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Bound-state effective potential formulation of dynamical symmetry breaking
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We propose an approximation procedure for studying dynamical symmetry breaking that closely parallels
scalar field models of spontaneous symmetry breaking. %'e focus our attention on the role a deep scalar
bound state plays in effecting a phase transition. We show that a viable approximation to the effective
potential must contain all one-particle-reducible bound-state pole structures. This dictates a Dyson equation
for the self-energy even in the simplest approximation. For theories with 4-field interactions this can reduce
to a closed-form Hartree approximation. %'e look at trilinear interactions where the Dyson integral equation
is intractible because of its nonlinearity. Without linearizing the Dyson equation we extract a bound-state
contribution to the effective potential. %'e end up with a generalized effective potential that is a function of
classical fields representing the bound state. We show that this contribution displays the proper phase
transition when the theory homes unstable due to a composite tachyon.

I. INTRODUCTION

Spontaneous symmetr y breaking in theories
with no scalar fields can occur via the effect known
as dynamical symmetry breaking. ' ' The asym-
metry of the vacuum manifests itself through the
nonvanishing vacuum expectation value of a com-
posite operator rather than an elementary field.
In quark-vector-gluon models of hadrons it is pre-
sumably this effect that is responsible for the
breaking of chiral symmetry and gauge symmet-
ries. It is also an important option in weak-inter-
action model building. ~ The implementation of this
idea ln reallsltle models poses diff leult problems ~

The symmetry breaking arises from an instability
in the normal vacuum caused by driving a scalar
bound state carrying quantum numbers to negative
squared mass, analogous to choosing a negative-
squared-mass Lagrangian parameter in scalar field
models. In this paper we focus our attention on the
bound state and propose an approximation scheme
that displays the desired phase transition in hopes
of making studies of dynamical symmetry breaking
more tractable.

A model of dynamical symmetry breaking must
contain a deep bound state, and hence this is a
strong-coupling situation with all its ensuing prob-
lems. Further, the redefinition of the vacuum is
based on a presumed nonperturbative solution of a
nonlinear Dyson equation for the matrix elements
of the composite operator (e.g. , for chiral symmet-
ry one looks for solutions of the Dyson equation
for the self-energy that give a nonzero quark mass
even though an iterative solution would give zero).
The prototype model of this effect is that by Nambu
and Jona-Lasinio' (NJL), but it side-steps both
problems. The kernel of their Bethe-Salpeter
equation is just a four-point coupling, making it
separable and hence soluble. Because of the separ-

ability, the nonlinear Dyson equation becomes an
algebraic equation (the gap equation). Although the
model displays these interesting effects in a simple
way, the binding after all is due to a contact inter-
action. The binding of quarks to produce hadrons
is presumably due to strong forces at large dis-
tances. If we model this even by single gluon ex-
change we are back to the nonlinear-integral-equa-
tion difficulties.

The complexity of this is in sharp contrast to
studies of spontaneous symmetry breaking in scalar
fieM models. There one can calculate the effec-
tive potential V(P) to a desired order and survey
it for local minima, , choosing the lowest one to de-
fine the true vacuum. We feel it would be highly
desirable to have a formulation of dynamical sym-
metry breaking that closely parallels scalar-field
models where possible. We feel that by studying
the role of the bound states we ean find approxima-
tions that separate the ponderous integral equations
from symmetry considerations to make it more
amenable to phenomenological analysis.

Basic questions to ask to this end are the follow-
ing: What approximation to a given field theory is
complete enough to (i) generate a bound state (if
the theory has one), and (ii) provide a stable vac-
uum (via a phase transition) even if the bound-state
mass m~' goes negative. Such an approximation is
a candidate for dynamical symmetry breaking.
Clearly for (i) perturbation theory is inadequate,
but a ladder approximation or bubble sum may
work. For (ii) neither of these is sufficient but a
Hartree approximation may work. This is clear
from recent work on the O(N) o model. ' ' We
showed6 7 on general grounds that as a bound-state
mass m~' approaches zero, the effective potential
V(@) develops a branch point in P, that there is
another minimum on the second branch, and that
the minimum drops below the old minimum as
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FIG. 1. Schematic behavior of the effective potential
(a) for weak coupling, (b) for the case in which deep
bound state (mass mz) exists. For case tb) the effective
potential has two branches as shown. As m&2 goes
negative the minimum on the second branch, V2, drops
below the original minimum, V&.

