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~e argue that the effective charge g(X) in a color SU(N) gauge theory becomes infinite in the infrared limit
X~O in the I.andau gauge, provided the number F of massless quark flavors satisfies 13N/4 ~ I' & 11M/2. To
deduce this, we must assume that (i) the R transformation 7)„(x) iA„(x)+r„, A„= gauge fields,
7„' = constant vectors, commutes with the gauge-invariant cutoff removal in the renormalized field equations
and current definitions, (ii) functional methods can be used to derive the consequences of invariance under the
R transformation, and (iii) if g(X)~ g g oo as X—tO, the vertex functions are well defined and nonvanishing at
the value g of the renormalized coupling constant. With these assumptions, generalizations of one-particle
irreducible vertex functions involving both gauge fields and color currents are sho~n to have an infrared
behavior which is inconsistent with the existence of the infrared fixed point at g . Therefore, g(0) = ae,
suggesting that color is confined in these models. If we assume that the infrared decoupling theorem is valid
for the exact theory, our result can be extended to both massive and massless quarks, for all F ~ 11%/2.

I. INTRODUCTION

It has become popular in recent years to assume
that hadrons are described by an SU(3) 8 G(E)
non-Abelian gauge theory (NAGT), where the
"color" group SU(3) is appropriate to the strong
interaction and the "flavor" group G(F) is ap-
propriate to the weak and electromagnetic inter-
actions. ' For generality, we will take the color
group to be SU(N). We need not specify the flavor
group except for the number E of flavors. ' The
popularity of this scheme is based on the success
of the constituent colored quark model and the
unified gauge models of weak interactions and
on the observed symmetries of the strong inter-
action as partially broken by the weak and electro-
magnetic interactions. Furthermore, for

O~E& 2N,

a theory is asymptotically free (AF) and so may
describe the scaling laws observed in electro-
production and, more importantly, may confine
color so that quarks and other colored particles
cannot be observed. It is this latter hope, which
must be at least approximately realized if the
theory is to be consistent with experiment, to
which we address oux selves in this paper.

The desired properties of the above models are
most simply expressed in terms of the invariant
charge g(A). We define the "physical" coupling
constant g by renormalizing the gauge-field four-
point vertex at a typical hadronic mass (-1 GeV).

g(A. ) ~ „constx(ina) '~'+0((lnx) '~'),

and this is all that has been heretofore known
for sure. This determines the behavior of the
vertex functions in the "mathematical" ultra-
violet (UV) limit of X sufficiently large so that
(ink) ' is negligible compared to unity. To un-
derstand Bjorken scaling, we must hope that
g(g) remains small for X not much larger than
1 (the "physical'* UV region); to understand strong
interactions, one must hope that g(X) suddenly
becomes of order one' for A, near 1 (the "reso
nance" region); and to understand confinement,
one hopes thatg(X) becomes very large for a near
zero [the infrared (IR) region] . It has, unfor-
tunately, been impossible to prove or disprove
these hopes even heuristically because of the ir-
relevance of perturbation theory for large ef-
fective charge.

%'e study this problem using nonperturbative
methods previously employed to deduce the "g
invarianee" of AFNAGT'S. " For AFNAGT'8
with sufficiently many massless fermion multi-
plets,

(1 3)

we conclude that g does indeed become infinite
in the IR limit (at least in the Landau gauge) Our
arguments involve some smoothness assumptions,
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but since heretofore there has been absolutely
no indication that color confinement occurs in
realistic theories, we feel that even a nonrigorous
argument to this effect is encouraging. Qur re-
sults extend to massive fermions and to all I'&'2'N

if the IR decoupling theorem is true in the exact
theory.

Our result is that

g(z) ), =, ~, (1.4)

but an an unspecified rate so that this at best
establishes only "mathematical" conf inement.
"Physical" confinement would require g(A. ) al-
ready to be very large for A. corresponding to
observable distances. This, as well as the hoped-
for behavior of g in the resonance and physical
UV regions must still be taken on faith, but these
desired behaviors are perhaps now more plausible.

We deduce (1.4) by showing that the contrary
result g(0) =const (the only other possibility in
the Landau gauge) is untenable because it implies
an IR behavior which is inconsistent with that
given by the Ward-Takahashi (WT) identities as-
sociated with& invariance. To obtain this con-
tradiction, we must use generalizations of vertex
functions involving color currents as well as gauge
fields because the gauge- field vertex functions
can have an IRbehavior consistent with the WT
identities if the gauge fields have a negative IR
dimension, whereas the color currents are con-
strained to have canonical dimensions.

