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The task of finding all spherically symmetric three-dimensional point monopoles in a gauge theory with
arbitrary compact semisimple group is completely formulated in an Abelian gauge, where the problem is

purely group-theoretical. The form of the gauge transformation to the spherically symmetric gauge is
explicitly given in the general case. For SU(N} groups this result is reduced to a simple diagrammatic
method which yields all such point monopoles by inspection. Also for SU(N} groups, a technique is given for
eNcient construction of the radial differential equations satisfied by the corresponding finite-energy solutions.

I. INTRODUCTION

The striking feature of the 't Hooft'-Polyakov'
monopole in SU(2} theory is that the solution is
expressed in a gauge where it is manifestly spher-
ically symmetric under combined space and iso-
spin rotations. It is this property which makes it
possible to construct a finite-energy ansatz for
which the Yang-Mills' equations reduce to ordinary
differential equations in the radial variable. Fol-
lowing %'u and %u,' the concept of spherical sym-
metry may be generalized to the case of a gen-
eral semisimple compact gauge group G by con-
sidering SU(2) subgroups Exp.ressing the vector
field A and scalar field C as matrices in some
faithful repxesentation D{G), we say a solution is
spherically symmetric under L+ T if

[L(+ T( ~A~]=i e(&~A~

[f,+ T„e]=0,
where L= irx V-, and T,. generate some SU(2)
subgroup of G.

The first step in constructing such solutions is
to find the spherically symmetric point monopoles,
since they provide the asymptotic boundary condi-
tions for the finite-energy solutions. The work of
%'einberg and Guth' showed that the only spherical-
ly symmetric point monopole in SU(2) is that of 't
Hooft and Polyakov, but in larger groups there
may be many such monopoles. One way in which
these solutions may be constructed is to write
down the most general ansatz satisfying (1.1), and
then to look for point-monopole solutions of the
Yang-Mills equations of the theory. "' Although
simple in principle, this method is in practice
very laborious, and to obtain all the spherically
symmetric solutions it must be repeated for each
of the possible embeddings of SU(2) in G.

By contrast, in an Abelian gauge with 4 con-
stant and A expressed in terms of a singular
Dirac' vector potential, it is a trivial matter to
write down all the possible point-monopole solu-

tions. ' Our main result, given in Sec. II, is to
give a simple necessary and sufficient condition
for transforming such a solution to a nonsingular
gauge in which it is spherically symmetric in the
sense of (1.1). The form of the required gauge
transformation is explicitly given. The method
stresses the importance of the physical charge-
pole angular momentum, and is a generalization
of a previous result of the present authors. " Our
interest in this problem was rekindl. ed by a recent
paper of Bais and Primack, "who speculated that
our-previous method gave the most general class
of spherical point monopoles. However, already
in the SU(4) solutions of Brihaye and Nuyts' there
may be found a counterexample, which of course
is included by our new procedure. As stressed by
these latter authors, an important concept is that
of the little group which transforms the spherically
symmetric solutions among themselves; our sec-
ond result of Sec. II is to show that the action of
this group on the spherically symmetric point
monopoles has a simple and natural counterpart
in the Abelian gauge. Using these results we are
able to formulate the problem of finding all the in-
equivalent spherically symmetric point monopoles
in purely group-theoretical terms. All that is Ie-
quired is knowledge of the possible embeddings of
SU(2) in G, a topic discussed in the litera-
ture l1

In Sec. III we specialize to SU(N) groups and re-
duce our previous result to a simple diagrammatic
algorithm. Using this method, one may immedi-
ately rederive all the SU(3) solutions found by Cor-
rigan, Olive, Fairlie, and Nuyts' and by Dereli
and Swank, "and the SU(4} solutions given by
Brihaye and Nuyts. ' %e give the details only in
the case of the 4- 3+ 1 embedding in SU(4), for
which we find one solution apparently missed by
Brihaye and Nuyts.

In Sec. IV we consider finite-energy solutions
in SU(N) groups. By performing the construction
on the z axis, we obtain the most general spher-

16 1221



DAVID %ILKINSO5 AND ALFRED S. GOLDHABKR

ically symmetric ansatz for a given T without ex-
plicit reference to the tensor structure of the vax'-

lous terms. The computation of the enex'gy den-
sity, and hence the xadial differential equations,
is extremely simple in this representation. On

the z axis the little group of the spherically sym-
metric solutions is just the little group of T,. By
analogy with a theorem of classical mechanics,
we show that when this little group is an n-pa-
rameter group, it is possible to eliminate a total
of either 2n -1 or 2n parameters from the most
general spherically symmetric ansatz, depending
on whether ox' not T, has both integer and half-in-
teger eigenvalues. Section V contains a brief dis-
cussion.

II. POINT SOLUTIONS FOR GENERAL GROUPS

G„„=8„A„—8„A ie[A„,A-„],

D„p = 8„4 ie[A„, C ], - (2.2)

and V{4) is a G-invariant quartic polynomial. For
an arbitrary position-dependent A(x) in G, the lo-
cal gauge invariance of the theory is expressed by

eA„AeA„A '+ jAB„A ',
4 A@A"'.