~~' goes negative. We further showed that the
large-N limit of the O(N) o model (which is a Har-
tree approximation) is complete enough to display
this effect. The bound state is an O(N) singlet, and

hence no symmetry is broken. However, the ap-
proximation is identical to the NJL' model in which
the bound state is a chiral doublet and chiral sym-
metry is broken. Both models have a four-point
interaction term, a bound state from a bubble sum,
and are solved in the Hartree approximation.

In this paper we generalize these results to the
case in which the binding is due to particle exchange
rather than a contact interaction. An example
would be a qp„qp" vectox'-gluon-quark model.
However, we stick to a scalar version, Q'0, of
this coupling. The reasons are simplicity in form-
alism and renormalization, to keep close contact
with the O(N) o model, and because we feel the ap-
propriate approximations can be found this way.
We examine the simplest approximation that
displays the desired effect. (By "simplest ap-
proximation" we mean the minimal subset of
Feynman graphs. ) To find the effective potential
one must still solve a nonlinear Dyson equation
which is intractable. However, we show how to
isolate the bound-state contribution to the effec-
tive potential without neglecting the nonlinear
effects. We further show that this contribution is
responsible for the phase transition where m~' goes
negative. We end up with an approximate effective
potential that is very similar in form to that of the
O(N) o model for large ¹

We are using a model in this paper that is un-
stable, i.e. , the Q'o interaction. V(p, o) almost

certainly has no lower bound for large fIt) and o.
However, we are interested only in small Q and 0
and how the choice of subsets of Feynman graphs
dictate a phase transition there. The same Feyn-
man-graph topology is applicable to trilinear coup-
ling theories that probably are stable such as the

qy„qU" theories. The O(N) o model in the large-N
limit is also unstable in that the real part of V(P)
goes to -~ fox large Q. However, it still has in-
teresting small- Q behavior.

In Sec. II we make a heuristic connection between
dynamical approximations and a phase transition.
It is partly a review of earlier work6' and is in-
tended to motivate the formalism that follows. In
Sec. III we give an implicit expression for the ef-
fective potential, V. This is taken from a paper by
Cornwall, Jackiw, and Tomboulis' and adapted to
our problem. In Sec. IV we extract the bound-state
contribution to V. In Sec. V we show that the re-
sulting V has a phase transition, and we compare
it to results in the O(N) o model.

II. DEEP BOUND STATES AND PHASE TRANSITIONS

We would like to review briefly how a deep bound

manifests itself in the effective potential and how a
phase transition can occur when the bound-state
mass, m~', goes negative. "Qur intention is to
show in a simple heuristic way how these consider-
ations lead to the standard models of dynamical
symmetry breaking. If a theory has a deep bound

state, it is possible to isolate the bound-state con-
tribution to the effective potential. It is then easy
to see what subsets of Feynman graphs will pro-
duce this contribution and hence what sets allow
for a phase transition where m~' goes negative.

Let us consider a massive Q theory. For weak
coupling, the effective potential reduces to the tree
approximation:

rn2
V&„.(4) =

2
4' +4—,0 ~

If ~ and I' are positive this potential has a mini-
mum at /= 0 as indicated in Fig. 1(a). Let us as-
sume that the coupling is increased and that a deep
bound state of two @'s is formed. ' Even if we can-
not calculate V(Q) for strong coupling, one can
argue that the bound-state contribution dominates
for m~' sufficient1y small. To see this we note the
following: V(P) is the generating function for one-
Q-particle-irreducible n-point functions at zero
momentum 1"™(0 0) The I'"'({P)) do not
have Q poles but do have bound-state poles. If we
isolate the pole structure in I'"'({P,)) with the max-
imum number of poles, then at zero momentum it
will have the maximum power of 1/ms . Since
we are interested in small m~2, this will give the
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B
(2.2)

and P is the bound-state-2$ coupling, y the 3-
bound-state coupling. Summing the series gives

leading bound-state contribution to V(Q).' In Ref. 6
we isolated this contribution as shown in Fig. 1(b)
and it leads to the following expression for V:"

m~ m ~ (2i)!$'
V(P) 2 4 P 8 g. 2 ~

}
('

2)
(2'2)

V(P, )t} must lie on the constraint Eg. (2.7). Hence,
all the stationary points of V(Q, )|}are given by the
solution to the equation dV(g)/d$=0. For either
case the gross features of the new vacuum are de-
termined by the couplings of Q and g.