Even given (1.4), there is no rigorous proof
of the intuitive expectation that confinement will
obtain in the strong-coupling limit. There are,
however, interesting indications that confinement
does indeed occur. It has been shown that an
NAGT of strong interactions becomes a color-
confinement boundary condition on the weak and
electromagnetic interactions in the strong-cou-
pling limit. ' It has also been argued that the dual
string arises as a strong-coupling limit of an
NAG T.8

It is crucial for us to work in the Landau gauge.
The technical reasons for this are explained in
Sec. II where the Landau-gauge formulation' of
NAGT's is summarized. The renormalization
group is exploited in order to establish the R in-
variance of the theory. The gauge-field vertex
functions are studied in Sec. III, where the im-
plications of renormalization invariance and R
invariance are deduced. It is shown that (1.4)
can only fail to occur if the gauge-field IRdi-
mension is negative. In Sec. IV, generalizations
of vertex functions involving both gauge fields
and color currents are introduced. In Sec. IVA,
it is shown that the currents change by a finite
amount under P transformation only in models

satisfying (1.3). In Sec. IV B, the mixed vertex-
function generalizations are defined by a suitable
functional Legendre transformation, and in Sec.
IVC, their IRbehavior is deduced from both the
renormalization group and p invariance. These
behaviors are not consistent and so (1.4) is at
least formally established in the models (1.3).
The extension of our results to models involving
massive quarks is discussed in Sec. V. We con-
clude in Sec. VI with a discussion of our assump-
tions and the implications of our results.

II. LANDAU GAUGE

The models of interest here involve N' —1 re-
normalized (Z, = renormalization constant) non-
Abelian gauge fields A'„(a = 1, . . . , N' —1) trans-
forming according to the adjoint representation
of SU(N), NF massless" renormalized (Z, = re-
normalization constant) fermions g [F fermion
N-tuplets, each transforming according to the funda-
mental representation of SU(N)], 2(N' —1) renor-
malized ghosts C;, C; (Z, = renormalization con-
stant), and a renormalized (Z, = Z, Z, /Z, = re-
normalization constant) coupling constant g. The
appropriate SU(N) structure constants f"' and
fermion representation matrices T' are used
to define covariant derivatives

~ab 6abe + (Z /Z )gfabcAc

D „=8 „—ig T 'A'„(Z, /Z, ),

and field strength

F'„, =& „A'„—B,A'„+ (Z, /Z, )gf' 'A„A'„,

or more concisely,

F„„=e „A„—a„A„+(Z, /Z, )gA„xA„.

(2.1)

(2.2)

(2 3)

(2.4)

In addition, one has the normalization conditions

facdf bcd N6ah

Tr(T'Z'b) = —,'F6"
(T'T'), , = [(N' -1)/2N] 6,

(2.5)

(2.6)

(2.7)

The generalized Lorentz (non-Landau) gauges
are defined by the Lagrangian density"

L = L„+L,b+ (I/a)(S A)', a ab 0, (2.8)

the sum of the classical, ghost, and gauge-fixing
pieces. The latter piece involves the renormalized
gauge parameter n and provides a momentum
canonically conjugate to A,':

[ A;(x), (I/n)s A'(y)] 6(x, -y, ) = —i 6"6'( y)z

(2.9)

This equal-time commutator is finite in each
order of perturbation theory. L gives rise to the
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re normalized field equations

8"(B„A„—s„A„}=—(Z,o) '8„8 A-K„, (2.10)

a ec, =o, (2.11)
Z, /Z, —0 always, (2.22)

13) and the behavior of field products such as
A'„(x)A„(y) for x-y.' It follows from these cal-
culations that'

and

Q ~ Bc~ =0, (2.12)

(2.13)

and

(Z, /Z, )'A'„(x)A', (x)-0 if and only if E&N.

(2.23)

K„=g(Z,/Z, )[V„,xA'+8'(A„xA, )

+(I/Z, )(Z,4y„Tg + Z,s „C,x C,)].
(2.14)

between 5 and y. Because of the presence of two
coupling constants (g and o ), the solutions to
(2.1'l) involve two effective coupling constants
g(a) and a(a) defined by

=p(i ~» i(1 g o)=gsg(z;g, a} (2.19)

In addition to depending on momenta, g, and
z, the vertex functions of the theory are functions
of the renormalization mass p, . One has, for
example, the renormalization condition

~txgsooo(Ko(Pl& Po& f 3& l 4 tg & +& W) I s„-g
on the gauge-field one-particle-irreducible (IPI)
4-point vertex at the mass-p. symmetry point
Sp.

