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We present a nonperturbative formulation of the anti-Hermitian cubic Reggeon field theory (RFT) in terms

of a single field g. We analyze the structure of RFT as ao is increased above 1 and clarify the relation

between the perturbative vacuum and the classical stationary points. A canonical transformation is performed

so that the new Hamiltonian depends on the sign of 50=1 —ao only through a potential of the Landau-

Ginzburg type. Our one-component theory is normal-ordered with respect to the original Pomeron field

without tadpoles, and it allows a path-integral formalism with undistorted contours. For ~50~/go large and

6p ( 0, we formulate two different and yet equivalent analog models. We unambiguously derive an analog
model in terms of a single classical spin at each rapidity —impact-parameter site. Through the use of an

asymmetrical transfer matrix, we obtain a kinklike ground-state configuration for the D = 0 model.

Alternatively, by going on a lattice for the impact-parameter space only, we arrive at a quantum lattice-spin

model. We explicitly demonstrate that the quantum spin model at D = 0 is equivalent to the classical lattice

spin model.

I. INTRODUCTION

Much of the recent work on the asymptotic be-
havior of high-energy hadron interactions has been
carried out within the framework of Gribov's
Reggeon field theory (RFT),' in which the bare
Pomeron is treated as a quasiparticle and is as-
sociated with fields g(f, b), g(t, b) in one "time"
and two transverse-space dimensions. Renormal-
ization-group analyses' using the e -expansion
technique strongly suggest that the infrared be-
havior of RFT is analogous to the scaling phenom-
enon of a many-body system at a second-order
phase transition, and, in particular, the critical
point occurs at oo& 1.' However, the specific
nature of the Pomeron critical phenomenon is still
not understood, partly because the E-expansion
results are quantitatively unreliable. A further
complication is that the bare perturbative expan-
sion is not well defined in the case no&1. There-
fore, much of the current effort has been directed
toward finding nonperturbative approaches to the
study of critical behavior of RFT.4

In this paper, we present a nonperturbative
formulation of RFT which not only allows a smooth
continuation from n, &1 to n, &1, but also leads
to an expansion capable of treating both regions on
an equal footing. Instead of using two independent
Pomeron fields g and g, we reformulate RFT with
an anti-Hermitian cubic interaction' by working
exclusively with a single field y. , lt = (tt —p)/2i.
We analyze the structure of RFT as &p is increased
above 1, and clarify the relation between the per-
turbative vacuum and the classical stationary

points. We concentrate on the "kinematic" aspects
of our nonperturbative treatment, and do not in
the present analysis attempt to discuss the actual
critical behavior of RFT at D=2.

The key to our alternative formulation of RFT
is the identification of an appropriate gauge trans-
formation so that the transformed Hamiltonian,
H, has its kinetic and potential components sepa-
rated. Our theory has no tadpoles and is normal-
ordered with respect to g and tt). Furthermore,
the kinetic energy component depends only on

(g =1 —n ), and the dependence on the sign
of +0 is iso lated in a sing le potential function. We
explicitly exhibit that the evolution from b,,&0 to
Lrkp +0 is primari ly contro lled by a transition of the
"Landau-Ginzburg" type in which the potential
switches, as 4, changes sign, from that of a sin-
gle minimum at X=0 to that of two symmetric
minima at lt=+

~
h, ~/g, (see Fig. 1). As a, conse-

quence, we are able to show that, in.the path-inte-
gral formalism of RFT, once the theory is defined
for @0~1with integration paths along real axes,
no contour distortion is necessary as n, is in-
creased above 1.

Our formulation is nonperturbative with respect
to the original bare expansion. Nevertheless, a
new quantum expansion is derived which treats
both ao&1 and no+1 regions on an equal footing.
At ~0&0 and go/L, -O', this new expansion ap-
proaches the original free-field result; but, at
d, &0 and g,/6, —0, a completely different limit
is reached. This latter limit is just as simple in
structure as the original Ao&0 limit, and it is re-
lated to the bare perturbative region through
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can be seen by the fact that for y, &y„

&0lc(»e(» I»= «0
I @(»y(» IO&

=4&oIx(2)x(l)IO).

So long as d, &0, it is easy to identify the positive-
frequency component with the annihilation opera-
tors and the negative-frequency component with

the creation operators, and Qo ambiguity can
arise.

The situation is more involved when 6,&0; for
simplicity, let us consider the &'= 0 limit so that

j= -gQ and p = gy, for free fields. Reversing the

sign of g is seen to be formally equivalent to in-
terchangingg

the positive- and negative-frequency
components of f and g. This, in turn, leads to (
being of negative frequency. However, the original
construct of RFT requires 8 to be an annihilation

operator, independent of the sign of ~,; care must
be taken in applying the second-quantization pro-
cedul e.

The above argument wouM be relevant if BFT
were to be defined at 4o& 0 perturbatively. How-

ever, this view is not supported by phenomenologi-
cal analyses based on the short-range correlation
picture. Although the "two-component" analysis"
justifies a perturbative treatment of the pomeron
interaction, the effective bare Pomeron intercept
is less than 1 at low energies. Owing to the "mul-
tiperipheral threshold effects, " the effective b,,
is energy-dependent; it is renormalized upward
and probably has justpassed n, =1 at ISR ener-
gies. '2 On the other hand, the triple-Pomeron
coupling is known to be nonzero from inclusive ex-
periments. Therefore, we adopt the view that,
whereas HFT is defined perturbatively for +&0,
the 40&0 region must have a smooth continuation
to the 4,&0 region with the interaction left on. We
shall show in Sec. II that, under this hypothesis,
the switching of positive- and negative-frequency
components does not take place, and the relation
X =-hog does not hold when go-0 after the contin-
uation in 60.

"Landau-Ginzburg" form. This transformation
then allows us to carry out the stabibty analysis
for ~o&0 and ~o &0 on an equal footing.

and the X field is given by

x=(&.+fr,4) '5 . (2.2)

Equation (2.1) can be shown to follow from a La-
gr anglany

2

0+ &04

and the corresponding Hamiltonian is

H,(o)(y, p, ) = (y'+p, '/4)(r, +fg,y),
where

(2.3)

(2.4)

81P = —.=2X. (2.5)

For 4, &0, the '*ground state" corresponds to fI))

=X=0; an expansion in go would lead to the classi-
cal perturbative result. However, as + becomes
negative, a degenerate pa.ir of ground states occur
at p = i &0/go, x = +

I 4, I /g, . Since the coefficient
of (f' in (2.3) diverges at these points, it becomes
inconvenient to discuss the motion in terms of p.
As we shall explain in subsequent discussions, the
most natural procedure for exhibiting the struc-
ture of HFT at ~0& 0 is by working exclusively
with the X field."

A. L($,$) at 8 = 0

The choice of a X field for our reformulation of
RFT might seem arbitrary at first, since (I'D)

and

X are equivalent at the free-field level. For a
cubic interaction, it is actually easier to start with

the Q field since the equation of motion, for trans-
verse dimensionality D =0, has a relatively sim-
ple form

~0

r)0+ igo/ 2 (ho+ igo/ )
0 2

(2.l)

II. ONE-COMPONENT CLASSICAL RFT

Our primary aim in this section is to provide
an exposition on the stability of classical motion
in HFT as one continues 40 from a positive to a
negative value. Since we are not at this moment
interested in solitonlike solutions, the relevant fea-
tures occur already in the limit n'=0; we there-
fore restrict ourselves to treating the D =0 prob-
lem only. In our analysis, the time variable v

=-iy is kept real. Our strategy is first to find a
Hamiltonian which leads to the correct equation
of motion and then to perform a "gauge transfor-
mation" which transforms the "potential" into a

B. One-component RFT at D = 0 and gauge transformation

Because of Eq. (2.5), the Hamiltonian for
y, H(")(X,P„), can be obtained from H(~)(P, P~) by
a canonical transformation via the generating func-
tion F,(@,)() =2(f))(. Using P„=— BP,/By. = 2@,-
P =BE,/BP =2y. , and Eq. (2.4), we obtain

(2.6)

The corresponding one-component Lagrangian can
be obtained once one solves P„ in terms of X and

In what follows, the superscript X will be
dropped.
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%e begin our alternative formulation of BFT by
performing a gauge transformation mhich shifts
P„ to P„by

(2.7)

&h) =- (g'+ 2g,'x')"'.
the generating function for this tx'ansformation is
P, (X, P„)=XP„+A(y}, and the new Hamiltonian be-
comes

H, h, P„)=-'&(x)P„'- 6'P, '+ L', (x), (2.9)

mhex'e the "classical potential" of BFT is

The potential possesses the folloming interesting
features: (i) it is an even function of X,. (ii) It is
non-negative and has zeros for its minima. (iii)
For n &0, it has a unique minimum at X =0. (iv)
For il &0, it has symmetric minima at X=+~&,~/

go. These features are schematically represented
in Fig. 1. The transition from a single minimum
to two symmetric minima as g changes sign is
the characteristic feature of a Landau-Ginzburg
potential. Since 6(x) is even in X and 4(x) ~

~
X

~

as X-a~, Eq. (2.10}is similar in structure to its
counterpart in a (t)~ theory, U=m2$'+ Xf~.