In this discussion so far nothing has been said
about symmetry. The generalization is clear: The
effective potential Eq. (2.5}would become an invar-
iant function of f, and g, and the constraints would
read

(2.8)

V(P) =
2

@'-
6

. [2$ —2 + 2(1 —$)'"]. (2.4)

This function has a branch point at P' =ms'/Py and
is complex for f' larger than this value. The im-
portant features of this result" are that (i) there
is a second real branch to V(P) [see Fig. 1(b}],
(ii) the second branch has a minimum at / =0 [V,
in Fig. 1(b)j, and (iii) the minimum V, drops below
the old minimum V, as m~' goes negative. Hence,
as the theory becomes unstable due to a composite
tachyon, a new vacuum state at lower energy ap-
pears. This bound-state contribution to V(P) is
sufficient to show the effect. One can further show
that in the new vacuum the composite particle has
positive mass.

Let us contrast this with the situation in which
the small-mass particle is elementary with a cor-
responding field g. Then the effective potential
would be a function of the bvo fields Q and g of the
form

V(0» X) = 0'+ g'+ —O'X+—X'+ ' "
~

(2.5)

For m~~ &0 the minimum of V is at Q = X=O. For
m ~'& 0 the minimum shifts in the usual way to
/=0, ge0, defining a new vacuum with positive
mass excitations.

Any difference between the bound-state and ele-
mentary-field cases in this discussion is illusory.
The two expressions for V—Egs. (2.4) and (2.5)—
are simply related by the constraint

The vacuum is defined by the stationary points of
V(Q„y ) and the Goldstone phenomenon follows ex-
actly as in the g field case.

In looking fox models thai display this type of
phase transition it is clear that the effective po-
tential must contain the pole structure shown in
Fig. 1(b). An example is the Hartree approxima-
tion. ' In $4 theory this approximation consists in
summing graphs of the type shown in Fig. 2(a).
(These are vacuum graphs containing couplings to
external classical field Q.) The characteristic
feature of this set of graphs is that the bubbles are
hooked together to give the topology of trees.
(There are no "loops of bubbles. ") One can sum
the chains of bubbles and if there is a bound state
in the chain it will lead to a pole structure shown
in Fig. 2(b). This is just what we need" according
to the above discussion.

An example of this model with an internal sym-
metry is the O(N) o model. However, the bound
state is an O(N) singlet and hence no symmetry is

(a) aug

V(4 ) = V(4, X(P)),

where g(P) is given by the equation

(2.6) t !
i i i

& V(4". X)

~x
(2.7)

This constraint procedure to eliminate g simply
sums up the one- g-particle-~educible pole terms
'that must be present ill V(Q) 1f j( ls not an element-
ary field. Clearly all the stationary points of

FIG. 2. (a) A typical vacuum graph that occurs in
the Hartree approximation for theories with four-field
interactions. These are chax acterized by bubbles hooked
together to form trees. (b) Summing the chains of bub-
bles can form bound states denoted by wavy lines. (c)
Corresponding graph in the generalization of the Har-
tree approximation to theories with trilinear interac-
ticns. This also has the bound-state structure (b)
arising from a ladder sum.
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broken by the phase transition. The Nambu-
Jona-I asinio model has a four-fermion interaction
and sums the same set of graphs. Here the bound

state is a chiral doublet and chiral symmetry is
spontaneously broken.