(2 2)

We are interested in time-independent solutions
with A, = 0 so that the Yang-Mills tensor has only
magnetic components B& = ~&,»G», and the field
equations may be written

We consider a spontaneously broken gauge theo-
ry for an arbitrary compact semisimple group G,
with the scalar field (or fields) in the adjoint rep-
resentation. Since the nonsingular monopoles of
the theory are just those of the covering group
G„„"there is no loss of generality in consider-
ing G itself to be simply connected. We express
the vectox' field A„and scalar field 4 as matrices
in some faithful unitary representation D(G) of G,
so that the Lagrangian density may be written

Z = --.'TrG„„G'" TrD, @D-"e —V(C),

where

where (r, 8, P) are spherical polar coordinates.
Since A~ is a solution of the source-free Maxwell
equations (except on the string) it is clear that a
solution of the Yang-Mills equations (2.4) is

eA= @AD,
(2.6)

where 4, is a, constant matrix which minimizes
the scalar potential, and Q is a constant matrix
which commutes with Co. Provided the eigen-
values of Q are all integers or half integers [i.e. ,
exp(4m i@)= 1] the string is unobservable and,
since G is simply connected, may always be elim-
inated by means of a singular gauge transforma-
tion. An important concept is that of the physical
charge-pole angular momentum S defined by

J= r x (-ig —eA) —er'B.

Just as for monopoles in ordinary U(1) electro-
magnetism one may verify that the point solution
(2.6} has the properties

[J„Jq]=ie;,~J~,

[J,, 8, —i', ]=is;;,(8, ieA,), -
[J,, @]=0.

Since both these properties and the definition (2.7}
are gauge covariant, they must hold in any gauge.
We now state and prove the following theorem:

Vheorem f. Let T be the generators of any SU(2}
subgroup of G, not necessarily irreducible in D(G).
Then a necessary and sufficient condition for the
existence of a gauge in which the Abelian gauge
solution (2.6) becomes spherically symmetric
under L+ T is that it is gauge equivalent to one
for which the charge-product matrix Q has the
form

{2.9)

where 1 is another embedding of SU{2) in G, also
not necessarily irreducible in D(G), with the prop-
erties

(2.4)

A point-monopole solution of these equations ls
one for which 8V/8C and DC vanish everywhere
A simple %'ay to collstx'uct such solutions ls fix'st
to write them in a singular Abeliangauge by
means of a Dirac' vector potential A~ with a string
along the negative z axis:

An = P(1 —cos8)/r sin8, (2.5)

Q(~ p y) e 'to!1 ge 48T2e 8 r3 (2.11}

We also define a local gauge transformation Q(r)
with the property Q(r)T, Q '(r) = T r by means of
the rotation (P, &, -P) which at each point (r, 8, $)
takes the 2 direction into the i' direction:

We first introduce some notation and prove a fund-
amental result which will be used throughout the
paper. For an arbitrary SU(2) rotation described
by Euler angles n, P, y we write



A(f) = Q(&, 8, -g) . (2.12)

x(f) = n(R)x,n-'(R), (2.15)

where 8 is any rotation which takes the 2 direc-
tion into the r direction, since the Euler-angle
rotation (p, 8, X) is the most general such rotation.
Consider now an arbitrary rotation S= (n, P, y)
Then

Q(S)X (r')A '(S) = A(SR)Xon '(SR)

=x(sr) (2.16)

since SR takes 2 into Sf Thus. X(r) is a scalar
under L+ T as required. Conversely if X(r} is a
scalar under L+ T then the fact that L, vanishes
on the z axis implies that X,—=X(z) commutes with
T,. It follows that X, equals A '(r)X(r)Q(f). We
may now prove theorem 1:

Proof of sufficiency Suppose th. e conditions
(2.&), (2.10) hold. For the embedding I we define
quantities u&(&, P, y) and +(r) analogous to (2.11),
(2.12):

~(& P y) = e ' "e "2e '"'3

~(r) = ~(y, 8, -y) .
(2.I'I}

Then following Ref. 10 we find that by means of
the combined gauge transformation A(r) = Q(r)&u '(r)
the fields (2.6) may be brought to the form

eA = [I(f}—T]x rlr,

Lemma. Let X, be any group element ox gen-
erator which commutes with T,. Then the quantity
X(r) defined by

x(r) = n(r)x, n-'(f) (2.13)

is a scalar with respect to L+ T. Conversely, if
X(r} is a scalar under L+ T, then X,=X(z) com-
mutes with T, and equals Q '(f}X('f)A(f)

Proof. Suppose Xo commutes with T, Th.en
X(r} in (2.13) may be expressed as

X(r) —= A(Q, 8, -g)XOQ '(g, 8, -p)

=A(y, 8, x)x.n '(y, 8, x),
where X is an arbitrary angle. Thus we may con-
clude

relations [T„I,]=0 and [T, —I„I]=0 we obtain

T(r}= Q(P, 8, P)a '(@-, 8, P) lm(4, 8, -0)
x A '(y, 8, y)

=A(&, 8, x)~ '(&, 8, x)»(&, 8, x)

x Q ($, 8, X), (2.20)

where X is an arbitrary angle. Thus we may con-
clude

T(r) = Q(R)(o '(R)I&@(R)Q '(R), (2.21)

where R is any rotation which takes the z direc-
tion into the f direction. Consider now an arbi-
trary rotation S=—(a, P, y}. Then

Q(S)I,(f)Q '(S)

= A(SR)u) '(SR)(u($)I, (u '($)(u(SR)A '(SR)

= $(~ 'Q(SR)(g) '(SR)I~~(SR)Q '(SR)

= S,q 'I)(Sr), (2.22)

since SR takes z into Sf. Thus I(f) is a vector
under L+ T as required. Note that the magnetic
field is given by

eB=r" [I(f) T]flr—', (2.23)

so that in the new gauge the physical angular mo-
mentum (2.7) takes the form

J= L+ T —I(f'). (2.24)

This equation will be used as the starting point for
the proof of the converse part of the theorem.