C. Boundary conditions for RFT

In ordex to appreciate our motivation for per-
forming the gauge transformation, (2.7), and to
gain a better understanding on the structure
of BFT, let us return to the original Hamiltonian,
Eq. (2.6), whose canonical equations are

8H Sg d 'g
x= '=- ' +—' -—'x

x 2 x
x

8H
Px= - ' = -»Ao- igPx)X

(2.11)

(2.12)

Equation (2.11) allows us to solve for P„, which
leads to tmo x'oots. This indicates that our BFT
formally contains several branches; the branch on
mhich the correct physics lies must be specified
by additional boundary conditions. It is clear that
the correct description must possess a smooth
perturbative limit, go- 0, when +&0. As we have
already emphasized in the Introduction, the phe-
nomenological success of the short-range-corre-
lation picture at current machine energies suggests
that the 6, &0 HFT should be defined as a smooth
continuation of 40& 0 BPT mith go held

nonhero.

In the limit g0-0, do&0, an inspection of Eq.

(2.6) indicates that the minimum-energy configura-
tion corresponds to X=P„=X=P„=O T. his is suffi-
cient to fix the relation betmeen X, X, and P„, and
the desired branch for HFT is specified by

P, (X, X) = (2/»g. )I~h) —[d(X)' —6igj(]" ]

2 s Sgg s2 Og~ e

A( ) X+&hP X —
&( }5 X +'''

~

(2.15)

(2.16)

This property is correlated mith the absence of a
term linear in P„for our transformed Ha,miltonian.
We emphasize that either Eq. (2.13) or Eq. (2.15},
witll 4(x) lloll-llegatlve, ulllqllely specifies HFT at

g0
Since Px 0 Rs g 0 Rnd 81nce Px depends only

on 60' [through d (X)], we have achieved in Eq. (2.9)
a clean separation betmeen the kinetic and poten-
tial components of our classical Hamiltonian,
where the only dependence on the sign of 6 is in
the classical potential, U, h). Equation (2.9) is
particularly useful for studying small oscillations
of classical BFT and their dependence on 40.

0, Stationary points of RFT

%e emphasize that, because of our choice fox'

P„, Eq. (2.13), the stable motions of the system,
for Ao&0 or 40&0, are completely specified. In

general, possible stable solutions occux' about sta-
tionary points of the system, defined by X=P„=0;
from (2.11), (2.12), and P„=-2&, they are

)[g-(g'+sg, mx'-6igp)" 2]. (2.12)

For X small, P„becomes

[&.—~(x)]+ x+o(x') . (2.14)
»go b. X

Near X=O, snd for +&0, we find P„=(2/A, )X, in
agreement with the free-field result, Eq. (1.2).
On the other hand, when b,,&0 and X = + g /g„
the relation becomes P„=2i~ L, ~/g, +X/ 60, a re-
sult quite different from that naively expected
based on (1.2). Note that the coefficient of X in
(2.f4} alneys remains positive independent of the
sign of rh . This guarantees that positive-energy
states would remain positive as g becomes nega-
tive and no Beggeons mith zero-energy intercept
greater than I mould appeax. The price one pays
is that the relation betmeen P„and X is not almays
of the canonical form for X small at +&0.

We have chosen our gauge transformation, (2.7),
so that the condltlon Px 0 Rs X 0 18 automatically
satisfied for the shifted momentum, P„; it folloms
from (2.13) and (2.8) that
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(a} X=O, (j(=0,

(b) X=O, (j(=2ig/Sgo

(c) x= [d.l/g. , e=fw/g. ,

In terms of X and I'„, by using (2.7), they become

(a) x=o, T„={2/»g,)(lgl-~, ),
(b) x=o, I'„=(2/»g, )(lgl+~, ),
(.) x= l~, l/g. , I-„=«/»g, }{l~l.~.),

(2.17)

(2.18)

These stationary points have "energies" E,= 0,
E,=-r;(&,'/g'), E, =O, E,=O, respectively. How-

ever, some do not satisfy our HFT boundary con-
dition Eq. (2.12), or Eqs. (2.15}and (2.16). For
&0&0, fixed points (b), (c)„and (d) are incompati-
ble with Eq. (2.16); the only candidate left is the
"perturbative" stationary point, (a). Although

E~&E„ for 6,&0, point (b) does not lie on the cor-
rect branch because it does not admit a perturba-
tive solution. As we continue to d, &0, point (a}
is no longer compatible with Eq. (2.16); all three
remaining stationary points are of the "nonper-
turbative" type. We shall show shortly that points
(c}and (d), for b, & 0, are "stable" in the same
sense that the perturbative stationary point, (a),
is stable for 4o& G. On the other hand, point (b),
at +&0, withE~ &0, is seentobe unstable. Ourre-
sult should be contrasted with that of Cardy and Sug-
ar, who first arrived at a similar conclusion for the
quantum HF Tby analyzing the path integrals defining
the theory. We shall come back to this point in
the next section. On the other hand, our analysis
differs from that of Hef. 8 because their classical
theory is already Wick-rotated.

The shift from (a) to (c)and (d) as b,,changes sign
corresponds to a shift in the ground' state of the
system; thus, formally, a change in the "vacuum"
has taken place. However, this view is incorrect
quantum mechanically, owing to the anti-Hermiti-
city of Hh, P„). We show, in Sec. V, that quantum
states corresponding to solutions (c) and (d} for
60&0 are, in a certain sense, the same quantum
states corresponding to (a) at 60& 0, and, in the
e'=0 limit, the "perturbative vacuum" always re-
mains a nondegenerate vacuum of BFT.

E. SI38 oscillations

The final form for our one-component Lagrangian
ean now be written as

L,(x, x) = x&„-17,(x, I'„)= exp„+ —,', &(x)f'„' —U, (x)
~ 2 2

sgp ~ 3 9gp 4
&h) &( )'" «h)'" '

(2.19)

Since sh) is of the order
l d, l, it suggests that

we treat those X', X', . . . terms in (2.19) as a per-
turbation where the expansion parameter is effec-
tively go/l gl. Since &h) is always positive, our
formalism permits treating the limits go/a, 0'
and g,/4, - 0 on a mathematically equal footing.

Equation (2.19) is particularly suitable for dis-
cussing motions about stationary points of BFT.
For lx l sufficiently small, Eq. (2.19) can be ap-
proximated by

~ 2

1-.(x, x) = {„-U,(x). (2.2O)

Since the kinetic term is strictly positive, the sta-
bility criterion is completely decided by the struc-
ture of U, (x) at a stationary point. We have four
casestoconsider: (a) h, &0, X= 0, (b) +&0, X = G,

(c)~,&o, x= l~l/go {d) g&o, x=-l~, l/g, . con-
sider the case (b) first. Since U, h) has a local
maximum at X. =0, for +&0, point {b) of (2.17) is
therefore not a stable stationary point of HFT.
The situation is just the opposite for (a), (c), and

(d); small oscillations about these points are
stable.

To have a better understanding of the nature of
these small oscillations, let us keep 1,,(x, X) to the
X3 order and expand f., about fixed points (a), (c),
and (d):

r.:"(x,x)= ~ x'+~lx'}-&u', x=0, (2.»)
0 0

0

6 &0 ' ~ ~ '2 @0(x, x) —
2 )~ (x +4) (, x

la I
'

I--.'(~l(" ' x= ~ . (2.»(
8'0 gp

We first note that, aside from numerical differ-
ences, Eq. (2.21) and Eq. (2.22) are essentially the
same. It follows that the stability of motion about
points (c) and (d) for 4, & 0 is precisely the same
as that about point (a) for +&0; we therefore only
need to discuss the motion about the perturbative
fixed point (a).

Let g =$0+gp, , +gp X, +' ".A perturbative anal-
ysis for the Euler-Lagrange equation of (2.21)
leads to

2
Xo+ g Xo=o,

0 ~ 0»+ 4 4=+SixoXp

We immediately note that, owing to the imaginary
cubic interaction, the small oscillation about the
perturbative fixed point involves a complex ampli-
tude; this has nothing to do with the sign of 4, .
The frequency of small oscillation is

l
b,, l, and

this ean be shown to hold also for the stationary
points (c) and (d).

To summarize: Vfe have shown that the only
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allomed stable motions in BFT mith a purely imagi-
naxy cubic interaction are small oseillations about
point (a) for 40&0 and points (c) and (d) for +&0.
Motion about the stationary points of (2.17) under
different circumstances are either unstable or not
allowed. (We emphasize that the above picture de-
pends crucially on the fact that me have not per-
formed the Wick rotation. ) Our classical stability
analysis, of course, ignores quantum tunneling ef-
fects, mhich mill be our main concern in the next
three sections.

&-l+,(x)P &lA~(x) + a~ =P +Ata e s/1/)
X

~ g~ g~ X a~ (3.2)

A,'(x)-=(„. )I~.-~(x)) (3.3)

III. ONE-COMPONENT QUANTUM RFT

A. Quantum HamBtonian

Although me are primarily interested in the sit-
uation when

I baal /go is large and 6~& 0, our formu-
lation must possess a smooth continuation to the
40&0 region. In quantizing the classical BFT for
b,,&0, the bare perturbative expansion dictates
that the Hamiltonian be normal-ordered mith re-
spect to the bare Pomeron, and the theory is de-
fined mithout tadpoles. Bemriting X and P„ in Eq.
(2.6) in terms of (=()-P /2xi+X, (I)=-Pz/2 ix, -and

using the quantization condition [X,P„]=iK, the
normal-ordered version of our one-component
quantum BFT Hamiltonian at D = 0 becomes

ff(X, P„)= ~.(P„'/4+ X'--.'ff)
—2 fg,[P„'/4+ y.'P„ih(x —iP—„)].