This phase transition occurs in Q' theory in a
particulary simple approximation, and one can get
a closed form for V(P). The reason is that the
Bethe-Salpeter kernel that generates the chain of
bubbles is just a contact interaction which is sep-
arable. 'The momentum integrals for each bubble
factor. The simplest generalization to a /~a theory
can be obtained by replacing the contact interac-
tion by lo exchange as shown in Fig. 2(c}." If we
sum the ladders and there is a bound state we will
again generate the desired pole structure. The
pxoblem is that now we must solve a nonlineax in-
tegral equation to obtain V(P). The class of graphs
are those with one Q loop and planar o corrections
across the interior of the loop. This set of graphs
is the same as the standard quark-vector-gluon
models of dynamical symmetry breaking with Q

q, e—V~ as we will show later.
A closed-form solution even in this approxima-

tion appears to be out of the question. However,
the discussion in this section suggests a further
approximation that will at least preserve the phase
transition and that is to do a spectral decomposi-
tion of the ladder sum and keep only the lowest-
lying bound state. This approximation to the ladder
sum is separable simply because the pole factor-
izes. 'The remainder of this paper develops this
idea. We can get a closed form for the effective
potential that displays the phase transition in terms
of (unknown) wave function which is very similar
to the P4 Hartree approximation.

III. VARIATIONAL PRINCIPLE FOR V

The qualitative arguments of the previous section
suggest a class of graphs in P'o theory that will
lend to a phase transition if the exchange of a o
between tmo {t}'sproduces a deep bound state. The
effective potential graphs consist of the sum of all
vacuum graphs with one P loop and planar o lines
connecting across the interior of the loop. We can
get an expression for V(P, o} in this approximation
from a paper by Cornwall, Jackiw, and Tomboulis'
on the generating functional for composite opera-
tors. Their generalized effective potential is a
stationary functional of the one-particle Green's
function G(P). The stationary condition gives a
Dyson equation for Q. In this section we apply their
results to our problem.

We will give this generalized effective potential
for the theoxy defined by the Lagrangian

ge,
The modified propagator is

(3.2)

(3 3)

The ordinary propagator is D:

t'P*- m, ' 0

0 P' p,'j
(3.4)

With these definitions, the generalized effective
potential is'

V(4„G)=U(4,) ——f 2 ~ lndet[D(P)G '(P}]

2

2
d4P
(2e)', Tr[S '(P)G(P}- I]

where

+ V,(C„G),

m2 2

(3.5)

(3.6)

and V, is the sum of all two particle-irreducible
vacuum graphs in which the propagator is G (not
the free propagator). V is a function of C, and a
functional of G. 0 is arbitrary. It is fixed, how-
ever, by the stationary condition on V:

5V

5G(P)
=0 ~G =G l.t.~ ~ (3.7)

The ordinary effective potential V(P) is then

V(4.) = V(+„G l.,„). (3.8)

G l„„is a function of 4, through Eq. (3.V). To ob-
tain the Green's function of the theory we further
demand that V(4, ) is stationary in 4,:

&V(@.)
d@',

' =o~c,=c,l.„,. {3.9)

Using the stationary value of 4„G„„is the full
one-particle Green's function of the theory.

This formulation, Eq. {3.5) to Eq. {3.8) is an al-
ternative definition of the effective potential. The
advantage of this form is that one can truncate
V,(c,G} and obtain interesting approximations. G

s =-,'(e„y)(a y) --,' m, ' y'+-," (s„a)(e"c)

-aP & +ag4'0 ~ (3.1)

Let us introduce a matrix index 4, = @, 4 =o. We
then replace 4 by 4+4„where 4, is a translation-
invariant classical field. Treating it as a param-
eter we can defined a modified mass term:
--,'~, M', &4~, where
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setting it equal to zero gives the following:

fC '{P)„=f3''(P)„

FIG. 3. Lowest-order bvo-particle-irreducible
vacuum graph used as the driving term in the variational
principle for V. fC-'(P)„=f3'-'(P)„,

fc-'(P)„=f&-'(P)„.
(3.11b)

{3.1lc)
is no longer the full one-particle Qreen's function,
but contains prescribed corrections. For any
choice of the driving term V„ thisproceduxe sums
up the one-particle- irreducible graphs. Cornmall,
Jackim, and Tomboulis' show that the lowest-ordex'
driving term gives the Hartree approximation in
the 0{i)l) o model. They also show that one can get
dynamical symmetry breaking of chiral symmetry
in a quark-vector gluon model. Our interest is to
use this to extract a bound-state contribution to V
which contains the desired phase transition.