Proof of necessity. We first show that any
spherically symmetric vector potential A may be
brought to a form orthogonal to r by a gauge trans-
formation which commutes with L+ T. Let us write
the most general such potential as a sum of trans-
vex'se and radial parts:

eA= [M(r) —T] x rlr+N(r)r. (2.25)

The quantities M(r) and N(r) are, respectively, a
vector and scalar with respect to L+ T, but other-
wise unrestricted. Under the gauge transforma-
tion Q '(r) this becomes

eA= T,Aa+A '(f)M(r)A(f') xrlr
e= e(r),

where I(r) and 4(f) are given by

I(f') = A(r)(o '(f) I(u(r)A '(f),
4(r) = A(f) 4,A '(r) .

(2.19)

A,(r}= R exp -i ~ N,(r')dr' (2.2V)

+N,(r)f,
where No(r) =-N(r2) commutes with T,. Let us de-
fine a gauge transformation A (x) by

We assert that the forms (2.16) are spherically
symmetx'ic with respect to L+ T. For the scalar
field this follows immediately from the lemma,
while for the vector field it is sufficient to show
that I(r) is a vector under L+ T. Recalling the

where the R indicates that the terms in the expan-
sion of the exponential should be ordered so that
the smallest argument r appears on the left. The
transformation A,(r) commutes with T, [since



N, (1 ) does] and is the formal solution of the equa-
tion

dho
dr

' = -iA, (r)N, (r) . (2.28)

Transforming the vector potential (2.26) with A, (1')

just removes the radial component:

eA= T,A n+ A,(r)Q '(f)M(r)Q(f)A, '(f) . (2.29)

If we now apply the gauge transformation Q(f), we

find that by means of the combined transformation
A(r) =- Q(f')A, (r)Q '(f.) the gauge potential (2.25) has
been brought to the form

eA= [K(r) —T]x f/r,
where

(2.30)

K(r) = A(r) M(r) A-'(r) . (2.31)

[f,.(P), f,.(r)] =i~,»I,(f),.

[I(f),f" [T(f) —T]]= 0. (2.33)

Since the magnetic field is purely ra.dia. l we ob-
tain

eB = f"JP/r'-
= f [I(f) —T.jf/r'.

As the vector potential is transverse, its form is
uniquely determined from (2.32), (2.34):

eA= [1(f)—T] x f/r. (2.35)

One may easily verify that this potential does give
the magnetic field B in (2, 34). For the scalar field
the relations DC = 0 and [L+T, C ] = 0 imply

[1(f'),C(f)]= 0,
[f- [I(f) —T],C(f)] = 0. (2.36)

By the lemma the gauge transformation A(r) com-
mutes with L+ T and so the new K(r) is still a vec-
tor under I + T.

Suppose now that the point solution (2.6) can be
brought to a sphex'ically symmetric form. With-
out loss of generality we may assume that the vec-
tor potential is pux"ely txansverse. Since any r de-
pendence of the gauge transformation from the
AbellaIl gauge would induce a x'adlai tex'm ln Ay

we conclude that in the spherically symmetric
gauge the quantities rA, r'8, and 4 are functions
of direction r only. In the latter gauge we may
thus write the physical angular momentum J as

J'= r & (-iV —eA) —er'8

=L+T- 1(r), (2.32)

where T(r) is now defined by this equation. By the
spherical symmetry the quantity I(f) must be a
vector under L+ T. From the relations [O', , Zlj
=i@,»Z, and [J,J f]=0 there follows

Let, lls define I= I(z)~ 40= 4(z)~ Rnd Q= I3 —T3~ so
that [I, Q] = 0, [I, C,] = 0, and [Q, C,] = 0. Then by
the revelse of the previous algument it ls clear
that the gauge transformation &u(f)Q '(f) brings
the solution to the form

eA= QA~,
(2.3"I)

= Q-'(f) V(r) Q(f) . (2.38}

Proof. Suppose I, 40 and I', 4O are related by a

Thus the original Abelian gauge solution is gauge
equivalent to one obeying the conditions (2.9),
(2.10) as required. We remark that if two Abelian
gauge solutions of the type (2.6) are related by a
gauge transformation, then it must be a trivial