(2.16)

The arbitrariness of p. is then expressed by the
renormalization group (RG) equation"

a 8 a
p —+ p(g, n) —+6(g, ~) -n~(g, o)

Bg eg B~

x I'&"&(p„. . . , p„;g, o.; p) =0 (2.17)

for the n-point gauge-field vertex functions.
Gauge invariance gives the relation

These results imply that the exact field equations
(2.10)-(2.14) are invariant to the R transforma-
tion"

A„-A„+r„, @-4, C, -C„C,-C, (2.24)

for arbitrary constants r'„, if

K& E& —, ¹ (2.25)

p(g„) =0, g„&0. (2.26)

The slope of P is then necessarily positive at
g =g„so that g„ is an IR-stable fixed point and

g(»g} ~ og (2.27)

To investigate which models confine color, one
wants to know the behavior of g for A. -O. Be-
cause of the presence of two coupling constants
and the associated two effective charges, this
can be an extremely complicated problem. The
coupling between g and o, in (2.19), (2.20) allows
for many different types of asymptotic behavior
in the IR limit, e.g. , fixed point, limit cycle,
etc." The enormous simplification of this situa-
tion in the Landau gauge (a =0) indicates that we
should specialize to this gauge. In the Landau
gauge, because of (2.18), the u dependence of the
RG equations completely disappears. One has
n =0, and P, y, and g(X} are functions of g only.
Then there are only two possible types of IR be-
havior for g(a;g),1 depending on the behavior of
P(g). In the AF models (1.1), P(g) vanishes at
g = 0 with a negative slope, and the issue is whether
or not P(g) has a second zero at some finite
g =g„(Ref. 16):

= 5(g, a), a(1;g, o) = a.sa(x;g, a) (2.20) If, on the contrary, P(g) has no second zero, then

g(»g ~)~ =-0,

n(A. ;g, a) z
= 0 if E/2N& o,

a(X;g, a) ~ =„o —4E/3N if E/2N& —", ,

(2.21}

and the vertex functions are exactly computable
in the deep Euclidean limit. One can, in par-
ticular, calculate the exact behavior of the re-
normalization constants Z, (A/p) for A-~ (Ref.

If (1.1) is satisfied, one has the exact" asymp-
totic behaviors

g(a;g) ~,~ for geO. (2.28)

We will argue that the second zero of P (2.26) can-
not exist in the models (1.3).

Qur arguments involve the use of an operator
formulation of the Landau gauge, to which we
now turn. ' The formalism is slightly more com-
plicated than for ~g0 in that there exists an ad-
ditional set of scalar fields B (formally
lim, a '8 ~ A) transforming according to the
adjoint representation of SU(N). The Lagrangian
density becomes
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L = L„+I,,„+B.(e ~ A),

so that 8 is canonically conjugate to Ao:

(2.29) gether with the results of Ref. 6 on the behavior
of A'„{x)A~ (y) for x- y imply the following be-
havior in the AF m.odels:

[ A;(x), a'{y)]6(x, —y, ) = —f 6'"6'{x-y). (2.30) Z, /Z, (A) ~- =„0, (2.37)

This relation is finite in each order of perturba, -
tion theory. The only field equation in (2.10)-
(2.14) which changes ls (2.10), which becomes

6" (8 „A, —8,A q) = -Z, '[] „B—K„, (2.31}

and there is the new equation

characteristic of the I andau gauge.
The renormalization conditions and RQ equa-

tions (2.15)-(2.20), etc, remain valid as before
but with z = 5 = ~ =0. The renorma, lization con-
stants may again be calculated exactly and are
g1ven by

Z, (A) ~~„(lnA) '«', i=1, 2, 3, 3,

with

b = (1/24m')(11K —2E),

a, =0,

a, = —(1/487]')(13K —4E},

a;&0,

a, =-,'(3a, +b)

%e thus always have

(2.33)

(2.34a)

(2.34b)

(2.34c)

(2.34d)

(2.34e)

Z, =const and Z, -~ [in any theory (1.1}],

whereas g, and Z, depend on N and E.
The behavior of the renormalization constants

divides AF theories into two distinct ca.tegories.
For —,N&E& —", N, we obtain theories which are
perturbation-theory violating (PV) in that all re-
normalizations of fundamental fields are finite:
Z, -O, Z, -const, Z, -O. 'For the standard SU(3)
color group, one obtains PV theories when 16
~ I'~ 10. The remaining AF theories are fermion
deficient (FD) with respect to PV theories. FD
theories have Z, -, Z, - 0 for E& '8'/, /, -
for E& 8 N, Z, - const. The fact that the exact
gluon wave-function renormalization is infinite
for FD theories indicates that the exact theory
itself resembles its perturbation expansion to
some extent, and for F & 8 N this resemblance
is even more pronounced. In summary,