We mill choose the lowest-order gxaph for the
driving term V, which is shown in Fig. 3. This
graph is tmo-particle-irreducible. We mill not look
at the Green's function with o external lines or
possible vacuums for nonzero o„and hence me
set O, =O. Equation (3.5) then becomes

m ' i d4I'
V(C, G) = ' 4'-—,indet[D(P)G '(P)]

z() ) *)( j=-',.'~). D..(p-q)G„(q).

then

I/P'-m, '-Z gy &

gy P2 il2J

(3.12)

(3.13)

(3.14)

Hence the desired integral equation for 6» is

One stationary point of V has 4 =O. There 5) be-
comes the ordinary propagator D and there is no
mixing, and E(l. (3.lla) is a truncated Dyson
equation for the propagator. For 4wo, the equa-
tions couple but can be reduced to a single equa-
lon for ii say: Define

= P —tno—

(3.15)

xD (P-0)c l(C) (3 10)

{We have dropped the c subscript on 4 and will do
so below. ) Taking the variational derivative and

For convenience me define g as follows:

(3.16)

m02, i d'P P' y, (P) i-d'P P' —m' -g 'Q'/(P' —il')
(2.) '" P —, 2 (2v) I - g(P)

d'P . d'q
(2v)' (»)' P'- X(P) (P-e)'- il' e'- X(q)'

(3.17)

5V/5)f=O gives

X(P) =~.'+~ "„.

(»)' (P-e)'- il' q'- X(e)
'

(3.18)

This theoxy is superrenormalizable and only re-
quires a mass counterterm:

(2v)'( '-iif')' '

I is the renormalization mass and can be chosen
as one pleases. Our approximation does not gen-
erate self-energy for the 0 and hence p,

' requires
no counterterm. V((t), y) is not yet. finite but the
divergence is contained in V(0, ~~), where 1~~
is the solution to E(ls. (3.18), (3.19) with /=0,
as will be discussed below. The Green's function
generated by V(Q, g) are all finite.

IV. BOUND-STATE APPROXIMATION

In this section me show hom to isolate a bound-
sta'te contrlbutlon to V((t)) i'). Tile organization is
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as follows: We first look at the four-point function
defined from V and see that it satisfies a Bethe-
Salpeter equation:

2 2
V""=3 g" 0)+ (4.7)

T=g K+@ KGT, (4.1)

where K is a 0 exchange kernel and G is the pro-
duct of two P propagators (containing self-energy
corrections). We assume the homogeneous equa-
tion has a solution

2xll(p)—
p

+ fg
xo"(q)

(2&)' (P-q)'- I' fq'- x.(q)]''
(4.8)

f, =g, 'KGf, (4.2)

V'(V) = +
8V
erg

d4P 6V
X 7 (4 4)

corresponding to a bound state at zero energy. We
then project the kernel onto the state f,. This gives
a separable kernel expressed in terms of the
bound-state wave function f, . Inserting the separ-
able kernel back into the variational principle for
V we obtain the desired bound-state piece.

Let us then examine the four-point function im-
plied by V to find the Bethe-Salpeter equation which
it satisfies. We know it is a ladder approximation
but we must identify the corrections to the prop-
agators. The one-particle-irreducible four-point
function at zero momentum is

I'((P,)) ~...=-V'"'(4}~ (4.3)

where a prime denotes d/dP. In Eq. (3.17), P
enters explicitly and implicitly in p via the con-
straint Eq. (3.18). Note

The subscript zero indicates Q is zero. We see
that X"(P) satisfies a Bethe-Salpeter equation in
which the Q propagators are [q' —X (q)] '. X is a
solution of the equation

d' 1 1
X P)=m '+ig' q

(»}' (P- q)'- u' q'- x.(q)
'

(4.9)

The inhomogeneous term in Eq. (4.8) contains a
factor of 2 corresponding to the two cross channel
exchanges. V"'~ ~, is one-particle irreducible,
and the one-particle exchanges are subtracted out
of the ladder sum. The factor of 3 comes from the
ladder sum in the three channels. If g is such that
there is a bound state at zero energy, then the
eigenvalue equation has a solution

d'q I fi(q)
(»}' (P-q)'- u' [q' - x.(q) ]' '

(4.10)
and since the variational derviative is zero

av 2 2

=e x(0)+

Therefore,

(4 5)

(The subscript 1 refers to the fact that it is the
first or lowest bound state. )

Returning to the variational principle for V(P, X),
Eq. (3.17), let us separate off the /=0 part. Define

2V'"=3 X"0+, +AX"'0 .