The theorem shows that the Abelian gauge form
of all spherically symmetric point monopoles for
a given T may be obta. ined by constructing a,ll pos-
sible pairs I, C» where I is an SU(2) embedding
and the conditions [I,Q] =0, [I,C,] =0, and [Q, C,]
= 0 are all satisfied with Q =-I, —T,. The corre-
sponding spherically symmetric solutions are
specified by the pairs I(f},C(f), the relation be-
tween the two gauges being given by (2.19). We

say that two spherically symmetric solutions are
equivalent if they a,re related by a gauge transfor-
mation which commutes with I + T; this definition
ensures that spherically symmetric finite-energy
solutions with the asymptotic bounda, ry conditions
of two equivalent point monopoles are themselves
gauge equivalent. The r dependence of such gauge
transformations was determined when we removed
the radial component of the vector potential, but
we are still free to make transformations com-
muting with I + T which are functions of direction
r only. The importance of this "little group" of
the spherically symmetric solutio~s was empha-
sized by Brihaye and Nuyts. As noted by these
authors, the quantity K(r) appearing in the vector
potential A in (2.30) transforms covariantly under
'this gl'oup. Ill pR1'tlculR1' tile quantities I(f'), 4(f')
of our spherically symmetric point monopoles
transform covariantly. The next theorem shows
that this statement ha.s a simple and natural analog
in the Abelian gauge:

Theorem 2. Two spherically symmetric solu-
tions I(f), C(f) and I'(f},4'(f) are related by a
gauge transformation V(r) which commutes with
I + T if and only if the corresponding Abelian
gauge solutions I, 40 and I', 4,' are related by a
constant gauge transformation Vo which commutes
with T,. The correspondence between V(r) and Vo

is given by
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constant transformation V, which commutes with

T„and let R be any rotation which takes the z
direction into the r" direction. Writing II = Q(R)
we find

C '(r) = 0C OIQ
'

0V040 Vo 0
= nV, n-'C(r)nV n '.

Similarly,

I,'(r) = R,&Q-I&Q
'

= R]JAVOI~VO"'0 '

(2.39)

III. POINT SOLUTIONS FOR SU(lY) GROUPS

The problem of finding the spherically symmet-
ric point monopoles for SU(N) groups is greatly
simplified by the fact that, apart from an overall
phase, every unitary transformation is a gauge
transformation. This means in particular that any
SU(2) embedding is equivalent to one which is ex-
plicitly decomposed into irreducible SU(2) rep-
resentations, with diagonal T, and standard angu-
lar momentum phase conventions in each block

= A V II 'I (r)IIV 'II '. (2.40)

Thus I'(r), C'(r) are related to I(r), C(r} by V(r)
-=QV,A ', which by the lemma commutes with L
+ T. The converse result is proved in a similar
manner.

In order to give simple rules for determining
all the spherically symmetric monopoles of the
theory we introduce the terminology that two sets
of generators Y, , Y,' are equivalent if they are re-
lated by a group transformation (inner automor-
phism}. More generally, if X& is another set of
generators, then Y,. and Y,' are equivalent (modulo

X&) if they are related by a gauge transformation
which leaves each of the X& invariant. The point
monopoles spherically symmetric with respect to
L+ T are now obtained by the following purely
group-theoretical prescription:

(1) Write down all the inequivalent (modulo T,)

SU(2) embeddings I with the property that Q
-=I,

—T3 commutes with I.
(2) For each such I write down all the inequiva-

lent (modulo T„ I) generators C, which commute
with T„ I (subject of course to the requirement
that C, minimizes the scalar potential).

To find all the spherically symmetric monopoles
of the theory the above construction must be re-
peated for each of the inequivalent SU(2) embed-
dings T. The spherically symmetric form of the
solution is in each case obtained by means of the
gauge transformation Q(r)m '(r).

= PUT, (PU) '. (3.1)

Thus by means of the gauge transformation V= PU
we see that the original solution is equivalent to
one for which ( I, Q, Co) differ only by the action of
a permutation matrix from a form ( I', Q', Ct} with
I' standard and Q' and 4,' multiples of the unit ma-
trix within each block. If T, has degenerate eigen-
values there will always be more than one such
permutation and it is sufficient to pick any one of
them.

In order to construct systematically all the pos-
sible solutions for a given T it is convenient to in-
troduce the following diagrammatic notation, the
full generality of which is illustrated in Fig. 1 for
the case where T is the 8- 3+ 1+ 2+ 2 embedding
in SU(8}. The irreducible blocks of T are written
in columns side by side in such a way that equal
eigenvalues of T, lie on the same horizontal row
and the columns with integer T, eigenvalues are
separated from those with half-integer eigenval-

integer
eigenvo lues

hol f- integer
eigenvolues

0 0
I I

0 O~

FIG. 1. Diagram for the 8 —3+ 1+2+2 embedding of
SU(2) in SU(8). The irreducible blocks of T are written
in columns side by side with equal eigenvalues of T3 on
the same horizontal row. The elements of the diagram
are labeled by the eigenvalues of T3, and the connecting
lines by the matrix elements of T,.