(s.l)
Equation (S.l) serves as the starting point for our
alternative formulation of quantum BFT. It ean be
viewed either as a quantized theory for &,(X,P„)
with a special "no tadpole" ordering or as a theory
derived directly from the oxiginal 6= 0 BFT Ham-
iltonian, /), Pg+(fgo/2}T()(T()+(I))g, with [$, (t]=K.
Which particular view one shouM adopt is a matter
of taste.

We begin our alternative formulation by perform-
ing a quantum gauge transformation defined by

where

().(x) = l~a'+(2, .) (~.'()() - ~')

—ff(-', ~, +.'~, (X) +-,'~,'~[9g,' X'- 5~,(0)')~,(X)-'}.

(s.6)

H'(X, P„)= g(P„'/4+X'--'g)

+ 2 fg,[P„'/4+ x'P„- fff(x —fP„)]. (3 7)

Since 0~48, care must be taken in interpreting
the spectrum of H. In particular, one must distin-
guish betmeen the space on mhich H opex ates and
its dual. For instance, on the dual space, tt) acts
as an annihilation operator, and yet T() apt. In what
follows, we denote the left vacuum by I0}and its
dual by (Ol.

The adjoint of our transformed Hamiltonian is

ff') & g 1/2P 2g )./2+ ~ f+g 3+ U (X) (s.s)

In both cases of (3.7) and (3.8), we note that the
corresponding adjoints can be obtained by simply
substituting go by -go. This is a consequence of the
anti-Hermitian triple-Pomeron interaction mhere
H-Ht under Px—-P„, X- -X. For our trans-
foxmed Hamiltonian, the anti-Hermiticity becomes
H +~ under Px Px~ X X. We emphasize
that, in Eq. (3.5c), the only remaining anti-Her-
mitian interaction is contained in a single "interac-
tion" term.

Lastly, me generalize the formalism to DWO.
The normal-ordered Hamiltonian density is

The basic structure of (S.5c) remains unchanged
from its classical counterpart, Eq. (2.9). The
quantum potential, I/, (X), is dominated by the
terms in the first curly brackets of (3.6) and it
still possesses the following properties: (i) It is
even in X. (ii) For 4,&0, it has a unique minimum
at X=0. (iii) For no&0, it has two symmetric min-
ima near )( =«

I ao I/go. However, owing to normal
ordering, the minimum takes on a value - -Kl +l/
2.

If we substitute (K/j) 8/SX for Px in Eq. (3.1), the
Hamiltonian acts as a differential operator mith
its domain in I. . The adjoint can then be found by
partial integration:

&,h) -=[(&.' —Sg.'ff) + 3g.'x']"'.
The transformed Hamiltonian becomes

a(k, P„)-=e-'~.H(x, P„}e".

(s.4)

(S.5a)

&(X,P„)=&'(X,P„)+o'(-H, P„-fv/x)(-2v/, P„+fv/x)

=&'(X,P„)+ '[n-'( ,vP)' (+v,x)' —2D@],

(s.9)

=a(X,P„+/t,'} (3.5b)

=-'~ '"P '~ '"--,'fgp„'+I/, (k), (S.5c)

mhex"e the superscript refers to the corresponding
8 = 0 expression. Under the gauge transforma-
tion, it becomes
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B. Green's functions

The connection between HFT and physical ob-
servables is through the asymptotic expansion for
the nonforward elastic amplitude (assuming point
sources),

(F B) s P (i)(((i)mg(ll&g(ill&

n~ m=l

x«l&(I', B)"c(0,0) l», (3.»)
where g,'"' is the coupling of n Pomerons to the
external particle a. Since the positive-f requency
component of X is the same as that of ig/2, -and
the negative component is the same as that of
g/2, Eq. (3.11) can be written as

&«lx(F, B)"x(0,o) lo). (3.12)

Note that no ordering ambiguity exists since aD of
the emissions (absorptions) are assumed to take
place at the same rapidity point. Equation (3.12)
indicates that our one-component formulation is
equivalent to the original HFT, and there is no
difficulty in relating the contents of the X formula-
tion to physical observables.

It is more convenient, for what follows, to work
in a Schrodinger picture, where

~ &0 lx(B)"e-'"x(0)-l ». (s.is)

In terms of our gauge-transformed theory, Eq.
(3.12) becomes

(F B) is g (2)((+m(( 1)ttg(((&g &(((&

ff, m=1

&(((T, lX(B)"e '"X(0) lt.), (3 14)

where we have introduced the gauge-transformed
left- and right-vacuum states

e-(A((
l 0) (()( l (0 l

e (&(+ (3.15)

ff(x, f'„)=fi'h, l'„)

+ (&('[-,' (v, P„+v,A')'+ (v,x)' —2 Dh ] .
(3.10)

Equation (3.10) can further be simplified when we
move onto a lattice.

The object of physical interest, therefore, is the
quantum time-evolution operator e ~", or e ~"
One procedure for calculating it is by diagonalizing
or partially diagonalizing the Hamiltonian. This
will be done in Sec. V, leading to a quantum-lat-
tice-spin. model. Another way of proceeding is to
specify the matrix elements of e ~" first for Y
small, then generalizing to finite Y by a path inte-
gral.

&x', y'lx, y}-=(x'le '"' ""lx). (3.16)

For (y'-y) sufficiently small, (3.16) can be de-
fined directly in terms of the matrix element of
H. A standard analysis then leads to a path-inte-
gral representation at finite values of (y'-y),

(x y Ixy)', f'ox, f=~p ep „f„((p-„s,'x

—H(xP„&]dy},

(3.17)
3&

L.„(X,s,X)dy

(s.i8)
In writing (3.18), L,(, is derived from H by per-
forming the P~-functional integration.

Because the kinetic terms in 8 also depend on
X, the effective Lagrangian, I,«, differs from the
classical Lagrangian by a set of quantum correc-
tions. These quantum corrections can be obtained
from (3.18) directly if we substitute L, (X., S,x) for
L,«[with n(x) and U, (X) replaced by (&,(X) and
U, (X)], and supply a normalization factor,
N(X, S,x). This factor can be determined by the
locality condition

lim(x', y+&lx, y)=6(x —x),

thus leading to"

I-„,=L,+ h6(0) lnN. (3.19)

We have verified that this procedure leads to the
same result as the Hamiltonian formalism. Since
the Hamiltonian formalism also turns out to be
more convenient for the D 40 case, we adopt it
here directly.

Substituting Eq. (3.5c) into (3.17), we have

C. Path-integral formalism

We start by first considering the D =0 case. We
evaluate the matrix elements of e ~H in our )(
basis:

xp —— U Xd P„xp —„d xp — ' „——' „„d (s.2o)
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The convergence for the g integration is controlled
by U, h) and for the P„ integration by the P„il,(X)P„
term. (We assume first that the result of the Px
integration does not alter the convergence in g.
Although this is clearly true, we nevertheless
justify this assertion(t postenori). Since &,h) is
always positive, for X large, the g integration can
be kept along the real axis. Similarly, the P„ in-
tegration path is also along the real axis. (A small
negative imaginary part should also be added in
the case ~AOI'&3g, '.) Therefore, the positivity of
h,h) assures us that no contour distortion is re-
quired as o'0 ls increased above 1.

The path-integral formalism of the original RFT
can be written in terms of P and X; the expression
allalogous to (3.20) ls

l &P exp — -2ig&„y — +ig,P P'+y' dy

(3.21)

It was emphasized in Ref. 6 that for 4,&0 the inte-
gration paths in (3.21) are along real axes thus de-
fining the bare perturbation theory. Since the
functions inside the functional integrals are to be
treated classically, one can consider that Eq.
(3.20) is obtained from (3.21) by a change of vari-
able (the difference due to normal-ordering is un-
important so far as the convergence question is
colic erned):

(3.22)

The fII) integration runs along the real axis and cor-
responds to a P„path parallel to the real axis but
with a constant imaginary part -(2i/3go) [4,(X)

Conversely, by continuing the P„ integra-
tion path to the real axis, the (j) path is forced to
have, for fixed x, a constant imaginary part -(i/
3g,)[b,,(X) —+]. It is a matter of straightforward
algebra to show that, in Eq. (3.21), lowering the

P contour into the lower Q plane always helps the
convergence. Since -(I/3g, )[C,(X) —t) o] is abvays
negative except for a small X interval where it
ranges from 0 to

[~0 —(&o' —3&a'& }"'1
3go

one easily verifies that this brief venture into the
upper @ plane also leads to convergence. There-
fore, for &0&0, Eq. (3.21) can be distorted into
Eq. (3.20). For L,&0, Eq. (3.21) requires a con-
tour distortion, which can again be distorted into
Eq. (3.20) with the x and P„ integration paths along
the real axes.

In Eq. (3.20), we have written the integrand as a
product of three factors: The first factor involves
the potential and is taken out of the P„ integral.
The third factor is Gaussian in P„, and it can be
integrated explicitly if the second factor is absent.
This suggests that we expand exp[(igo/8K)P„'] in a
power series thus developing a quantum perturba-
tlnn .xoansion.