Specializing to @=0 gives

(4.8)
X (P) -=X(P) —Xo(P),

V(Q X)
=—V(Q X) —V(0 Xo) .

Substituting this in Eq. (3.17}gives

(4.11)

d P X(P) , X(P)
(2v)' P'- X.(P) P'- X (J )

4 ~ (2 )' (2w)~ (P —q)' —n' (4.12)

where

x(P)
fP'- x,(P) —x(P)]P —x,(P)]

(4.13)

x(P) satisfies the equation

&(q)
(2&)' l(P —q}' —A '

(4.14)

We still have a nonlinear integral equation to
solve —Eq. (3.18)—which is intractable. In the
discussion that follows we will not need a solution
of this, but will need X,(P) which satisfies an
equally bad equation —Eq. (4.9) which is obtained by
setting /=0. However, we are interested in the
p dependence of V, and since y has none its detail-
ed form does not play a role in demonstrating the
phase transition. Hence, we will treat the propa-
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gator [q' —x,(q)) ' as a given function of q. x also
depends on g which we will be varying in the
neighborhood of g, . For definiteness let us imagine
fixing g to be g., in this propagator.

We note here that V(p, X) is finite. X,(P) is finite
because of the mass renormalization, Eq. (3.19).
X(P}-1/P' for large P, as follows from Eq. (4.14).
Simple power counting shows all the integrals are
finite.

Next we project the kernel of the Bethe-Salpeter
equation onto the lowest bound state. We can do
this by replacing [(P- q)' —p, 2] ' in Eq. (4.10) by
a separable form in P and q that will give the same
eigenvalue g, ' and eigenfunction f, :

d'q fl(q)'
(2&)' [q'- x.(q))'

Substituting Eq. (4.17) in Eq. (4.14) gives

(4.18)

-
p -fl(p)S'

X( ) (fGf) 2

x (t)2, 0)+j d
(x ) A(x)&(x))

(4.19)

Hence, we see that X(P) is proportional to the
bound-state wave function f, (P). So let us write

x(P) = xf (p) . (4.20)

1
(p ), , -f, (P)cf, (q), (4.15)

Inserting this in Eq. (4.19) gives an equation relat-
ing (t} on y.

where c is a constant determined by the above re-
quirement:

xg, '(AGf, ) -g'[-0'f, (0)+ x(f G-„f,)],
where

(4.21)

f, (p) =~,'f, (p)cl
d'q fl(q)'

(2v)' [q' —x.(q)]'
' (4.16) fl(q)'

(»)' [q'- x,(q) —xf, (q}][q'- x.(q)]
'

Therefore, we should make the replacement

1 -1
(P-q}'- u' ' g'(f Gf, ) '

where

(4.17)
(4.22)

Finally let us insert the separable kernel in the
equation for V, Eq. (4.12), giving

f2
)'(4, xf ) xx.(o)'=x,'G" )' A(0)) —

x
xfl(p} xf (p)

(»)' — P'- x,(P) P'- x,(P)

xp8™
4 X (flG xfl) 2(f G f }

+1Gxf1} ' (4.23)

Using Eq. (4.21) we can eliminate (f, G-„f,) in favor of (f,Gf, ). (f,Gf, ) is the normalization integral for the
eigenvalue equation ing2, Eq. (4.10). Let us denote it by ¹

fl(p)
(2 }4 p2 (P) (fl f1}'

Our final form for V is then

v((f, xf, (p)) =2 0'(x.(o)+ xf, (o))-
2

Xfl(P) Xfl(P) I Xf, (p)
(2&)' P' —x,(P) P'- x,(P) 2 P'- x.(P)

(4.24)

(4.25)

(4.26)

(t's' fl'(o) +
(gl'-g')x'&

4g, 2 N 4g

This approximation has determined the P dependence of x(P} to be f, (P). The variation of V with respect
to X(P) is now reduced to the ordinary derivative of V with respect to X. SV/SX =0 gives

SX 2 ' 2 (2v) (P —Xo)[P —X —Xf, (P)] 2g'

This is the gap equation which we already obtained
above, Eq. (4.21), directly from the variational
constraint.