(i.e. , matrix elements of T, are real and positive).
Let T be any such "standard" SU(2) embedding and
consider a possible point monopole, i.e. , a pair
I, C, satisfying [I,Q] =0, [T, C,]=0 and [Q, Co] =0,
where Q—= I, —T,. Then there exists a unitary
transformation U which brings ( I, Q, C,) to a form
( I', Q', Co), where I' is a standard embedding and
Q' and 4,' are each multiples of the unit matrix
within each irreducible block of I'. Let us write
T3 I3 Q'= UT, U '. By construction, T,' is diago-
nal and so we may recover the original form of T,
by the action of a permutation matrix P which
merely rearranges the eigenvalues:

T, = PT3P '
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Ts (a) (b) (d+) (d-) labels

Ql

(0) Qo

Q

Qo Qo

Q
I

8 Qo Qi Qo

I

8
FIG. 2. Diagrams showing the five inequivalent SU(2) embeddings I satisfying (2.9), (2.10) when T is the 4 3+1 em

bedding in SU(4). The elements are labeled by the eigenvalues of I3, and the connecting lines by the matrix elements of
Diagram (a) corresponds to I=T. The charge-product matrix Q in {2.6) is in each case given by @=I3—T3, while

the scalar field 40 can be any traceless diagonal matrix which is constant along each connecting string of the diagram.
The last diagram shows both the order of the diagonal elements and the labeling of the matrix elements of I~ used in

constructing Table I. The solutions for the other possible embeddings T in SU(4) are obtained in a similar manner.

ues. The vertical lines show the action of the
raising and lowering operators T,. All the spher-
ically symmetric point monopoles may now be ob-
tained by the following rules, illustrated in Fig. 2
for the case of the 4-3+ I embedding in SU(4):

(I) First draw the diagram, for T, but without
the connecting lines. Since the possible embed-
dings I are such that Q—= I, —T, is constant in each
block of I, every such block may be represented
by a "string" passing downward through the dia-
gram (not necessarily vertically) beginning and

ending at an arbitrary point. A string of length E

represents a block of spin I/2 and dimension I+ I.
An embedding I consists of a set of such strings
with at most one string intersecting each element
of the diagram; elements with no strings passing
through them are singlets under I. Diagrams so
constructed which differ only by permutation of
the elements in a given row (or rows) correspond
to equivalent solutions and only one of them should
be counted.

(2) For a given I, the possible scalar fields 4,
are just those traceless diagonal matrices which
are constant within each block of I, i.e. , constant
along each connecting string of the diagram for I.
Two choices 4, and C,' which are related by inter-
change of identical strings of I (ones which connect
the same rows) are equivalent, and only one of
them should be counted; this never happens for
the examgle in Fig. 2.

When T is the 3+ 1 embedding in SU(4) we see
from Fig. 2 that there are five inequivalent choices
for I. The solution (a) corresponds to I= T so that
there is no magnetic field, while the solution (c)
is I= 0, for which the angular momentum J in the
spherically symmetric gauge is just L+ T. The
solutions (d+) are related by reflection about the

TABLE I. Details of the spherically symmetric point
monopoles when T is the 4 3+ 1 embedding in SU(4).
The solutions correspond to the five embeddings I shown

in Fig. 2. The meaning of the diagonal matrices Q and

40 is given in (2.6), while the quantities v~ are the ma-
trix elements of I~; the labeling is given in the last dia-
gram of Fig. 2. The quantities a, b, c for the scalar field
are arbitrary, but will be restricted in practice by the
requirement that 4 0 is a minimum of the scalar potential.

(a) (b) (c) (d+) (d-)

Q 0
1
2

1
2

b

-(a+ 5+ e)

vi W2 1 0
v2 0 0 0
v, v2 0 0
v4 0 1 0

a

—(2a+ 5)

horizontal line T, = 0 and are antimonopoles of each
other; the other solutions are self-conjugate in
this sense.

The same information, together with the various
possibilities for the scalar field, is shown in Table
I. We have taken the diagonal elements from the
diagram for T not in column order, which would
correspond to T being explicitly reduced, but
rather in row order so that the equal eigenvalues
of T, appear together. The quantities v„v„v„
and v4 refer to the matrix elements of I, , where
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IV. FINITE-ENERGY SOLUTIONS IN SU(N)

The ultimate goal of classical monopole theory
is to find fields A, 4 such that the energy E given

E= d'x[TrB'+ Tr(DC')'+ V(C) J (4.1)

the labeling is given by the last diagram of Fig. 2.
These results are in agreement with the analysis
of Brihaye and Nuyts, except that these authors
apparently missed the solutions (da).

If the lines of a diagram can be drawn so that
they are all vertical, then each block of I acts en-
tirely within a single block of T, and following the
terminology of Bais and Primack we say that I is
a subembedding of T. In such cases it is possible
to express the rotated quantities l(r} and 4(r) in

(2.19) as explicit vector and scalar functions of f
and T, where T denotes the ath irreducible block
of T. Some examples of this construction are given
in our previous paper, "and by Wilkinson, "and by
Bais and Primack. " Such subembedding situations
were the only ones considered in these papers but,
as we see from solution (b) of Fig. 2 this is not
the most general possibility. When I is not a sub-
embedding, an explicit demonstration that I(r) is
a vector under L+ T requires the use of tensor
quantities which cannot be expressed as functions
of the irreducible components Y of T. However,
we shall see in the next section that even for the
purpose of constructing the radial differential
equations for the corresponding finite-energy so-
lutions, it is never necessary to display this ten-
sor structure explicitly.

eB= i-r (KxK T x T)r/r'

+r x (gg'x r")/'r,

Dp = i[K-, C ] x r/r+ rC ',
(4.3)

where primes denote partial differentiation with
respect to r with r held fixed. For the purposes
of computing the energy density in (4.1) it is suf-
ficient to consider these quantities on the positive
z axis, where we obtain

eB,=(-,'[M„M ] —T,)/r',
eB, = M', /r,
D,e =- C,',
D,C = T [M„C,]/r,

where we have written

M(r) = K(r, 2),
e,(r) = e(r, e).