Introducing a source term,

1
exp

&
k(y)PPy

into the third factor, we can replace P„ in the
second factor by (t/i}s/Sk(y), which can then be
pulled out of the functional integral. The remain-
ing integral yields

(3.23)

(3.24)

(const) x exp —— [(B„X+k)b,,(X) '(S„X+k)+y@5(0)Inn, (X)]dy

After functionally differentiating with respect to k(y) to the desired order and then setting k = 0, Eq. (3.20)
is now expressed as a sum in increasing powers of ~,g. In order to get back to 1.,«, a "logarithm" has
to be taken. It is clear that only those "connected terms, " i.e., terms with a single y integration. , can
come from the first-order expansion of exp[(I/W) fI „,dy] Keeping ter.ms to order (S,X}», we obtain

, ~,(x) ~,(x)' &~,(x)'

9 2(g )2
—»5(o) ' *" — ' ' ""' +" +-,'(na (x)I .»,(x)' &,(x)'

The expression in the first curly brackets is pre-
cisely the expansion (2.19) for the classical La-
grangian, with X replaced by is„X, &(X) by &»(X),
and p, (X) by U, (X). The second curly brackets
represents a quantum correction; note that it is in-
versely proportional to the lattice spacing, a, ."

We also note that the X integration is always con-
vergent so long as the expansion, Eq. (3.24), is
defined.

The generalization to the 8 +0 case is stxaight-
formard and will be done in Sec. IV after the dis-
cussion on the formulation of a D = 0 classical
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spin-& lattice analog of BFT.
The above quantum expansion also treats the

0 and b,0&0 regions on an equal footing. Fur-
thermore, since it is in correspondence with our
classical expansion, (2.19), our expansion auto-
matically picks out the branch of BFT defined by

Eq. (2.13). This is not necessarily an obvious re-
sult since, in arriving at the classical Lagrangian,
(2.19), Eq. (2.13) was used. However, in deriving
Eq. (3.24), no reference to (2.13) was made. In

order to understand this result, we refer to Eq.
(2.18), where classical stationary points are
listed. We observe that for 4, &0 only the pertur-
bative stationary point (a) lies in the region where
our quantum HFT, Eq. (3.20), is defined. For
60&0, point (a) moves out of the range of defini-
tion for Eq. (3.20), and stationary points (b), (c),
and (d) move onto the real axes. Therefore, in the
region where our quantum expansion converges,
the quantum theory is in exact accordance vrith

tile boundary colldltloll Eq. (2.13), fol' olll' clRssi-
cal BFT.

IV. FINITE-TEMPERATURE ONE-COMPONENT

LATTKE-SPIN FORMULATION OF RFT

Efforts" in attempting to utilize the renormali-
zation-group technique on a lattice for studying the
infrared behavior of BFT began soon after the
work of Bef. 2 appeared; so far, most of these ef-
forts have not met with much success. The major
obstacles involved are (a) the uncertainty in the
number of ordered parameters required, (e.g. ,
are there two or simply one spin at each site'?),
Rnd (ll) tile llnusllRI symmetries of RFT. We con-
centrate in this section on formulating an analog
model of BFT in terms of an interacting classical
spin-& system on a rapidity-impact-parameter
lattice. Our detailed analysis leads to a model
which is similar to, but different from that of Bef.
6. We pay special attention to the relation between
the anti-Hermiticity of the triple-Pomeron coupling
and the symmetries of classical BFT.

The standard procedure"" for converting a
quantum theory into a classical lattice theory in-
volves the following steps: (1) Define a Wick-ro-
tated quantum theory via a path-integral forrnal-
ism. (2) After converting the space-time continu-
um into lattice points, reinterpret the path inte-
gral as defining a partition function. (3) Simplify,
if possible, the resulting "Hamiltonian" by re-
stricting the continuous spin at each site to dis-
crete values. The first step has already been per-
formed in Sec. III; exhaustive discussions on these
steps can also be found in Befs. 16 and 18. We
concentrate in what follows only on those aspects
that are peculiar to BFT.

There are two problems which require our spe-
cial attention. The first concerns ho~ a spin-&
lattice model can emerge from our model, and,
under such an approximation, what are the possi-
ble effects of those quantum corrections in Eq.
(3.24) arising from our "nonlinear" Lagrangian' ?

The second concerns the effects of an anti-Hermi-
tian interaction and how this property can best be
realized in a lattice formalism. Since both prob-
lems can best be discussed in the D= 0 limit, me

treat the D =0 model in detail before generalizing
to the D40 case.

g d~ X
e-H f~(x) (4.1)

where H,«contains only the nearest-neighbor in-
teractions, and the measure, d p, , a statistical
weight given by

0] 2X
dp, = exp -—'U, X +2lnh, X—

2 22
+ + 0 e ~ (4.2)

includes all self-interaction terms. Note t at our
classical spin takes on values from -~ to+ ~ and

dtl(}t) is an even function of X.
In the limit

~
60~ /go- ~, dtI (X) is dominated by

the potential, U, (}t), provided tkat e, is not taken
to zero first. For b,,&0, dtl(}t) is peaked at X =0,
and, for 4„&0, it is peaked symmetrically about
y =+

~
&, ~/g, . For the physically interesting case

where 60&0, dtl(}t) approaches in this limit

[8(X —
~
~,~/g.).8(X.

~
~.)/g, )]dX.

It is then simpler to vrork with a classical spin,

(4 3)

for each lattice site where o, takes on values + 1
and -1. The partition funct. ion can then be written

A. Two-level truncation and oneMimensional Ising system

Our starting point is the path-integral represen-
tation for the Green's function, Eq. (3.18), with

the effective Lagrangian given by Eq. (3.24). We
formulate a lattice-spin model by first going onto
a rapidity lattice, with a lattice spacing a, . We
next replace S„}tin I .,I by (}t,. —X, I)a, ' and 8(0)
by a, ',

Since l,ff depends only on X2 and 8„X, the lattice
interaction will be of two general types: (i) self-
interactions at each site and (ii) interactions be-
tween nearest-neighbor sites. Regarding (3.18)
as the partition function for a classical lattice-spin
system, we find



g g Off

[a=~]
(4.4)

H ll — KQ-o'l lo, . (4.5)

B. Anti-Hermiticity and transfer matrix

The leading order contribution to I,,« from the
anti-Hermitian interaction in H is go[a, X/d, (X)].
Under a two-level truncation approximation, (s„XP
becomes 4~&~'(gp, ) '(o, —o, ,); its contribution
to the partition function vanishes when summed
over all spins. The same holds true for the anti-
Hermitian interaction coming from the quantum
correction term, -55{0)(3g,/2)[s„y/', ( )']. It is
interesting to note that terms such as s, x, (S, x)',
etc., are not invariant under the transformation
S(x- -y) and T(y —-y) separately. However, they
are invariant under the combined transformation
ST; this is precisely the symmetry of the classi-
cal RFT.

Under a quantum-mechanical time- reversal
transformation, the Hamiltonian of a quantum sys-
tem ls maPPed into its adjolnty + Fox' a Gon-
Hermitian system, H4H, T is not an invariant.
In the special ease of an anti-Hermitian intex'action
(H-&under S: X -X, P„--P„), thequantum
symmetry of the system is the combined quantum
transformation ST. Since the time-x'eversal invar-
iance is broken in both classical and quantum

This represents a one-dimensional classical Ising
chain.

The coupling constant, K, plays the role of an
inverse temperature. It receives contributions
from most terms in Eq. (3.24), including those
quantum corrections, i.e., terms proportional to
6(0). Since, under the two-level truncation, terms
with odd powers of (s, X) [i.e., (syX)'"", n

=0, 1,2, . . . , ] do not contribute to Z when summed
over {oj, the leading order contributions are

I~ l 9 l
@xg( 8 8] 14ol {4.6)

The first term in (4.6) comes from -(Sp) /~, (x)
in (3.24), and the second term comes from a quan-
tum correction In t.he limit ~~, ~/g, —"ond&, '0,
~e find tj'sat tQe quantum corrections ore n» im-
portant for our arriving at & ct&»test ~pin-a tot
tice gpgstog modet ofRFT, and tll8$r conb7bution'
can be Mopped. In this limit, K&0, so that the
interaction is ferromagnetic. In what follows, we
set 5 = l.

analyses, it must also enter in our lattice formu-
lation of RFT. In order to accommodate T noninvar-
iance, it is desix able to adopt a lattice formalism
in which a preferred rapidity direction is speci-
fied. This is indeed the ease if we reinterpret Eq.
{4.4) as defining a lattice system through a "trans-
fer matrix"; an asymmetrical transfex' matrix
automatically leads to a T noninvariant theory.

Be retaining the anti-Hermitian term, the effec-
tive Hamiltonian of our analog model becomes

H ff KQ(zl lol

—(~/2) Q(o, , —o,)+2C go,'.

Z, = M M '''M¹+g+1 a¹agg l app ~aug 2 -&+a -+[a=+i t

where

=-P QZ(V', -N),
a&, a&

(4.8)

M...-=exp[ C+Ko'o-+(8/2)(o' o)]

is the transfer matrix

(M.. M. c-"' e-'-"')
M c E 8 c+E

(4 ')

alld Z(¹ N) =—M ls a-2X 2 lllatl'1x defilled by
matrix multiplications.