Z, =O, Z, =O for 2'f&l&E& , N (PV), (2.36a—)

Z, =0, Z, =~ for ~
N&E&','N (FD), (2.36b—)

Z, =~, Z, =~ for Oc E& , f&f (FD). —(2.36c)

The above renormalization constant results to-

A„(x)—A„(x)+r„,
8, 4, C„C2 unchanged.

(2.40)

This inva, riance is present in the Landau gauge
for any number of fermions as long as the AF
condition (1.1}is satisfied. However, implicit
in this result is our first smoothness assumption—
that the g transformation commutes with the
gauge-invariant cutoff-removal limit implicit
in the field equations. The R invariance of AF
models could be rigorously established by showing
that the point-separated regularized finite local
field equations are explicitly invariant to (2.40).
This has already been accomplished for models
without ferm1ons.

III. GAUGE-FIELD VERTEX FUNCTIONS

Properties of the Landau-gauge Green's func-
tions and vertex functions in the models can be
conveniently summarized in terms of their gen-
erating functionals. In this section, we will study
the connected Qreen's functions

the gauge fields A'„. Consideration of these func-
tions will not be sufficient to deduce (2.28), but
will illustrate our approach in the simplest pos-
sible context. The derivation of (2.28) will be
given in the following section.

The generating functional Z of connected gauge-
field Green's functions is given by

*p[z(M )] =D J(d )8 p]i J d'*[I(*)+M„X']I

where I.( )isxthe Lagrangian density (2.29), (do)
is a gauge-invariant measure on the fields, M»
1s R clRss1cal source, Rnd D dlvldes out VRcuum
bubble. The generating functional I' of one-par-
ticle-irreducible vertices is obtained from Z by
Legendre-transforming the source M„:

r(s„&=z(N»„-* ja *)T„„M„, (3 3)

(Z, /Z, )A'„A„(x, A) A
=„ finite operator, (2.38)

(Z,/Z, )'A'„A', (x, A),„=„0. (2.39)

Because of these relations, the exact formal
field equations of an AF theory in the Landau

gauge are invariant under the P transformation
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5r/5S„=iM„, 5Z/5M„=- iS„. (3.4)

Functional differentiation of (3.3) with respect
to S„and then setting S„equal to zero gives the
nonlinear equations defining the 1PI vertices in
terms of the Green's functions of the theory. The
simplest of these are (symbolically)

Z
(~) —

(Z (2))2G(&)

G(s) (G(2))3r(3)

G") -G&')(r('))' =(G&")4r&",

(3.5)

(3.6)

(3.7)

where I'~" ~ is a 1PI vertex for n gauge fields and
G&"] is the corresponding Green's function. Once
(3.5) is solved for the inverse propagator

z (2) (G (~))-) (3 8)

all other vertices may be obtained recursively.
To calculate the inverse of (3.8}, the mixing of
A„and B must be taken into account. The details
are given in Sec. IV, where a more complicated
problem arises. The I' vertices have interpreta-
tions in terms of Feynman diagrams; they cor-
respond to those connected diagrams with no one-
particle intermediate states and with external
propagators removed.

The R-symmetry WT identity is derived from
(3.2) by application of an infinitesimal R trans-
formation. The measure in (3.2) is R-invariant,
and so we obtain

In terms of the 1PI generating functional, this
functional WT identity becomes

d x 5r/as„=0. (3.10}

Functional differentiation and Fourier trans-
formation give the low-energy theorems

I'("'(P„.. . , P„;g, )).) = 0 when any P, = 0,

(3.11)

for any n&1. A case of particular interest is
n =2, which, by (3.8), implies that the gauge-
field propagator has a singularity, but not neces-
sarily a pole, at q=0.

The 1PI vertices satisfy the familiar renormal-
ization group equation

[))aja)). —p(g}a/ag+4 —nd(g}] r(")())p;g, (&) =0

(3.12)

in the Landau gauge, since the fermions are
massless. P =(p„.. . , p„), d(g) =1+y(g) is the
full dimension of the gauge field, and p. is the
subtraction mass.