(4.4)

(4.5)

All that remains is to construct an ansatz for the
quantities M and 4,. Since L, vanishes on the z
axis and K(r) and C(r) are, respectively, a vector
and scalar under L+ T, there follow

[T„e„(r}]= 0,
[T3,M, (r) ]= + M, (r) .

(4.6)

We shall argue that given the most general Co(r)
and M, (r) with these properties (and Mt = M, ) it is
always possible to reconstruct scalar and vector
quantities C(r) and K(r) which reduce to these
C,(r) and M, (r) on the e axis. For C, this is clear,
since if we write

C (r) = Q(r) C,(r) fl '(r), (4.7)

eA= [K(r, r) —T] x r/r, {4.2)
e= C(r, r),

in which the% dependence of 5R and C is carried by
the various basis elements of the ansatz, and the
r dependence by the radial functions. From the
spherical symmetry there follows

has the minimum value for a given topological con-
figuration of the scalar fields at infinity. Since any
L+ T is a symmetry of the full Yang-Mills theory,
a solution of the field equations (although not nec-
essarily even a local minimum of the energy) is
always obtained by writing the most general spher-
ically symmetric ansatz for A and 4, substituting
into the energy expression (4.1), and then varying
with respect to the radial functions appearing in
the ansatz. This reduces the problem to a set of
ordinary differential equations. As shown in Sec.
II, the gauge freedom of the theory may be used
to remove the radial terms in A, so that we may
write

it follows from the lemma of Sec. II that 4(r) is a
scalar under l.+ T and satisfies C(rz) = C,(r)
From (4.6) the most general M, (r) may be written

M, (r) = P v,(r)I„,
(4.8)

M (r) = P v*(r)I

where the v are arbitrary complex radial func-
tions, and the quantities I are a particular sub-
set of the SU(2) embeddings I which were used to
construct the point solutions, namely those which
consist of a single two-dimensional representa-
tion. In terms of our diagrams this means that
they have a single line connecting two adjacent
rows. The four possibilities for the 4-3+1 em-
bedding in SU(4) are given by the four lines of the
last diagram of Fig. 2. Note that for the purpose
of constructing an ansatz it is necessary to con-
sider all such two-dimensional I' s, not just those
which are inequivalent modulo T,. Equation (4.8)
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may be rewritten in the form

lif, (~) = g [a.(~)I., + f.(~)(2 && 1.),], (4.9)

where v, =a +ib, . It follows that K(r) is given by

K(r) = Q [a (r) I„(r)+5 (r)r&& I„(~)], (4.10)

where I„(i) is the rotated version of I:
I (r) = f1(i)&u„'(r) I„u) (r)fI '(f). (4.11)

By the arguments of Sec. II, I (z) and hence NI(r)
in (4.10) are vector quantities under L+ T.

To see what this means explicitly, consider the
familiar example of the 4-3+ j. embedding in

SU(4). As in Sec. III, let us use a matrix repre-
sentation not where T is explicitly reduced but,
rather, one where T, = di ag(1, 0, 0, -1), i.e. , the

equal eigenvalues of 1, appear together. The most
general matrices 40('Y) and M~(F) satisfying (4.6)
are then given by

energy density in (4.1). The field equations are
obtained by varying with respect to the functions
v, P &

„and g. The asymptotic boundary conditions
just those of the possible polQt monopoles 1Q

Sec. IH, U the point monopole in the Abelian
gauge is given by the pair I, 4, then we find

In terms of the matrices (4.12) this means that P
vanishes, and @;,v are as given in Table I.

For the chosen example the energy density de-
rived in this way is a functional of thirteen real
variables. However, there is some residual gauge
invarianee in the problem, namely the little group
of 7-independent tlRnsfor'matlons which commute
with L+ T. On the z axis this is just the little
group of T„and the fields C,(r), M,(r) afford a
represeQtatIOQ of this group under which the eQ

ergy density (4.1), (4.4) is invariant. In the pres-
ent example this little group is SU(2) x U(l) x U(1)
and may be used to eliminate five of the thir'teen
variables from the formalism. This x'esult ls
really just a theorem of classical mechanics, and
we shall express it as such, though the language
%'ill be notlceRbly quRntum mech3nlcRl. Consider
R clRsslcRl system with gener'Rllzed coox'dlDates
x and Lagrangian I (x,x, t) Suppos. e that the x's
afford a linear faithful representation of some
n-parameter continuous group of constant trans-
formations U which leave I (x,x, t) invariant, i.e. ,

M,(r) =
L (Ux, Ux„ t) = I (x,x, t) . (4.14)

We remark that since this is a purely algebraic
relation, it holds even if U is a function of the
time. Now the symmetry under x- Ux leads to
Ã consexved quRntltles +i glv

