable within these
formulations. Further, since the definition of any
two-particle transition operator (with parametric
energy z) in the three-particle Hilbert space
should involve an integration over the actual two-
particle transition operator with respect to its
parametric energy [see Eq. (2.4)] which will range
(in our case) from —~+ i0 to z, then the bound-
state contribution should enter exactly in any de-
composition of that transition operator. There-
fore, apart from introducing Weinberg states'
and/or using separable potentials in the decompo-
sition of the two-body amplitudes, the only way
that seems reliable is to stick to the usual well-
defined spectral representation (Low equation)
which rea, ds (in our notations)

(2.7)

T (z)= T*(z)+ T (z). (2.8}

The decomposition (2.7) is exact, and the only
singularity (in

~ q} space) the nonpole term
t, (q', q„z) will have will be the discontinuity
across the scattering cut for positive energy val-
ues. Although t (z) will not be off-shell unitary,
yet no unitarity violation will be introduced in the
three-particle equations (2.6) when adopting Eq.
(2.7)." In other words, the minimum constraint
imposed by unitarity" will be satisfied [cf. Eqs.
(3.14) and (4.2) of Ref. 20]. However, the question
of higher-order corrections to the first-order
perturbation approximation [in Eqs. (2.6}]may be-
come somewhat complicated and is beyond the
scope of the present work. For the simplicity of
the subsequent presentation, we shall always
assume that in each two-body subsystem there is
at least one bound state. However, in general
some two-body amplitudes may not have bound
states, and the extension to that case is straight-
forward by just dropping the separable terms in
(2.8) for those amplitudes. Having established the
reliability of our two-body splitting (2.8), we now

proceed along the usual patterns. Inserting the
decomposition (2.8) into Eqs. (2.6), then in the
first-order perturbation approximation (in T„) we
find for the three-particle transition amplitude
T((„(in the ~p} space representation) the multi-
channel Lippmann-Schwinger equation

where v is the interaction between the pair py,
while &q ~

v, ~(t(, }=-g (q) is the bound-state form
factor. We may now write, taking into account
the relation (2.4), the corresponding decomposition
for the amplitude T (z) in the form

z ~ z ~ W 3 Van. rr(pB z pr} rr z zzzn(prz p(3)T „(p,p )=V „„(p,p )+Z dP
rr ~+ ~rr —

x Vrg r

where one can easily find (using the relation G,v
~

(t( „)= ~
(P g) that

(2.9)

V»..(P, ,P.)= &,„(P ((z.n.'(z( ~ Q r„(z)) 3..((zg).
ref' at3B

(2.10)

(2.11)

Equations (2.9) and (2.10) will be our starting
point. We now proceed further to obtain explicit
practical expressions for various terms in the
effective potential VB„

After doing some intermediate momentum inte-
grations, we arrive at the following expression
for the first terminEq. (2.10) (to be denoted by
V((nz (3(n):

V:....(p. ,p. }=&4,„(p.}~8..G.- (.) ~4..(p.»
gs*.(l'I'8}g-.@ }"

(l3 /2t(. }q '+ le

where (note that from particle identity we can
write p, , = p, = ~M and v, = v= 3M for i= o.',p, y with
M the particle mass)

m) w) 1m]
q =rp +PB qB= —~PB-p-

The second term in Eq. (2.10) (to be denoted by
V3 ), which has the form

V'„(p', p ) = Q &(t( (p')
~
T„~(P „(p )}

&eyB

can be similarly handled. But, for the sake of
clarity we shall write down explicitly the expres-
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where

xy, (k), (2.12)

() (k) -.(.2 (=*~
I
c })(( (.)i.)..

p] = gp —gk

p&= ~p' —&k —&q,
&)q=p-p,

b = z ——(-, p+ k)'
2v

and as usual for physical amplitudes,

z =E,.+ co=—p' —Ie, I+i0

=E,„+.0=—p"- Ie,„I+ 0.