To recapitulate, we started with a variational
principle for V giving a nonlinear Dyson equation
for X(P). We then imagine solving the problem

for (t) =0 givmg Xo(P) and V(0, X,). Of course we
cannot solve this problem but the detailed form of
x (P) is not needed to exhibit the phase transition
and V(0, X,) is an irrelevant constant. In Sec. II we
claimed that if there is a deep bound state, it con-
trols the small-(t} behavior of V. We pick out the
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bound-state contribution by projecting the Bethe-
Salpeter kernel on the lowest bound state. As a
consequence we learn that X(P) = X,(P) + Xf,(P)
Our expression V, Eq. (4.25), is now an ordinary
function of fIt, X.

The effective potential is a quantity that has a
meaning prior to choosing a vacuum. Our appx'oxi-
mation scheme is based on the properties of a par-
ticular vacuum. This does not preclude us from
then surveying the effective potential for other
stationary points to find other vacuums. The exist-
ence of a deep bound state in one implies a nearby
stationary points with a composite tachyon. As g 2

passes g, , the vacuum must shift from one point
to the other.

FIG. 4. Diagraxnmatic interpretation of our final ex-
pression for V, Eq. (5.4). Wavy lines represent the
bound state.

V. INTERPRETATION OF V

Our expression for V(g, X}, Eq. (4.25), has a
simple diagrammatic interpretation. It is the one-
@-loop generating function for one-particle-irre-
ducible vertices of Q's and X's at zero momentum,
where g represents the bound state. It is almost
identical in form to the effective-potential expx'ess-
slon dellved by ColemRQ, Jackiw, Rnd Politzer fox'

the O(ff) c model, Ref. 5, Eq. (2.5). There the
bound-state wave function is a constant in momen-
tum space because the Bethe-Salpeter kernel was
a contact intex action, whereas the wave function
shows up explicitly in our problem. If we elminate
X via tbe constraint 9V(p, X)ls X = 0, we get V(p)-=V(p, X(p)) which sums up the one-bound-state-re-
ducible graphs giving the generating function for
one- ft)- lx'1 educible gl'Rphs,

Thex'8 ls one hitch lD this lntex'px'etatlon of
1}'(Q, X). We have not yet set the scale of X.

Changes in scale of X will drop out of t)'{p). We
still have the normalization constant N at our di-
sposal. The X' term in V(Q, X) should be —,

' ms' X'
for our interpretation to be correct. Hence, let us

choose N such that

(5.1)

8Q'
g'(ms') =g,'+ ms'

8

Therefore, Eq. (5.1}is approximately

(5.2)

2 2 {5.3)

fI(P)
(2w)' P'- X,(P)

With this condition, V becomes

The mass m~ has not yet entered in our discussion
because our eigenvalue pxoblem was in g' rather
than s. %8 did 'th18 ln ox'der' to %ox'k Rt zex'o mom
entum. However, the eigenvalue problem at finite
energy determines ms'(g') or alternatively
g'(me'), where ms is the mass of the lowest bound
state. Fox small m~',

t)'(4, X) =-' X.(0)4'+km, 'X'+-'f, (0)0'X

Xfi(P) Xfi(P) 1 Xfi(P) ' g'f, '(0}
(2v)' J'- X,(J') I '- X,(J') 2 P'- X,(J ) - 4g, 'X

(5.4)

Figure 4 gives the fix st few diagrams resulting
fx'onl expRndlDg p ln Q RQd g. The px'opRgRtox's ln
tbe loops are [q' —X,(q)] '. Tbe last graph needs
some explanation. It comes from the Q~ term in
Eq. (5.4). To see that it is a one o pole graph
remember that we pxojected it onto the bound-state
wave function Eq. (4.17). Tb1s graph must not ap-
pear in V(Q) because it is one-o -reducible. This
graph shows up in V(p, X) with the wrong sign, and
it cancels the unwanted graph that is generated when

when X is eliminated to give V(p).
%8 have xeduced the problem of exhlbltlng the

phase transition to finding the stationary points of
V. Ne restrict our attention to stationary points on
the line @=0. [This is a solution to SV(@,X)/S@
= 0.] Then

V(0 X}= X'+ —X'+
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2m4 P'- g, P

For mB' positive, there is a local minimum at
zero with curvature mB'. For mB' negative, the
local minimum shifts to X=-2m''/y, with curva-
ture =-mB'. This is the basic effect. For more
detail on the small-mB' limit we refer the reader
to the earlier paper, Ref. V.