M (r)=

where v, p are complex radial functions, and 4&
are real x'adial functions. The constraint Tr40= 0
may be put in either by hand or by adding a La-
grange-multiplier term XZ;,P; to the energy ex-
pr'ession (4.1). The generalization of the forms
(4.12) to a general embedding T in a general SU(N)
group is clear: %ith respect to the block struc-
tur'e defined by the equal eigenvalues of T„ the
matrix 40(r) can have arbitrary matrix elements
within the blocks, while M, can have matrix ele-
ments only between adjacent blocks differing by
one unit of T,. It is then a trivial matter to com-
pute B and Df from (4.4) and insert them into tne

where the I; ax'e the generators of the group. Sup-
pose that we are interested in the particular type
of solution fol which the coordlDRtes x Rl e speci-
fied at some initial time t, and the action j, I dt
ls stationary with I'espect to arbitrary vRl'1Rtlons.
At t, we then have the natural boundary conditions
8I./8i = 0, so the motion is such that the conserved
quantities K,- vanish. Let us now exchange the co-
ordinates x for a new set q, 8 defined by

(4.16)

where the "invariant variables" q label the equiv-
alence classes of configurations (orbits) under
action of the group, xo(q} are specified functions
giving a representative x, of each class q, and the
n "group variables" (9 represent the parameters of
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the group. Substituting the expression (4.16) into
the Lagrangian and using (4.14) we obtain a, new

Lagrangian I ' which is a function of the new co-
ordinates:

L'(q, q, 8, 8, t) = L(x„x,-i'„t),
where x, and z = &&V& are defined by

~ eXO
Xo= Q'g y

&g~

v=iU 'U

=iU '(8) 8,

(4.17)

(4.18)

81
iR ',~-(8) —.F~x

= ft ')~(8)K, , (4.19)

where R(8) is the adjoint representation of the
group. Thus the so1utiorls with BL'/B&o&=0 are just
those which correspond to K, = 0. In the case
where the group is Abelian these results may be
phrased in more familiar language. If we write
U(8) = exp(-i8,.1;) then Eq. (4.18) gives simply v,
= 5, , so that the above analysis reduces to the
statement that the 8, are ignorable coordinates. "
The standard procedure in such cases is the
Routhian method of performing a partial Legendre
transformation which eliminates the variables 0,
in favor of the canonical momenta P, =- BL'/B8„and
then setting the p,. equal to constants. Using (4.19)
we see that the p, are just the conserved quanti-
ties K„since the adjoint representation of an
Abelian group is trivial. %hen the p,- vanish the
Routhian method is equivalent to using the con-
straint equation BL/B8, =0 to remove the variables
8,. from the Lagrangian. In the non-Abelian case
it is impossible to find coordinates such that the
conserved quantities K,. are all canonical momen-
ta, and there is no simple analog of the general
Routhian procedure. However, as shown above,
the particular motions for which the K, vanish can

Thus the dependence of the new I agrangian L' on
the group variables 8 is only via the combination
&o, Le. , L'=L'(q, q, v, t). In order that the action
constructed from the original Lagrangian I.be sta-
tionary with respect to arbitrary variations of x, it is
certainly sufficient that the action constructed from
L'be stationary with respect to arbitrary var-
iations of q, ~. The Euler-Lagrange equations for
the e, are then just constraint equations BL'/B&g,
= 0, and may be used to eliminate (d from the
Lagrangian, leaving an expression L"(q, q, t) con-
taining only the invariant variables q. Note that
BL'/B&u, may be expressed as

81' . BI
i —.U(8}I,.U -'(8)x

egg] ~x

4,(r) =y, (r) 2'+y, (r) 2',

M.(r) =t(r)(X, +il,)/2,I (r) = u*(r)(X, -iX,)/2 .

(4.21)

Writing ~ = ue', the energy expression becomes

E=47t dz ' ' ' 8' ' -'(1- ')' r'+z~'(P' '

+ .'r'(0,')'+u'y, *+r'&(@„,y-,)],
(4.22)

where the gauge coupling e has been set equal to
unity. As claimed, the variable 8 is an ignorable
coordinate and the constraint equation BL/B8'= 0
gives simply 8'=0; it is also clear that for a given
choice of u, @„and P, the energy is minimized
when 8' vanishes. Thus 8 is constant and without
loss of generality may be set equal to zero. Al-

be handled in exactly the same way as in the Abel-
ian case. Note that for the purpose of calculating
the action f,"Ldt, the reduced problem with the

j, e

Lagrangian L'(q, q, t) is sufficient; in order to de-
termine the full motion of the system one must
compute &u;(t) from BL'/B~, =0, and obtain U(t) by
solution of V"'U= —s~:

rt
U(t) = U(t, ) T exp —i ~(t')dt', (4.20)