The system described by (4.8) has the following
features: (i) the ferromagnetic Ising interaction
tries to align neighboring spins, and it raises the
energy of the system by 2K whenever a "spin-flip"
occurs between neighboring sites. (ii) Moving on
the lattice in the +y direction, the anti-Hermitian
interaction raises the energy of the system by B
if a spin flip from o', =+i to 0$ y

l occurs, and it

» Eq. (4.7), we have also added a constant "back
ground energy" per site, 2C. Recall that. because
of normal-ordering, the ground state of oux quan-
tum RFT is the perturbative vacuum, with &0=0.
As we shall see shortly, the partition function
shouM be interpreted as the matrix elements of the
time-evolution operator, exp(-yH), as y-"; the

d.t. ,=o eq Z pp ach. g
value in the limit. Therefore, for oux' present
purpose, C is an adjustable free pax'ameter. By
ex™n'ng;(X),we expect C to be of the order
{a,)(~ g ~'/go'); this addition should have accom-
panied our replacing d p, h, ) by 6 functions.

%e label the lattice sites from left to right as
N', ¹

—1, N'-2, .. . , N+1, -N(i.e., +-/direc-
tion points to the left), and consider the limit N,
N -~. Treating the lattice as an open chain, the
partition function Z„„„„canbe wxitten as
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lowers the energy by the same amount if g, = -1
and o„)=+1. (iii) Moving in the -y direction, the
effect of the B interaction is reversed. It is easy
to show that, for 6 large, o„ tends to align statis-
tically at +1, as if there were a magnetic field
present at N'=+™.Conversely, o „ tends to align
at -1. Therefore, the ground-state configuration,
as a, result of the anti Hermitjan interaction is
kinklike, starting near -1 at y = -~ and changing
't.o +1 at +~.

9;IP,&= 5;, /.

It follows from (4.9) that

A.,= 2e coshK, ~, = 2e sinhK

and

p (~} e+B /2
~t (~) e+s /2

T()((g) p e)'8 /2
(t) ( ) e+8 /21 1

&2
' ' v2

(4.13)

(4.14)

(4.15)

Z(o„,, o „)= Q )(,"'"(I),((x„.)],((r „), . (4.12)

where we have adopted the normalization condition

C. Structure of ground state

Because of translational invariance, (((& =0
holds. Qn the other hand, the spin-span correla-
tion function, (((~(/(&, k&I, is nonzero, and its
dependence on Ik —I

I
prov~des a measure on the

scale over which the "kink transition" takes pla, ce,
i.e., the correlation length. Since the spin-spin
correlation function is the analog of a two-point in

RFT, we show next how ii is obtained in a lattice
formalism; this also serves to clarify the struc-
ture of our kink state.

It follows from (4.8) that Z(¹,-X) satisfies a
matrix recursion relation

Z(¹,-/)/) = 3fZ(¹—1, N) = Z (¹-,- ')/ + 1)M,
(4.10)

and it can be found by diagonalizing the transfer
matrix M. Since 37 4A1, one must distinguish be-
tween the left and right eigenvectors. Denoting the
eigenvalues by A, , X, +A.„and their left and right
eigenvectors by IT((& and I)I)(& respectively, we

find

z(Ã', -I)/) =)." "IP,&Q. I+),"'"
Id, &&4, I, (4.11)

or, its matrix elements, when expressed in terms
of components of $;, (;,

o, =O( f~, I-'). (4.16}

The average magnetization at the 0th site can be
written in terms of the Z(o, , o,.) matrix as

&ok& =(ZN'w, i) 'Z g g Z('N ok)oaZ(oa o N).
fyg/ Ug fy g

(4.17)

In the limit ¹,I)/ - ~, the )(, contribution [see
(4.11)] diminishes so that

(o.& = Q 4.(o.)o,4.(o,)

(4.18}

where &r is the diagonal matrix o,. From (4.15),
we see that (o„&=0, a.s expected.

'The spin-spin correlation function can also be
written in terms of Z(/)f, N) as

Because Xo X„ in the limit ¹,N-~, the partition
function is controlled by the X, term. The spin
state, as N'-~, approaches (I),& (with a o„=+I
to o„=.-l statistical ratio es). Converselyo , „,

, approaches the state I(t!0& (the statistical
weight for o „= 1 to o „=+1is also e ), thus
confirming our intuitive analysis given earlier.
We also note that the requirement that the ground-
state energy be zero corresponds to X, = 1. In the
limit K-~, E(ls. (4.6) and (4.14), together with
C (x:((,

I

/);
I
'//g, ', lead to the constraint

(o)o)&= I'm (Z//"!(+)) Z Z Z Z Z(o)( ca)o))Z(o)) o()o)Z(()» o-)()¹,F~~ - fy~ fJI fyi a &

= x, " "&(/!,
I

(//) I' )()
I

(I/, &

'~ "((t! I(7e '~" ~«of t/! ) (4.19)

This representation clearly demonstrates that
((/, o)& is precisely the two-point function of RFT.
In (4.19) and in what follows, )(o is understood to be

In the basis where M is diagonal, the spin ma. -
trix a' is no longer diagonal. Under our convention
(4. 15), o is Z, /c;/Iq(&&&/I, where

-1 0
It then follows that

(o o) —y 0) ))P Ie-(0 l)0~((fq)

= (tanhlf)"-),

(4.20)

(4.21)
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so that the inverse correlation length 6, measured
in terms of the lattice spacing is -a, 'In(tanhK). It
is intex'esting to point out that the two-point func-
tion depends only on the eigenvalues of M, and it
ls the same Rs what we would have obtained by

treating the analog model as a conventional Ising
model. 'The anti-Hex miticity of RFT only entex s in

the description of the left and right eigenvectors of

M (and hence the peculiar ground-state configura-
tion. )

The inverse lattice spacing, a, , provides a
cUtoff ln E. At D=G, the energy scRle of RFT is

I A, I; a lattice analog model can be meaningful

only if a, ' ~
I
&,

I
. Since a, cannot be set equal to

zero first in order to arrive at a spin-& system,
weecan therefore replace s, in (4.6) b
where y is of order O(1). This is in agreement
with Eq. (4.16). For a one-dimensional Ising

chain, it is well known that a phase transition
does not take place and the correlation length, 5 ',
is finite. Since 6 is also the energy gap between

the first excited state Rnd the ground state, we

find» fox' K large»

6 ~ exp(-2
I
&,

I
'/y g,'),

1n Qualitative agreement with the x'esult of Refo V.

Apparently» the lattice spacing enters into the ana-

log model in a nontrivial fashion, and one cannot

appeal to the universality principle for help at
D=O.

Our spin space is two-dimensional; the natural
basis is the one in which &r is diagonal (o'= +I). We

could equally well have used the left and right
ground state tt, and P, as bases, in terms of which,

for 8 large,

I+&=-W28 '"Iy,& -v 2e ""I5,&,

gg n.-" {4.22)

This representation will become useful in See. V.

II(X,P, ) = If'(X, P, )+ n'(&, X)'+ —.n'(&, A', )'

+ 2a'%~A,' P„+ ~~'(O~PX)2. (4.24)

In (4.23) and (4.24), the superscript "0"refers to
the corresponding D=O expression, and we have

also dropped a constant term.
%e next pexform the functional integration, with

Eq. (4.24) substituted for the Hamiltonian density.
%e anticipate a similar result that, for &, &0 Rnd

large, x is restricted to +
I
&, I/g, at each lattice

site. Since A,'(X) is a function of X' only, &, A,'

vanishes when it is replaced by a finite difference
between values a neighboring sites; we therefore
drop terms in (4.24) containing the factor &, A',

in what follows. Writing the integrand as a pro-
duct of three factors and introducing a elassiea1.
source (i/g) f k(f, k)P„dye b as was done earlier,
the resUltlng Gaussian integral analogous to EQ

(3.22) now yields

9. C1assical 4t tice-spin formulation

The quantum Hamiltonian density at a@0 is

If(X, PX) =If'(X, P, )+ o"(&~X)'+ 4~'FP„)'
(4.23)

and, after the gauge transformation, (3.2), it be-

const & exp —— dye b 8 g+ Q 4 g o('V& ' 8„y+p (4.25)

Next we perform functional differentiations and then exponentiate those "connected" terms; the effective
Lagr Rnglan becomes

I .« = {-',Xl &.(X) —&'&~'7'S, X —&'(~~X)'+g.([&,(X) —n'&, '1 'S„Xp+ ") —U, (X) . (4.26)

In (4.25) and (4.26), the quantum corrections are not exhibited. Although the quantum corrections contain

nontrivial dependence on the lattice spacing, they are unimportant fox arriving at the dominant interaction
for the D=0 lattice model, Eq. (4.6). So long as lattice spacings are kept nonzero, the quantum correc-
tions need not be kept explicitly. Expanding Eq. (4.26) in n' and anticipating that, for A, &0, x'= IA, I'/g, ',
we obtain, up to first order in n'»"

Qux classical lattice-spin model will be formulated
start1ng from the above expRQslon.