Further, in the case of break-up processes, the
first term in Eq. (2.10) Voowill vanish on the
mass shell, and we shall be left with amplitudes
of the form

I
Vo =Vo~

= 2 &e.rq, p.}I
r„(z)

I e-.(p.)

where

~ t„(q„,q'„;(h'/2p)q„'+i0)g rq )
(fi'/2 p,)q, '+ I e

(2.13}

wl
q»=~p»+p~ q = —~p~ —p

sion for only one of the terms contained in V~„
say that with the amplitude 1', [here we adopt the
ordering convention that channel 1 denotes par-
ticle 1 plus the ordered pair (2, 3), etc.] and let
this term be denoted by V',„, . Consequently, we
shall have

~,...rp;p} =-&~,„(- ) IT-.(.}
I ~,.rp»

= (~). Jd*k (;.(k+-*' i)(i.ti&„),i; g)

all, we note that the expression (2.12) involves
the nonpole two-body amplitude t,(pz, p, ;8,) with
the corresponding parametric energy 8, =z —(fi'/
2v)(—,p+k)'. Thus the integration with respect to
k will cause 8, to follow a contour paralle1 to and
above the real axis extending from —~+ i0 to
(h'/8v)P' —Ie, I+i0 [note the expression for z in
(2.12)]. However, the amplitude I, as a function
of its parametric energy is everywhere analytic
in the upper-energy plane except for the right-hand
{unitarity} cut, and is supposed bounded on the
upper rim of that cut. Consequently, regarding

3 as a function of its parametric ene rgy S„we
can make use of its Taylor expansion around the
value h, = (I /2p, )p, '. One will then have [up to
first-order terms in the energy shift (8, —(I),)]

f3rp~ pi'~3)

=f.rp„p, ;h,). (k),' frp, , p„h,}, (2.14)ag,
where

(),)-=(l, (l, = )."~ /c, /).

Equation (2.14) seems to be a plausible approxima-
tion for our nonpole two-body amplitude, since the
presence of the bound-state form factor in (2.12)
will restrict the range of important values of the
momentum k in the integrand. Further, the quan-
tity (d(k} may be regarded as the expectation val-
ue of the two-body interaction (which is of short-
range character) and will be small in comparison
with S,. except near the two-body binding energies.
Even in the last circumstance, one may consider
some higher-order terms in the Taylor expan-
sion. With this approximation, we shall have the
amplitude f,(pf, p, ; $,) still not on the energy shell,
and &y g

is expressible as the following three-
dimensional integral:

r, ,, , f d*(i (;„„(k„+=li()i,„(k)

x 1~(d(g} g F,(p, , p,.;h,)).sg s f~ i) i

(2.15)

and it is obvious that V', ~ contains t» half on the
mass shell.

Now as our main objective is to work directly
with on-shell two-body amplitudes (whenever pos-
sible), an outstanding problem is to find some
plausible approximation for determining average
values for the two-body amplitudes appearing in
Eqs. (2.12) and (2.13). For this purpose we shall
explicitly consider the evaluation of expression
(2.12). Other terms (with different t,) corre-
sponding to elastic and rearrangement processes
can be treated in exactly the same way. First of

To proceed further, we shall adopt the so-called
form-factor approximation. " This method relies
on the mathematical observation that the function

may be expanded in a Taylor series around some
preferable value (say) k„and if the product
Q, „(k+-,q)$, (k) in the integrand (2.15) is peaked
near this value, then it is reasonable to take out
the function E(k) from under the integral sign at
that value ko (i.e., neglect all but the first term
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d'k k-k, P~~ k+aq k =0 (2.is)

(here we consider the general case for any term
in the effective potential V(&„, ).

Since, because of particle identity, all the two-
body bound-state wave functions satisfy the same
Schrodinger equation except for the binding ener-
gies of different states, it can be easily shown
(see Appendix A) that the optimal value k, result-
ing from the requirement (2.16) can be given by

in its Taylor expansion). Up to the second-order
terms in the Taylor expansion, the optimal choice
for the value k, can be obtained by requiring that

(2.17)

For the sake of completeness, we have also in-
vestigated (see Appendix B) second-order terms
in the expansion of F(k) around the value k, given
above {higher-order terms can be treated on the
same footing). lt is shown that the above approxi-
mati. on procedure is reliable in the sense that,
depending on the shapes of the bound-state wave
functions and the two-body interactions, the
second-order term will give negligible contribu-
tion except, perhaps, for very large angles.