Pg

where T denotes a time ordering.
The application of this result to the monopole

problem is clear. The situation is entirely analo-
gous in that we are interested in minimizing the
energy with specified boundary conditions at in-
finity but free boundary conditions at x= 0. (Act-
ually the singularity of the energy density as r-0
forces some of the variables to take fixed values
there; however, this imposes no constraint on the
group variables. ) In the case of the 4-3+1 em-
bedding in SU(4) the method allows one to reduce
the problem from thirteen to eight coupled non-
linear equations; the details are straightforward
but complicated, and we do not give them here. "
In simpler cases where T, has no repeated eigen-
values and its little group is Abelian, there are
no variables analogous to P in (4.12}; the group
variables 6) are just the phases of the quantities
e, while the invariant variables q are the @, and
the magnitudes of the v . The equations 8I.,/88,'
then always give 8,'= 0, and the overall effect is
that without loss of generality the g may be con-
sidered as real. Let us consider in detail the
3 2+ 1 embedding ln SU(3), an example which in-
cludes the 't Hooft-Po1yakov SU(2} monopole as a
special case. In terms of the usual Gell-Mann"
X matrices we have T,. = &X, , i = j., 2, 3, and the an-
satz analogous to (4.12) may be written
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though our argument is somewhat different, this
is the same conclusion as reached in the analysis
of SU(3) monopoles by Corrigan, Olive, Fairlie,
and Nuyts. The analogous result for the SU(2)
't Hooft-Polyakov monopole is obtained by omitting
the field g., from Eqs. (4.21), (4.22). The ansatz
for this simplest case therefore requires only two

real functions, one for the vector field and one for
the scalar field.

Observe that in the above SU(3} example T, is
diag(~, -~, 0} so that its little group is U(1) x U(l)
generated by X, and X„but there is only one ig-
norable coordinate 6). This is an example of some-
thing which always happens when T, has both in-
teger and half-integer eigenva. lues: There are no

quantities v connecting the two sectors, and the
fields M,{r),C,(r) do not afford a. faithful repre-
sentation of one of the U(l) factors of the little
group of T,. Thus only n —1 of the n parameters
of this group may be used to reduce the number of
variables. The overall conclusion is that, starting
with the most general spherically symmetric an-
satz (including a radial component of A), the little
group of the spherically symmetric solutions al-
lows one to eliminate a total of either 2g —1 or 2n

parameters, depending on whethex' or not T~ has
both integer and half-integer eigenvalues.

V. DISCUSSION

The theorems of Sec. II and the specialization to
SU(N) groups in Sec. ill show that the spherically
symmetric point monopoles axe essentially kine-
matic objects, and that it is not necessary to con-
struct the full dynamical equations in order to
compute them. In particular the diagrammatic
method for SU(&} groups allows one to obtain all
the solutions by inspection.

Our technique for the finite-energy ansatz in
Sec. IV has the great advantage that all SU(N)

groups and all embeddings T are treated in the
same way, whereas the usual method involves
the explicit tensor structure of the various terms,
and makes it appeax that different cases are un-
related to each other. While our formalism is un-
doubtedly rather heavy for the simplest SU(2) 't
Hooft-Polyakov monopole, the discussion at the
end of Sec. IV does show why it is necessary to
consider only the term T && f in the ansatz for the
vector field, and not the terms i x (Txf) and

(r T)f.. The usual parity argument had left open
the possibility that these terms could lower the

energy but this is now excluded
Of course the most important property of mag-

netic monopoles in spontaneously broken gauge
theox'ies is their topological stability. "" This
property has been completely ignored in our dis-
cussion, since it has little role in the actual con-
struction of sot.utions to the Yang-Mills equations.
The topological argument ensures that for each
topological configuration of the scalar field at in-
finity there is a state of lowest energy, but it does
not guarantee the existence of a finite-energy so-
lution with the asymptotic boundary conditions of
a given spherically symmetric point monopole.
Indeed, in a recent calculation using a spherically
symmetric ansatz for the 4-4 embedding in SU(4),
Wilkinson" found no such solution for a particular
choice of asymptotic boundary condition. The re-
quirement of topological stability does indirectly
impose some constraints on the point monopoles,
since if the scalar field configurations are to be
identified with the elements of the second homotopy
group v, (G/H), where H is the unbroken subgroup,
then the potential V(C) must have the property that
its minimum is uniquely determined up to a gauge
transformation. For SU(iV) groups, this is true
if we consider the most general quartic potential
V(C). As shown by Li,"minimization of such a
potential always leads to a vacuum expectation
value 40 with just two distinct eigenvalues, so that
the symmet~ is broken to SU{n,) x SU{n,) x U(1),
with n, + n, = N. The topological conservation law
is then equivalent to conservation of the U(l) com-
ponent of the magentic charge. '""'" To see what
this means fox the point solutions, consider the
3+1 embedding in SU(4). By examining the form
of the scalar fields in Table I, we see that for
n, = n, = 2 solution (a) is absent, while for n, = 3,
n, = 1 solution (b) is absent. Similar restrictions
obtain in other cases.

In this papex, then, we have given a universal
prescription to find the spherically symmetric
point monopoles for arbitrary groups, and a tech-
nique for efficient construction of minimum-en-
ergy spherically symmetric solutions for SU(N)
groups. Although it seems very plausible that the
lowest-energy configuration for a given topology
is spherically symmetric, it remains to be proven
whether such solutions are even local minima of
the energy when variations outside the spherical
symmetry are considered. " Perhaps our tech-
niques could be helpful. in attempting to answer
such questions.
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