By introducing a lattice spacing, a„ in the im-
pact-space direction, we can move onto the rapid-
ity-impact-parameter lattice {we have already
performed the Wick rotation. ) We note in parti-

cular the presence of U, (X) in (4.2V); an analysis
similar to that performed for B=0 would justify
replacing the integration measure dp(X) by

l 6(x —
I
A. I/g. &+ &(x+

I
&.I/g. &]&x

in the limit I&, I/g, - and &, &0. Under such an
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approximation, it is again convenient to introduce
an Ising spin S for each site, S=-(g,/~&, ~)g, so
that S takes on values +1. The resulting interact-
ing Hamiltonian can be obtained from Eq. (4.2V).

The first term in (4.27} leads to a nearest-neigh-
bor (nn) interaction in the space direction. When

the third term is expanded, in addition to modify-

ing the nn interactions, it adds a next-nearest-
neighbor (nnn) interaction. All three terms of the
two-spin-interaction type; they are invariant under
transformations T(y - -y), S(x- -y), and P(b - -b)
separately. The next two terms in (4.21) involve
three-spin couplings, which are invariant only
under P and the combined transformation TS. As
was emphasized in Ref. 6, invariance under TS
but not T, S separately is the symmetry of "clas-
sical" RFT; expansion (4.27) is thus sufficient
as far as determining the critical behavior of RF'T

is concerned. In what follows, we ignore the ad-
ded structure due to the 8 and C terms in (4.'I);
the fourth term in (4.27} can therefore be dropped.
The partition function can then be represented
symbolically as

g= g elf
~

sg)

where

-K 55l

-K $5.
R ) J

—K~5; 5

+L5 5 5kl

—L55 5kI J

FIG. 2. Schematic representation of lattice Hamil-
tonian couplings for B=1. Space runs across and
rapidity xuns up the page.

H,II —--K, Q SISI -K» Q SIS;
an{8)

K,QS,SI +I Q SISIS».
nua {flak}

(4.26)

These four types of interactions are illustrated in

Fig. 2; note, in particular, that the three-spin
coupling, "M", properly reflects the ST invari. ance
of RF'7.

In terms of the original parameters of RFT and

1Rtt1ce spRcillgs, tile co11plillg co118tRllts 111 (4.26),
with h=l, are

)6 )
g+ a'a@2

0
2

go g~ go Qg

L(x, x}=xÃ» -~.(x P»)
= X&» —-'&(X)&»' —I»'(&»X}'

--'tI'(&»T'„)'+» fgg»' —U, (X) . (4.30)

In writing (4.30), we have dropped terms propor-
tional to &&A'. Recall that Q = -&P„; we define a
"shifted" field by

%(X X)=-0-- «. -&(X))=--'&»(X i) (4 31)
3go

arriving at (4.26), the origin of these interactions
can be directly traced by examining the classical
Lagrangian [we will not bother to substitute &,(y)
for 8(x) and U, for U,]

2Q l~ IQO0xl 2 2 2
go go a~

(4.29)
so that Eq. (4.30) can be written as

~(X, ~) = -24 X. —&(X)P —o'[(&,X)'+ (&P)']
Q g SQ 0S L 8

2@0 CI 4 )do[go III

E Origin of 1attice interactions

In the lim1t
~
n, ~/g, large, &, &0, and a', a„a,

nonzero, coupling constants K„K» and K, in
(4.29) are positive. The first three terms in H„,
represent asymmetrical ferromagnetic Ising in-
teractions, and the last term characterizes the
unique symmetry of the classical RFT.

Since the quantum correction is not needed in

-fg.4 -U.(X). (4.32

In comparing (4.32) with the original "two-com-
ponent*' Lagrangian, Eq. (1.1), we see that, in
addition 'to I'eplRclIlg +o by +(g)~ tile colltl'lbutioll
due to the shift (4.31}has been grouped into the
classical potential, U, (y).

In Eq. (4.31), @ is a function of y and X; it can
be obtained by solving the canonical equation X
= 6B(y, P)/ »T6pe»rturbatively. To match (4.26),
we expand to first order in g, while keeping &(g)
fixed
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%(x, k) = -&&(x) —~'&&') }'I

'—»g. [&(x) —~'&g'1 '([&(x) —~'&,']y')'.

(4.33)

By substituting (4.33) into (4.32), we explicitly
verify that (i} The $j and 4(y)P terms lead to the
K, interaction. (ii) The (V,y)' term leads to the
K, interaction. (iii) The (0P) term contributes
to lower-order terms in K, and K,. It, in addition,
leads to the K, interaction. (iv) The three-spin
interaction, M, in (4.28), comes exclusively from
the P term. Contributions to the +I interaction
from $j, p, and (V~$)' cancel identically to the
order (4.33).

Our result, (4.29), is similar to, but differs in
several important aspects from that of Cardy and
Sugar. ' Vfe note that their result does not contain
the K, and K, terms. Whereas we agree on the
K, interaction, the three-spin coupling differs in
that their coupling strength I is (a'~&, ~/g, ')a,
It is unclear to us as to the significance of this
difference in view of the condition (4.16) and the
usual universality argument. However, we would
like to point out that, in reaching their conclusion,
Cardy and Sugar have made use of the specific
form of the L coupling as well as arguments based
on letting a, -0. Our analysis indicates that the
validity of those steps is in doubt.

Our confidence in the result, Eq. (4.29}, is
further enhanced by the observation that, where-
as our lattice-spin model posseses a smooth
D = 0 limit, the model of Cardy and Sugar does
not. Because of the absence of the K, interaction,
the possibility that the critical indices of RFT are
simply that of a conventional asymmetrical Ising
system was ruled out in Ref. 6; this is a priori un-

justifiedd.

V. ONE-COMPONENT QUANTUM LATTICE-SPIN

FORMULATION OF RFT

In this section we construct, in terms of the X

field, a quantum spin analog of RFT on a two-
dimensional impact-parameter lattice. In this ap-
proach, the rapidity variable is kept continuous,
and the quantum mechanics for D = 0 is treated
first.

Our treatment, not surprisingly, leads to the
nearly identical lattice-spin models of Refs. 8- j.0.
In those analyses, the spectrum of the single-site
Hamiltonian in truncated by retaining only the two
lowest-energy states, thus introducing a quantum
Ising spin for each lattice site. The justification
for this procedure lies in the realization that, for
&, &0 and ~&, ~/g, -~. the quantum splitting be-
tween two degenerate, classical ground states is
much smaller than the level spacing above each

ground state. ' However, in Refs. 7-10, P and P
fields are utilized. We believe that our choice
of using the X field as the basis of discussion is
more natural and can provide a more "visual" de-
scription of the physics involved.

Z I e.}&@.
~

=I (5 2)

It has been proved in Ref. 7 that fz„) are nondegen-
erate and non-negative for both &, &0 and ~o &0;
a heuristic argument for the validity of (4.6) is
also provided in Sec. VB.

It has been emphasized' ' that, owing to normal-
ordering, the bare vacuum always remains the
ground state of RFT with e, = 0. Since H' also an-
nihilates the bare vacuum, the "right vacuum" is
the same as the "left vacuum", i.e., ~

0) =
~ Q,)

=
~ P,}, whose coordinate representation is given

by the ground-state harmonic oscillator wave fune-
tlon

y.(g) = y, (X) = (2/v)'"e-" '. (5.3)

We stress that Eq. (5.3) holds for both &, &0 and

~p ~ 0 'The removal of "zero -point energy, " i.e.,
&, = 0, is accomplished by the quantum correction
in U, (y), a fact alluded to earlier.

I.et us consider the shifted Hamiltonian H(g, T'x}
next. Denoting its eigenvectors by (P„), it follows
from (3.2) that

4.(X) = e""'0.(X) (5.4)

(5.5)

where we have introduced a sea/ function, E(X)
=-fA, (}t), so that"

+'(X) = -IA,'=
3

{-&..- r,(X)}.
2

Sgo

S milarlyp the elgenvectors of Ht = e-EBteE are

(5.6)

Ti„= e (5.7}

where Htg„= ep„. In terms of these vectors, the

A. Ground state of quantum RFT at D = 0

Recall that the quantum Hamiltonian in our g
representation is given by Eq. (3.1). Since H(x, Px)
is non-Hermitian, one must distinguish between
its right and left eigenvectors. Denote, in ascend-
ing order, the energy eigenvalues by (e„), n=0,
1, 2, . . . , and the corresponding right and left
eigenvectors by Q&„) and PP„), respectively, i.e.,
HQ„= e„g„and H $„=c„p„. It is convenient to
normalize the eigenvectors so that

(5.1)

and the completeness relation becomes
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beenincreasedby a factor of 72, i.e., near their re-
near their respectively maxima,

4.(x) ~ exp[-2(x —In. I/go)') (5.11)

g, (x) "expl -s(x+ Ino I/gs)') .