We can now finally rewrite Eq. (2.15) in the
form

(2.1S)

with

With this value k'„ it is easily verified that in Eq.
(2.is)

pg(k.') = p»'(ko) = ~((k'.),

which is the on-shell condition [note that from
energy conservation we shall have P'=i&"+ (2v/
tt )(~ e, I

—
~
a,„~)]. Similar on-shell expressions

will be obtained for various terms in V~„using
the same techniques. The t amplitudes can be
then given in terms of the actual two-body ampli-
tudes using the relation (2.7). Consequently, the
effective potentials are completely determined (in
our prescription) from on-shell two-body ampli-
tudes except for the break-up process [see Eq.
(2.13}].The effective potentials appearing in the
break-up amplitude are seen from Eq. (2.13) to be
given in terms of half-on-shell two-body ampli-
tudes, and our averaging prescription clearly does
not work in this case. Moreover, the effective
potentials V~„also appear in the kernels of our
three-body coupled integral equations (2.9), and
with our averaging procedure it is clear that we
shall be also left with half-on-shell two-body am-
plitudes under the integral sign.

However, after partial-wave decomposition, the
half -on-shell partial-wave two-body amplitudes
t) (P, k; s + iO) [k = (2 g s/tt )

' '] can be given in terms of
their on-shell counterparts using the KN prescrip-

tion,"'4 viz. ,

(2.»)t, (p, k;s+iO) =f, (p, s)t, (k),

where t, (k) = t,(k, k; (k'/2t()k'+ iO) is the fully on-
shell two-body amplitude, and the half-on-shell
function f, (p, s) [with the normalization f, (k, s) = 1]
satisfies an integral equation with a Fredholm
kernel, namely,

f, (P, s) = ' ' + A(p, q;s+i0)f, (q, s)q'dq,v, (p, k)
v, k, k

(2.20)

where the kernel A(p, qs i+O) is given by

( )
n){pk)
~, (k, k)

(2.21)

as a first step towards evaluating the complicated
three-body scattering amplitude. One more word
should be added here in connection with the appli-
cation of Eq. (2.9}together with our prescription
in the case of nucleon-deuteron scattering. It is
well known that, following Lovelace, ' Eq. (2.9)
can be reduced to a single equation fox identical
particles. Such a situation is always assumed in
nucleon-deuteron scattering provided one adopts
an isospin convention. The spin, isospin, and

( )
v, (P, k)v, (k, q)

v, (k, k)

and n, (p, q) is the corresponding fth partial-wave
projection of the two-body potential. Since f, (p, s)
satisfies the integral equation (2.20) with a non-
singulax kernel, then the Born series may con-
verge rapidly and one may adopt the approximation



kinematical structure of the matrix elements of
the type (2.12) with respect to deuteron-plus-free-
nucleon states has been studied extensively. "
However, most calculations in that case are based
on separable potentials. " In our approach, we

have on-shell two-particle amplitudes, so that we
can directly make use of the phase-shift paramet-
rization for our amplitudes (after necessary ex-
trapolation). A final comment is called for con-
cerning our approximation (2.14) for the two-par-
ticle amplitude. This approximation may be re-
garded as a farther step beyond the usual fixed-
scatterer (impulse) approximation. Further, in
the two-body problem, the magnitude of the time
delay is proportional to the energy derivative of
the on-shell amplitude. Such a time delay will
become important in the presence of resonances
in the two-body amplitude. Therefore, our ap-
proximate two-body amplitudes in Eq. (2.1S) will
be more accurate near two-body resonances than
the usual (kind of impulse) form-factor approxima-
tion.

III. FIRST-ORDER UNITARY APPROXIMATION

Armed with the approximations presented in the
preceding section, we can easily proceed to eval-
uate the three-body amplitude in the first-order
unitary approximation. This approximation was
first proposed by Sloan" and then recovered by
Kowalski" within the context of a more general
K-matrix formulation for the three-body problem.
The essential feature and simplicity of this ap-
proximation lies in the clean division of the two-
particle transition operator T (z) via

T,(z)= T (z)+&T (z), (3.1)

where AT, (z) is that part of the two-particle
transition operator T (z) (in the three-particle
Hilbert space} which gives rise to the Dirac 5-
function contribution of the bound-state pole,
while T, (z) is its complementary part. Using the
AGS perturbation techniques one finds, for the on-
shell three-body transition a,mplitude, the follow-
ing expression in the first-order approXimatio:

x 3(E —E„)T„5a()))(p„,p).

(3.2)

Here z =8+F0 and E is the energy available in the
initial and final three-body states, while E„ is the
energy associated with the three-body state

~ P„,(p„}},and

We should also note here (as in the preceding sec-
tion) that if some two-body potential does not sup-
port a bound state, then the corresponding term
(under the integral sign) on the right-hand side of
(3.2) will vanish.

