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Interaction of electric anti magnetic charges
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It is shown classically that in a head-on collision between an electric and a magnetic charge a repulsive

polarization force of the form r ' results (where r is the distance between the charges), if one (both)

charge(s) is (are) assigned a finite spherical size, This force leads to a minimum distance of approach and

prevents one particle from going through the other, and thus guards against the violation of the conservation

of angular momentum. This polarization force is a manifestation of the diamagnetism (diaelectricity) of
extended electric (magnetic) charges.

Thomson" was fond of the system consisting of
an electric charge e and a magnetic charge g, He
showed that the angular momentum L of the elec-
tromagnetic field of the charges is given by (eg/c)r,
where & is a unit vector in the direction r and r
is the position vector of the magnetic charge rela-
tive to the electric charge. He also proved by a
torque argument that the total angular momentum
J of the system is conserved. J is the sum of the
field angular momentum L and the orbital momen-
tum 1 of the charges. Dirac' considered the wave
function of this system and arrived at the charge-
quantization condition, eg/c =nk/2, where n is an
integer. Many experimental and theoretical papers
on magnetic poles have followed. It has long been
recognized that this monopoles system suffers
from inherent fundamental difficulties. For if the
monopoles are point charges, then in a head-on
collision (zero impact parameter) one charge will

go through the other, the field angular momentum
L is reversed while 1 remains zero, and the total
angular momentum is not conserved in this colli-
sion. It was also shown by Rosenbaum' that no
classical action integral can be defined for this
system if the monopoles should coincide. In quan-
tum mechanics, the wave function for the relative
motion of the monopoles vanishes at the origin, '
and thus the probability of finding the monopoles
a small distance e apart is negligible. In classi-
cal mechanics, no satisfactory argument has been
given to rule out the coincidence of the monopoles.
In this note we show by classical methods that the
monopoles cannot coincide. The resolution of the
difficulty lies in recognizing the fact that the mono-
poles must be charges of finite extent and not
point charges. ' For monopoles of finite spherical
size, the field anguLar momentum is no longer
constant but depends slightly on the distance be-
tween the monopoles, ' As the monopoles approach
each other (in a head-on collision) the Lorentz
force sets them into rotation to conserve angular
momentum. A magnetic dipole is induced in the

electric charge, which is repelled by the magnetic
field of the magnetic pole. Similarly, an electric
dipole is induced in the magnetic charge w'hieh is
repelled by the electric charge. This repulsive
polarization force leads to a minimum distance of
approach and prevents the overlap of the parti-
cles, and thus guards against the violation of the
conservation of angular momentum. Ne do not
dwell on the detailed structure of the particles, a
subject which is fraught with difficulties and pit-
falls, but invoke only the general principles of
classical electmdynamics and classical nonrela-
tkvxsH c %18'chanics.

Before we consider the general ease in which both
charges are finite spheres, let us consider the
simpler case in which only the electric charge e
is finite. Let this charge of mass m, and radius
~, approach a magnetic point charge g fixed at the
origin. Let the electric charge move along the
negative x axis with velocity U&. The Lorentz
force on the elements of the electric charge pro-
duces circulating currents which are equivalent
to a magnetic dipole of moment p, pointing in the
positive & direction, and the charge e also acquires
an angular momentum 1 in the same direction. The
field angular momentum L is given by'

L =(eg/c)(l —nR2x ')x,
where n depends on the details of the distribution
of the electric charge, for example, o. =5 for a
uniform spherical volume distribution and o. =&

for a uniform surface charge distribution. Con-
servation of angular momentum requires that

I = n(eg/c)R'x 'x.
If we assume the classical ~ca~it, u =(e/2mc)1,

then the induced magnetic moment of the electric
charge is given by

~g2g Q2

2mc' x~

The magnetic pole repels this magnetic dipole with
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the force f =g(&&/&x), namely,

oe2g2 R2

mC2 Xs (4)

and by (10)

c m +m x' (13)

Equating f to -a V/ax we can define a potential
energy V(x) for the system by me +me

The mutual repulsive if( is given by

(14)

(5)

In addition, the electric charge has a rotational
energy E, =l'/(2I), where I is the moment of
inertia which is of order »R', or

a2e2g2 R4
E

2Ic' x' (6)

e'g' 1 R, '+R,'
c' m +m, Ix'l

and the potential energy of the system is

( )
e'g' R,2+R,' 1
c' m, +m„4x4 '

The rotational energy is now

(15)

(16)

The conservation-of-energy equation now reads

= —'mv 2~e2g 2 R2 ] ~mR2
(7)

where vg is the initial velocity of the electric
charge as it enters the field of the pole at x =-~.
The distance of closest approach x,

&
is given by (7)

with v =0, namely, R2+R2
X Q 2'+CP

m, +m~
' + ' x4=-Mv ~

I Ie

(18)

e2 2 R 2 +R 2 2 )pg
2 m 2

c' m, +m, 2I, 2I x' '

and the energy conservation in the center-of-mo-
mentum system now reads

amR2
CV = CI +

2 I

(8) with M the reduced mass equal to m, m~/(m, +m, ).
The disl;ance of closest approach is

R 2+R 2 u'2- S/'2

X0 = e + g

v c m, +m

eg/c =h/2,

o. ' h
x = — R =(-' o' XR)' 'I

mv )
0

(9)

1,/m, =1,/m, .
Since'

(10)

which is the geometrical mean of the de Broglie
wavelength/2v and 2o'R, the latter is a structure
length for the particle.

Now we endow the magnetic pole with structure.
Ne have now the masses»„m„ the radii R„R~
and the moments of inertia I„I,. The electric
charge acquires as before an angular momentum

I, and a magnetic dipole moment »„while the
magnetic charge acquires an angular momentum

1~, and an electric dipole moment p, = —(g/2m~c)l~.
Since the force with which the charge e repels P,
must equal the repulsive force on», due to the
charge g, we have the relation

R, +R m,
Q =A 2+Q +

m

(19)

which is similar to Eq. (8) with obvious modifica-
tions.

It is interesting to observe that the potential and
rotational energies as given by Eqs. (5) and (6) and
by Eqs. (16) and (17) have the same distance de-
pendence, x 4, and combine simply by adding the
coefficients to form an effective potential for point
charges in the energy equations (7) and (18).

The polarization repulsion can be looked upon as
a manifestation of the "diamagnetic" behavior of
the extended electric charge and the "diaelectric"
behavior of the extended magnetic charge. For the
dipoles induced are proportional but opposite in di-
rection to the inducing fields which vary as x ', and
the repulsive force is proportional to the gradient of
the field which varies as x ' times the induced
dipole moment giving the x ' dependence. ' To its
many remarkable properties this system adds the
distinction of offering the first model for diaelec-
tricity in physics.

we have

eS R. +R, (12)
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