B. Non-Hermitieity and nature of spectrum

0.75

O.P5

000
-- l5 —l, 0 --5 0 5 10

FIG. 3. Ground-state wave function, )&0(X}: ) n 0 [ = 1,
go-—0.1; dotted curve is for 6() &0, solid curve is for
60& 0. The solid curve has been scaled down by a factor
of 10".

orthogonality and completeness conditions become

Q. l))l.&= 5..., P IP„&Q„I=f. (5.6)

For any operator, A, the transformed operator is
defined by A = e Ae r. It follows from (5.4) and

(5.7) that

(5.9)

Therefore, matrix elements of an operator are in-
variant under our gauge transformation. 'The right
and left vacuums are now represented respective-
ly by wave functions

(~) (2/v)1/4eFlx)-xs q (~) (2/s)) I4e-E(x)-x2

(5.10)

Because of (5.6), one can show that t/i, (X) and T)), (X)
are functions with a single "peak"; this is sche-
matically represented in Fig. 3. For &p&0, both

g, and $, arepeaked at )f=O,and/, —p, =(2/)t}' 'e"
in the limit Inol/gs is large. However, for n„&0,
e. Is peaked «x = &.I/g. , and t, «x = —In. I/g'
Furthermore, the half-widthfor )I), and/, has

8 ]. 8 3xg 8
H(x~P„) — —

4 s, y(go) 6 s, + 4nX X p ~X

+I:n.(x'-s)+" )

1-4,„.+x*-2 +0(el~)).

+ ~ s ~

(5.12)

One immediately recognizes that the spectrum of
8 is that of a harmonic oscillator with an energy-
spacing &p. This is the perturbative result, ap-
propriate for &p&0. The ground-state energy is
Ep 0 and the wave function is approximately $p

-X~e ", in agreement with the exact result, Eq.
(5.10)

Next we consider the limit g, / I
n,

I
-0 with &,

&0, and expand H about x =+
I 4, I/g, :

Our gauge transformation, Etl. (3.2), has been
particularly useful in "unmasking" the non-Her-
mitian nature of RFT. Although )|), and T)), are both
Peaked at X =0 when &p &0, they are unmistakably
distinct after &p is continued to a negative value.
This, in turn, signals that a non-Hermitian Hamil-
tonian is at work.

Under the simultaneous interchange of I'„-I'„
and X -)f, H(X, P„) is transformed into Ht(X, P„).
This symmetry is a consequence of the non-Her-
mitian cubic interaction, and this transformation
can formally be accomplished by simply reversing
the sign of g, in (3.1). Similarly, H —Ht under

gp -gp. However, since eigenvalues are common
to H and H~, we can immediately conclude that
(a„)must be functions of g,'. We can also conclude
that it is possible to choose the phase so that
)I)„(x,go) = )II„(x, -g,), in agreement with (5.10)."
The fact that $(x) centers around )f =

I
n, I/gs for

&p &0 is puxely due to the convention that gp &0,
and no physical significance should be attached
to this apparent symmetry.

To gain a qualitative understanding of the struc-
ture of the spectrum in the limit g, / I

n,
I
-0, let

us first consider &, &0 and expand H(y, I „}about
X=0:

l~, l
~' 1 ~3 3 ~ 1~, 1 1&, 1

'
H (X I')= — ' +(g) — +——+ " + ' y+ ' —1+"~

8 ~X' 8~X 2 g,
1= In. I

——, ,„.+ -'h+ In. l /g. )' - -' + «g./ln. I
& (5.13)
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Since this expansion leads to an identical approxi-
mation as that of (5.12), we conclude that the spec-
trum of 0 would consist of two sets of degenerate
oscillator states where the energy-spacing is
again

I d, I. This degeneracy is lifted by a tun-
neling effect. However, because the potential bar-
rier increases with I&, I/g» the splitting between
the two nearly degenerate vacuums is exponential-
ly small.

A similar analysis can also be carried out for
H, leading to an identical conclusion. This quali-
tRtlve plctux'e thus px'ovldes R heurlstlc justiflcR-
tion for the hypothesis under which the discussion
of Sec. VA was carried out. In particular, we
emphasize that, for D= 0, the vacuum. is always
nondegenerate so long as lh, l/g, remains finite.

C. First excited state

For &, &0, it foUows from Eq. (5.13) that the
ground-state wave function behaves near x=~ I+ol/
go RS

em[ l(x I~-l/g.-)'], x =
I
d. I/g.

em[-l(x+ I d. I/a. )'], x = —
I
&.I/g. .

(5.14b)

Since the first excited state differs from the true
vacuum only by a tunneling correction, it is rea-
sonable to choose a trial wave function by a linear
combination of functions satisfying conditions
(5.14a) and (5.14b). Denoting the wave functions
or lg, & and l~, & by P, (x) and P, (x), respectively,

the trial functions must also obey orthonormal
condition, i.e.,

(4, I «& = &4, I 4,&
= 1,

(5,15)
&4, !4.&=9.IP,&=0.

Equation (5.11) indicates that fo(X) Rnd $0(X)q
satisfy the constraints (5.14a) and (5.14b); it is
natural to try using them as the basis fox con-
structing |(,(X) and $,(X). Let us write

4, (X) -=u[4.(X) —54.(X)]= u(c 4.—he'g),

«(x) -=u[4.(x) -~4.(x)] = o(e'e. -&e '0,) .

(I/~2s 1~ 17140I /go

To first order in A, our trial wave functions for
the first excited state become

tj, (x) = (1 —x')"'[-tj'.(x)+ x$.(x)]

= -tj.(x)+ x$.(x),

$,(x) = (1 —x')'"[$.(x) —xtj, (x)]
= It', (x) —x4, (x) .

(5.19)

D. Two-Ievel truncation

In the limit
I
+0

I /g, — and do ~ o, we truncate
the spectrum of H(X, P„) by retaining only the
ground state and the first excited state. Given an
arbitrary operator A, its restriction to this trun-
cated space can be represented by a 2 x 2 matrix,
Aqq

=—&$)IA Ipq&, i,j =0, 1, so that

ks Jop 1

Alternatively, the restriction of the transformed
operator, A=e Ae, can be written as

Id, I (0
go (1 oj

Z Ac~I«&&&~I,
fg )=Op 1

where A, ~ is also given by &$„!A I «&, owing to
(5.9). However, since most operators have non-
negligible off-diagonal elements connecting

I P,&,

I P,& to higher excited states, one cannot replace
an operator product by a multiplication of 2 x 2
matrices.

In order to find the truncated spectrum,
9) IH(x Px)

I 4&q&
= c,5„, i,j = 0, 1, we need to cal-

culate the matrix elements for operators P„', P„',
X'P„, X', P„, and X as they appear in Eg. (3.1).
Because of (5.9), it is easier to work with the
transformed operators P„',P„', . . . , and we direct-
ly calculate the matrix elements in terms of our
trial wave functions (5.19). For example, by using
(5.3), (5.10), and (5.19), we find that in the limit

The normalization constants a, a, b, 5 can be fixed
by enforcing (5.15); we obtain

(5.17)
p Rlk, l IO

1)
go I y 2

(5.20)

x '-=Q. !4.&=9.PQ

d~ e2&&x)y 2
X

In the limit
I 4, I /g, -, x vanishes as

(5.18)

Although x and Pz are not diagonal in our
I «&g» I

representation, Eg. (5.20) correctly produces the
desired eigenvalues as anticipated by our classical
stability analysis, thus indicating that our trial
functions, (5.19), are acceptable. This perhaps
should not come as a surprise since only the be-
havior of p, (X) and $,(X) near X=+

I
&, I/g, enters
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H~=' = (-,
' s)(I —&/, ), (5.21)

in the determination of the dominant matx ix ele-
ments of X and I'„; this has been explicitly veri-
fied by choosing other txial functions. So long
as they satisfy (5.14a), (5.14b), and (5.15), equi-
valent representations for X and P„are obtained.

Substituting analogous matrix representations
for P„', P„', , into Eq. (3.1), we find that
H(1, Pz)=0 so that e, = a, =0. To obtain c, more
accux'ately, we need to keep next-order terms for
all relevant matrix elements. Using our trial,
functions g, and $„(5.19), we find that

g2 8 2% 35 t l5lol /go
1

a result differing sl.ightly from the exact x'esult
2 2

C @ 2hO /t'gO

1

obtained in Ref. V. Clearly, the calculation for &,
is sensitive to the structure of trial wave func-
tions in the "tunneling" x'egion; the exact x"esult
for &, is not expected to emerge for "simpl, e"
choices as (5.19). In the subsection where we dis-
cuss the a+0 case, we simply write the D =0 Ham-
iltonian at each site as

(8 Ie/&=5//, f,,j =0 1 (5.23)

t&, l (I 0x'=-s 'xs= '
I

~
R'o

(0

It follows from (5.16), {5.17), (5.23), and (5.24)
that the desired tx ansformation is

d = X-'/2(I - Z') = V'/2. (s.27)

Because of (5.24), this new basis can be iden-
tified with the "spin basis" of Sec. IV, i.e.,

I+&
=

I e,&
= x'"

I y, &
——,'z'"

I p,&, (5.28}
I-& -=I-.,&

= ~'"I~.& --.'""P.&,

and x' I+& = ~
I
&, I/g, I

~&. In order for (s.28) to agree
with (4.22), we need

where, with 1 defined by (5.18) and X«1,
yl/2(1 y2)l/2[1+ (I y2)l/2] l —yll/ 2 (5 28)

K. Derivation of the classical lattice analog of RFT

The classical lattice analog of RFT is derived
in Sec. IV by applying a two-level truncation ap-
proximation after we first convert the representa-
tion for the matrix element of the evolution opera-
tox', e"~, into a path integral. Our quantum lat-
tice model, onthe other hand, is obtained via adif-
ferent bvo-level truncationprocedure, where we
first diagonalize the operator H. %e now demon-
strate their equivalence, thus establishing that the
critical behavior of these analog models, when they
occur, belong tothe sameuniversality class". This
also justifies the duplication of notations between
Sec. IV and Sec.V.