To evaluate the various terms in Eq. (3.2) is a
rather simple pxoblem, owing to the presence of
the conservation 5 function in the integrand.
Matters mill be much clearer after partial-wave
decomposition. However, first of all we shall
apply the approximation scheme developed in the
preceding section to evaluate the nonlinear term
IB„„(p',p). lt is clear from Eq. (3.3) that the
source term ((t)8„(p')

~
|)S,G, '(z)

~ P~ (p)) will be
given by the same relation (2.11) and, for the
break-up process, will vanish on the mass shell.
Further, the evaluation of the second term
(Q„„~z((t)()„(p')

~
T„(z)

~
P, (p))) will follow the same

pattern as in the preceding section [Eqs. (2.14)
to (2.18)]. However, after such a procedure we
shall obtain various on-shell matrix elements for
t„(and its energy derivative) with positive param-
etric energies. Thus it will be unnecessary to
distinguish between the actual two-body t„and F„
(note that t„differ fsrom t„loynin that t„come s
with the principal value of the bound-state-pole
contribution). Similar arguments will hold for
the break-up term I, , since it is clear from Eq.
(2.13) that the two-body t„amplitude appearing in
this term mill come also with positive parametric
energy. Therefore, in our prescription,
I()„(p',p) will be evaluated in terms of full on-
shell actual two-body amplitudes f„(y4 0, o(,p).
Once the amplitudes Iz„are known, Eq. (3.3)
can readily be solved with the aid of partial-wave
expansion. On taking n = 1 in Eq. (3.2) (corre-
sponding to particle 1 incident on a bound state of
2 and 3), one sees that T,„, , T,„, , and T,„,
satisfy a set of three coupled equations, while
T, , is expressible in terms of them. Finally,
for the purpose of future calculations with our
prescription in the context of this first-order uni-
tary approximation, we shall give below explicit
formulas for the evaluation of the amplitude Tz„
in the case of a bound-state scattering for a sys-
tem of identical particles (spin complications will
be neglected) In this c.ase (as was mentioned in
the preceding section) the symmetry requirements
for either bosons and/or fermions, will lead to
great simplifications in the coupled equations (3.2)
without any further approximation. Following
Lovelace, ' the amplitudes T~„and I~„will
then not depend on either n or P. The coupling



ON-SHELL PRESCRIPTION IN THREE-PARTICLE SCATTERING

where

.6(E -E-)T„-.rp-, p),

(3 4)

between channels ean be removed in favor of dia-
gonal amplitudes T „„=T~ and nondiagonal ones
T~„, = T" (p + a), and obviously the result holds
for the amplitudes I~„.Consequently, the sym-
metrized or anitsymmetrized on-shell amplitude
will be given by

T„.rp, p}=l..rp, p)

—ivQ d'p"I -(p', p)

while

Adopting our prescription developed in the pre-
ceding section to obtain average values for the
two-body amplitudes in E(ls. (3.6}, we shall have

s
I~=) 1+ (()(ko) g (~ )

x I„(P,(k,),P, (k,);8,(k,)) S (-.q), (3.7a)

8
1 i (()(ko) g, ( ))k,

(p', p) = T„' rp', p)+ 2T" (P,P)

Using the ordering convention, that channel 1 de-
notes particle 1 plus the ordered pair (2, 3), etc. ,
then

xi„(Pq(k,},P', (k,);hI(k, ))}S (--,'q),

&o(x}=—x'+ le,

(3.7b)

I rp', p)=2I&e,.rp') IT„(E+io}Ie,.(p»

+&& (p') IT„(E+iD)l P, (p))

I~..(p ) I...I ~,.rp»]. (3.5)

(tl, (k,)= P,—'(k, )+iO,

(3', (k,) = —P", (k,)+ iO,
The first and second terms are expressible as the
three-dimensional integrals

~, =&~,.rp }IT,.(E 0}l~,.(p»

, Ja*) j;„(i+-.())p,„(i)(,.() „),;(', ),

(3.6a)

(a=1,2, 3) while

s..(-i)= (~ * f d'&(;.(K+-*'i)t),.(k),

I.=&4 rp')IT„(E+ '0)le, (p)&

d'9 0.*.(Vi'--'p -Q)2v)'

xy, (q)t„(P,', P'„8,),
while the third term is given by

I.= &&..rp'& I&-I 0 -rp)&

g*(-kp'-p)g, (Vp+p')
(if'/2p)(gp'+ p)'+ I c,„l

(3.6b)

(3.6c)

4(-li)= 2, . J&'() 0:.(-lt)-())(,.(Q).