We can write V in terms of P and (X- X) and
thereby exhibit the couplings in the new vacuum.

We first get an expression for g:

0=m +-x&
B 4

xfi(»'
(2v)' (f"- X,)[I"-X, —Xf,(»] '

We cannot solve this for g but can use g as a vari-
able in lieu of mB'. The expansion about the new
vacuum gives

&(0, x) =I'(o, x)+-'[x.(0)+xf (0)JA'+2f, (0)0'(x- x)

—,i d'P xf~'(f')
(2w&' [z' —x.(»' —&(f,(»'1'[& —x,(p&(I

(x- x}fi(p) (x- x)fi(» I (x- x)f,(I')
(»)' &- x.(p)- xf, (p) p'- x.(f')- xf,(» 2 f"- x,(p)- xf, (

For mB'&0, g&0 and g=g is the correct minimum.
The coefficient of —,'(X —g' is -m~' to first order
in g. In this vacuum, the Q propagator is
[P'- x.(» —xf.,(»l '.

In a theory with internal symmetry V would be
an invariant function of (I[&, and X,. In the translated
vacuum g would occur as a parameter in the coup-
lings giving spontaneous symmetry breaking just as
if g, were an elementary field.

VI. SUMMARY AND CONCLUSION

In this paper we proposed an approximation pro-
cedure for studying dynamical symmetry breaking.
We focus our attention on a presumed deep bound
state in a theory and look for the simplest approxi-
mation that will give a phase transition if the mass
square of the bound state, m B', goes negative. One
is led to a nonlinear Dyson integral equation for the
seU-energy. Even the simplest approximation is
intractable for all theories except those with a
four-field interaction such as the 0(N) o model and
the Nambu-Jona-Lasinio model. We eschew lin-
earizing the Dyson equation. We use the foxmula-
tion of the effective potential V given by Cornwall,

Jackiw, and Tomboulis' which is a functional of
the self-energy. This is a variational principle
for Vwith the self-energy as a trial function. Vfe
show how to isolate the bound-state contribution
to V. This contribution displays the desired
phase transition as mB' goes negative. The non-
linearity of the Dyson equation is preserved by
our approximation and plays an essential role in
defining the new vacuum. The problem of dynami-
cal symmetry breaking is reduced to surveying the
effective potential for stationary points in the
classical field variable representing the bound state
just as one would do in a v model.

In working with scalar fields we have brushed
aside many of the important problems in the cur-
rent view of hadrons based on quantum chromody-
namics (@CD). However, we feel this has applica-
tions to @CD where $-(luarks, o- colored gluons,
g- hadrons. This formulation provides a vehicle
for relating gauge theories to the cr model. The SU3
0 model gives a very good account of low-energy
meson dynamics even at the tree-graph level. It
is not a fundamental theory, but we feel it is not
generally recognized that it could emerge from an
approximation to a more fundamental theory.
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SWe wish to side-step the question of the existence of a
bound state in this theory with no internal symmetry.
We use this model to illustrate the pole assumption.

This implicitly assumes the couplings go to constants
as m&2 goes to zero, This is not necessarily the case
in massless theories, and these arguments must be
modified.

' ~2 is shorthand for -6& ~(0), the renormalized pro-

pagator at q~=Q. p is the renormalized field.
~~This approximation also generates couplings of more

than three bound states. These are nonleading for
small mz . See Ref. 9.

~2This approximation is a leading term in the 1/N ex-
pansion in an O(N)-symmetric theory if we assign p&
to the N-dimensional representation and 0 &; to the
IN(M+1)/2 —1)-dimensional representation 0 ~&

is
traceless and symmetric. Then each closed loop
shown in Fig. 2(c) picks up a factor of ¹