Sauce I Ig,&f and (IlII/&] are both spanned by the
basis vectors, Illa', & and I$,&, it is possible to trans-
form them to a set of orthonormal bases on which
the X matrix becomes diagonal: I,et

I el& = 2 s/l I '4&

1

(5.22)

Recall that, in our quantum spin formulation, X '~2

is the length of the ground-state vectors, I le,& and
Similarly, (I/&2) exp(H/2) is also the length

of p, and $, in the classical lattice model. In ooth
cases,

I g, I
=

I
Tll,

I
» 1 follows from the anti-Her-

miticity of the triple-Pomeron interaction.
To complete the identificatio, let us rederive

the transfer matrix of Sec. IV sta.rting from Eq.
(5.21), i.e., we calculate the matrix elements of
the time-evolution operator, e ', in the spin basis
for y = a,. The transformation S ' exp(-a, H)S leads
to a transfer matrix

1+e '"l (d/e){1 —e '& l)I

(c/d)(1 —e 'l'l) 1+e '»
where e, = 6&0. Equation (5.30) is identical to Eq.
(4.9) provided that

{s.31)

es=d/c=2X '. (s.32)

Equation (5.32) follows from (5.29); Eq. (5.31)
leads to 5 = -a,"' ln tanhK, in exact agreement with
(4.21).

F. Quantum lattice-spin analog of RFT

At D 4 0,the normal-ox dered Hamiltonian density is

H(x»x) =H (x, p&)+ ~'(-k&o px - I&» x)(--'v~ p~+Iv~x). (5.33)
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I a'
2 Q {[4P1,Zq (t)+ X1.8q (t) —zg]+ [4' + X1 (t}—za) j—

2 2 Q (4 PrP~S~+ Xg XK,~~),2 I+ 2a '

where (e» represents unit vectors for the lattice. The first sum in (5.34) does not involve intersite cou-
plings; it can therefore be grouped with the single-site Hamiltonian density H =

(X, P„). In particular, it
can simply be absorbed by the Pomeron mass term, &,(X'+P„'/4 -K/2), in (3.1), so that b, is replaced
by an effective mass,

(5.34)

When replacing the impact-parameter space by discrete lattice sites, n, one converts fields X(t, b) and

P„(t,b) to Q;(t)] and (P;(t)]. The lattice spacing, a„ is related to the "effective" cutoff in transverse mo-
mentum which is a parameter already present in the original RFT. After replacing the gradient, V'„by
a finite difference involving neighboring sites, the second term on the right of Eq. (5.33) becomes

2DO, '~.ff =- ~a+ ~ ~

as
(5.35)

In Eq. (5.35), the transverse dimensionality D is 2 and o, is of the order of 1 GeV/c. After integrating
over the b space, the total Hamiltonian becomes

H(X, P„)=P a, H o(X;, P- n„,) —2a'a, 'P g (X;X;,;,+ 'P;P;,—I,), (5.36)
n Ii Qb

where we have explicitly exhibitedthat the single-site Hamiltonian is calculated by using &,« instead of

We can next represent H on a basis constructed from the direct product of single-site states. For
~
&,«~/

g, » 1 and S,«&0, we can truncate the basis by keeping only
~ Q,) and

~
p,) at each site. Introducing 2X 2

spin matrices at each site by

n go a goSx=
I& I

~n a d Sp:—
~& (

I'ny
eff eff

and recalling (5.20), we can rewrite (5.36) as

a~ I& I'
H "' ' I (1 —r') —=2m' "' a ') I I (s„'s„""~ —,'s's ')

2 2g'0 a ~b

(5.37}

(5.38)

In Eq. (5.38), 6,« is the new mass gap between

~ p,) and
~ Q,) when &„& is used in (3.1). Because

of Eq. (5.20), S„' and S~ can be represented by
Pauli matrices

S„'= -o„, S~ = -2[o„'+j(1 —o,)] . (5.39)

After (5.39) is substituted into (5.38) and then ro-
tated v/2 about the z axis so that (o„,o,)- (o„,—a, ),
the Hamiltonian for our quantum spin analog of
RFT, with the exception of having &,« in place of
4„becomes identical to that of Refs. 8-10. This
completes our analysis.

VI. DISCUSSION

The current central problem in high-energy had-
ron interaction has been the observation that all
hadronic cross sections rise with increasing ener-
gies. It has been argued that the increase in cross
sections at current machine energies can be at-
tributed to the multiperipheral threshold effects
within the short-range correlation picture of had-
ron production. " However, if this trend persists
to higher energies, it would indicate that hadron

dynamics at high energies is primarily controlled
by unitarity constraints (both direct and cross
channel).

Recent theoretical development favors a two-
step approach to the study of high-energy hadron
interaction. Qne first searches for a realistic
production model capable of accounting quantita-
tively for the bulk of hadronic cross sections at
current machine energies; this is the short-range
correlation component of production amplitudes
and the leading singularity so generated is the
bare Pomeron. Assuming that the zero-energy
intercept of the bare Pomeron is greater than 1,
&, =-1 —n, &0, the asymptotic limit of hadronic
cross sections is then determined by "renormali-
zation" effects, i.e., the interaction between the
bare Pomeron and its associated Regge cuts. The
second step involves the implementation of t-chan-
nel and/or s-channel unitarity constraints. Much
of the recent work of this program has been car-
ried out within the framework of Reggeon field
theory so that the t-channel constraints are en-
forced first.

To provide further insights into the structure of



HI"T at o.,&1, we have reformulated the anti-Her-
mitian cubic RFT in tex'ms of a single field y,. Oux'

treatment is nonperturbative with respect to the
original bare expansion; a different expansion
which treats both Ao& 1 Rnd Ao & 1 I'eg1ons on RQ

equal footl1lg 18 dex'1ved. Oux' one-component the-
ory is anti-Hex"mitian, and it is normal-ordered
with respect to P and $ without tadpoles. Further-
more, our theoxy allows R path-integral formal-
ism in which the integration paths are always
along real a es Rnd no contoux' d1stort1on 1S Fe-
quixed as o|., is incxeased above 1.

The crucial step in oux alternative formulation
of B,I T is the identification of a gauge transforma-
tion so that the transformed Hamiltonian has its
kinetic and potential energy components separated,
and the dependence on the sign of &0 isolated. The
structure of our gauge-tx ansformed theory depends
crucially on the fact that the gauge function, A, (X),
is purely imaginary, which is a direct reflection
of the anti-Hexmiticity of the triple-Pomeron
interaction.

%6 have eM)orated oux' px"ocedu16 by flFst con-
s1der1ng RQ RQRlogous gRUge transformation for
the classical HFT. The quantum gauge transfor-
mation is carried out in Sec. III; we have shown

that many of the featux'es of the classical RFT re-
main at the quantum level. In particulax", our
quantum expansion is seen to be in exact accord-
ance with the boundary condition for the classical
RP"7; the evolution of classical fixed points as a„
is increased above j. is correlated with the quan-
tum descF1pt1on thFough the RQRlysls of the inte-
gration domain in a path-integral for malism. IQ

oux' approach, the integration paths are always
Rlong real axes Rnd Qo contoUF dlstol'tlon 18 re-
quired as 40 changes sign. Our formalism, there-
foxe, represents a technical improvement over
that of Cardy Rnd Sugar in Ref. 6.

The quantum HFT also contains many Usual
feature not presen~ 1Q a class1cal 3 alys1s, e.g. ,
the structure of the left Rnd right vacuums at &0

&O. %6 have concentrated on discussing the limit

where
~
4,

~
jg, is large and &, &0 so that a two-

level truncation approximation can be used. PRr-
ticular attention has been paid to the consequences
of anti-Hermiticity. %6 fix"st formulate in Sec. IV
a finite-temperature classical lattice-spin model
with a single spin-& variable at each lattice site."
The anti-Hermitician intera, ction is seen to lead
to R klnkl1ke gloUQd-state conf lguI Rt1OQ. IQ Sec.
V, we have constructed R quantum lattice-spin
model, thus making contact with the work of Amati
et al. %6 have also explicitly demonstrated that. ,
at D= 0, the quantum lattice-spin approach is iso-
morphlc to OUI clRsslcRl lattice-spin fox'Q1RllsIQ.

%6 have not attempted in this paper to carry
out an analysis on the critical behavior of RI"T at
D= 2. Q.nce we have arrived at the quantum lat-
tice-spin model of Hefs. 8-10, this analysis would
be identical to that of Amati eI, a/. Because our
treatment allows us to expI.oxe more easily the
symmetry between left and right eigenvectors
UQdel X -X, we believe thRt OUF Rppx'GRch 18 more
useful as a. staxting point fox' going beyond the
two-level truncation approximation. Our analysis
also suggests that a renox malization-group trans-
formation approach to a classical lattice-spin ana-
log of RI"T can still provide insights into the na-
ture of the Pomeron phase transition provided that
the symmetries of classical HF7 are taken into
account. Preliminary analysis indicates that pr ac-
tical calculations can indeed be carried out. %6
have also been applying the generalization of Eq.
(3.18) tc, a treatment of the "cut Reggeon field
theory Rnd to simplify the RQRlyses of inclusive
pI'oce 8868.
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