We can thus calculate I =I.,+I.,+13 as a func-
tion of the scattering angles in terms of fully on-
shell free two-body amplitudes (3.V) and the know-
ledge of the two-body form factor g, (k). The next
step is to consider the partial-wave decomposition
of the amplitude T (p', p), which from E(l. (3.4)
can be readily obtained as

q=p-p ~

3»~4-ak,
3»I 1 1»~4' -pk —4q,
3» 1-rQ,

3»—4p+ pQ+q,

8, = E ——(-,p+ k)'+ i0, h2= E ——(~p+Q)~+iO,

where

P"= ~'+ E2(le.-l-le. l)

+1
I' (fp'„p)= ,' dcos8P, (co-s8)I (p', p),

~1

(3.8)

(3 9)
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with 8 the angle between p and p' (scattering an-
gle). We can easily infer from Eq. (3.8) that I,,
and L,2 are functions of the angles in their physical
range, and in general I' (p', p) can be easily
handled, Moreover, the evaluation of I' depends
also on knowing the two-body phase shifts for real
physical energies {except below the two-particle
bound-state energies). Finally, we wish to com-
ment on the evaluation of J, and J, in case our
two-body t matrices do not possess any resonance
in the energy range of interest. In this case a fur-
ther simplification for the terms L, and J., in Eq.
(3.7) can be obtained noting that (on the mass
shell)

g t~2(Py, P(,' 8;)=
2 2 f,2(P~& P;; S;); (3.10)

consequently, we shall have in this case

APPENDIX A

Let us consider the condition (2.16) for obtaining
the optimal value of the average momentum ko.
This condition can be rewritten as

Jt d'k kd&g„(k+ aq)(t) (k)

=k d'kQ „k+aq P k . A1

From the left-hand side of this equation (note
that the only unintegrated vector is q) we infer
that k, in general is proportional to (i.e. , in the
direction of) the vector q. Thus, multiplying
both sides of Eq. (Al) scalarly by 2aq, and re-
arranging terms, we arrive at

d'0 k+aq ' —k' p~*„k+aq p™ k

(3.11)
= (a'q'+ Rat( k, ) fd &'((k+'t()(, (K). (A&)

The terms in the brackets in Eq. (3.11) will
give in general appreciable correction to the usual
fixed-scatterer approximation, "especially in the
backward direction in the scattering amplitude.
However, it is reasonable to expect that the im-
portance of such corrections will diminish at higher
energies. Also, at higher energies, the impor-
tance of the neglected higher-order terms in our
procedure for evaluating the three-body scattering
amplitude may become less sound.

Although we have provided a phenomenological
treatment which seems to be very reliable in
evaluating bound-to-bound three-body scattering
amplitude „ the evaluation of the break-up ampli-
tudes seems to still need more effort. A specific
method for parametrizing the functions f, (p, s) of
Eqs. {2.20) which preserves the fit to the two-body
on-shell data has been described by Noyes. " Thus,
in general the break-up amplitude may also be
handled in a satisfactory manner.

Now, because of the assumed particle identity, the
Fourier transforms Q~*„and Q of the correspon-
ding two-body bound-state wave functions, will
satisfy (same two-body potentials)

u'$. (k)=,~
~e. ~$. (k)

~ J& (& 8 (K Q)(((&)— ' (A3)

(k+ aq)'Q~*„(k+ aq) =,
~ &z„~ P~*„(k+aq)

— ~, Jd'» (,'„(%)8(k+ si(- ir),

(A4)

where 6(x) = (2)u/&')v(x), and e(x) is the Fourier
transform of the two-body potentials.

Multiplying Eq. (A3) by $(&*„(k+aq) and Eq. (A4)
by Q (k) and then subtracting both results, we
shall obtain, after integration with respect to vec-
tor k, the following result:

d9z k+aq ' —O' Q~~ k+aq k

= —,". (I~..l-
I
~a. l) Jd'&(: () ~ ~)( ()). ..

'
& ).)J &'&d'QI()(&-(&)@g'.(R+ i&('. ((&) —8(R-(&)(g'.((&+ i)d'. (K)l)

The last term in large curly brackets in this equa-
tion will vanish identically, as the two-body poten-
tial is supposed to be spherically symmetric, i.e. ,
6(x —y) =8(~x —y~) (make in the last integral the (A6)

the replacement k=Q). So that, from our condi-
tion (A2), we can determine ko from the relation

a2q'+2aq k, = ", ([e, [
—[e,„f),
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and as the vector ko is supposed to be in the direc-
tion of the vector q, one finally obtains s'l = ",.,'".','. J4 (4*((('4 (((4((4(

2g(l & I
—

I ea„l )o= --.'aq 1—
a Yq

(A'I) x pg„(k+ a/+ Q)(p (R).

1 [(k —k,) k,}]' 9'
ko sko

(81)

Consequently, the contribution of this term to Eq.
(2.15) will be given by (in the general case)

~(„1s'E(k,), [(k —k,) k,]'

x (P~*„(k+aq)(t(, (k)

which, after making use of Eq. (Al), can be re-
written in the form

(2) 1 82E(ko), (k' ko}

x (t(g(k+aq)(t(, (k). (83)

Further, noting that from Eq. (AV) one has k,
= oaq, where

APPENMX 8

It turns out now to be very interesting to see
under what conditions our form-factor approxima-
tion [see Eqs. (2.15) and (2.16)] will be satisfac-
tory. For this purpose, one has to investigate
higher-order terms in the expansion of E(k) [see
Eq. (2.15)] around the optimal value k, given in
Appendix A by Eq. (A7).

For the sake of simplicity, we shall investigate
here the second-order term only. Other terms
can be treated on the same footing. It can be
easily shown ( using Fourier transformation),
that the second-order term in the expansion of
E(k) around k, is given by

s E(ko} 3 q2

sk
2' =—E(k.) 2

2+ 320 Pf Pj
(8&)

where p,.'= (4p —&ko} while p is the initial momen-
tum and q is the momentum transfer. Further,
the integral in (85) can be (from mathematical
observations) given by [since the only unintegrated
vector in integrating with respect to Q will be
(k+ aq), and then with respect to k will be q]

Since the bound-state wave function oxdinax ily
falls off much more rapidly than the potential in
momentum space, we can in general neglect the
dependence of &b~*„(k + aq+Q) on Q in the integrand
(85). As a consequence of that, we shall have
Fz"'= 0, since the potential is supposed spherically
symmetric. Further, this argument mill become
more appx opriate if one also assumes the poten-
tial to fall off rapidly for large momenta (which
in turn implies that the potential is vexy smooth
in coordinate space}. However, it would be more
interesting to have at least a qualitative idea of
the ordex' of magnitude of ~g@ with 1'espect to V~o
=E(ko)S((~(aq) given by Eqs. (2.18). For this pur-
pose, we shall make the following simplifying
assumptions (without any loss of generality}:

(a) We shall assume for the moment that our
two-body ampbtudes do not possess xesonances,
so that we can make use of Eq. (3.10).

(b) We shall always neglect (d(k, ) with respect to
the incident energy 8,. [see Eq. (2.14)]. This as-
sumption is made only to render the final equa-
tions look not complicated, and it has nothing to
do with the results to be obtained.

In the light of these simplifications, one will
obtain

2 p(l e I
—

I (.'((„I )O=-2 I—
QSQ2 2 2

then V'&~'~ wQl take the form

~(2) 1 8 E(ko)
ga 2) gy 2

, I[(k+aq)' —k' —a'(f']'
x d'k~ 4, , —k, '

„~J 4'4 4..(«) f ( 4 Q)(s(Q)4;.(assis@)&*((

-=q'4'(„,. (q), (»)
where 4 is some function of q.

Consequently, +((2 can be given by (we take here
also ice =-', )

3 2 4

and comparison with f'~ yields
x (j~*„(k+aq) (p (k).

Now, making use of Eqs. (A3) and (A4), then after
some manipulations one finally arrives at

sZ(2& ( 3 qa q4

r,.='[ 2p,.' '32p,.' s.( 4)I4s....(4)

(89)
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Now, in general Sz (aq) will decrease as the an-
gle increases, and then the term in large curly
brackets will attain its maximum value at large
angles. So that, if 4&„ is of any appreciable

size, then one expects ~~"' to have some contri-
tion at large angles. Summing up, we can say
that our approximation (2.18) will be very reliable
except, perhaps, for very large angles.
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