4-nd & 0 (3.14)

or

I'(")(P;g„,(i) =0 for all P (3.15)

By considering large n, we deduce that either

or

d&0

I'("'(P;g, )),) =0 for all P,

(3.16)

(3.17)

for n&4/d. The behavior (3.17) is presumably
impossible for gii0. We are then left with (3.16);
but, since we see no reason to exclude a negative
dimension, "we have not produced a contradiction.

The possibility that d ~ 0 thwarts our attempt
to deduce a contradiction. This suggests that we
should try to employ fields of known positive di-
mension in our analysis. The logical candidates
are the conserved color currents J

p
of dimension

three. These will be considered in this context
in the following section.

IV. CURRENT-FIELD VERTEX FUNCTIONS

A. Color currents

The global color transformations

Au gA xL

M =gT L4',

C, =gc, xL,

(4.1)

where L is a constant vector, are generated by
the spatial integral of the renormalized "color"
current" "

J„=g[(Z,F„„+g„„B}xA'+Z,C Ty„4

+ Z, [ C, xD „C,+ (a „C,)x C,]]. (4.2)

Under the R transformation, the change in J„
(again assuming interchange of symmetry trans-
formation and cutoff removal) is

We now assume that P(g) has a second zero
for g =g„w0. We make the standard assumptions
that r("'(P;g, (i) and y(g) are well behaved at the
fixed point so that the r&"'(P;g„;p) describe a
scale-invariant theory in which A„has the scale
dimension d = 1+y(g„). This conventional as-
sumption is our second smoothness assumption.
Then one has the infrared behavior

r(ll)())P, g (j) ~ g4 IIII r(ll)(p, g ~)f (II)() )

+ less singular in ))., (3.13)

for all nonexceptional P, where f&")()&) may be zero
or infinite as A. -O but not as a power of A, .

Equation (3.13) is consistent with (3.11) only
if, for each n, either



A J„=g{Z,(B„A„—B„A„)xr"+gZ, [(A&xA„)xr" +perm+(A„xr, )xr'+perm+(Z, /Z, )[C,x(r„xC,)]]+Bxr„),
(4 3)

(Z, Z, /Z, )(A)C; C,' (x, A) - Z, (A):A; A'" (x):,
(4.6)

where the colons indicate free-field%ick ordering.
Both (4.6) and (4.4) are zero for PV theories, and

so the final results for PV theories are

AJ „=gBx r„(PV theories),

A(AJ„) =0. (4.8)

Incontrast, we find that in no FD theory, is
~J„ finite. This arises because Z, is infinite for
these theories, implying that AJ„picks up an
infinite Z, (8 „A„-B,A„) piece. This can never
be canceled by an infinity in the C2Cy term The

it is not multiplied by Z3. For 4'N&E&'8'N,
A(AJ„) is zero as it is in PV theories; however,

17for E« , N, not even —A(&J„)exists since Z, -~.
These results mean that we cannot define

Green's functions with hJ& insertions for any
FD theory. The bad behavior of the curxent will
prevent us from applying our methods to FD the-
ories. This striking contrast between PV and
FD theories indicates that these categories m3y
have very different types of color-confining be-
havior. Nonperturbatively all AF field theories
do not necessarily have the same type of behavior.

The generating functional Z of connected Green's
functions of A fields with insertions of color cur-
rents J„and B fields is given by"'

while the change in this operator is

A(AJ
&

) =g 'Z, (A „xr„)x r' + perm.

These equations have profoundly different forms
depending on whether a theory is PV or FD.

For PV theories, both Z, and Zs are 2:ero
This together with (2.38) implies that all terms
in (4.3) vanish except

AJ„=g[Bxr„+(Z,Z, /Z, )[C,x(r„xC,}]].(4.5)

This may be simplified further by writing down

the "short-distance" expansion for C,, C, (Ref. 20)

exp[ Z(M„, M„M, )]

do «p ~ d x I. x +M„„AI'+M „.j~

(4.9)

where Mz is the classical source of the current
J„and M~ is the classical source of B.

g invariance implies the functional %T identity

for color-current-inserted Green's functions in

PV theories. Equation (4.10) follows from (4.9)
when (4.&},(4.8} are taken into account. The in-
tegrated form is necessary because the g trans-
formation is not local. The variation with re-
spect to M~ enters because of the non-A-invari-
ance of J„. The xeason that our methods fail for
FD theories is now apparent: %e cannot write
down &-symmetry %'T identities for current-
inserted Green's functions in these theories.

To obtain simple low energy -theorems from (4.10),
we must define a new set of vextices in the following
manner. Introduce a 3k-component (k = N' —1)
"field" I'&, where I"&=A&, i = l, . . . , k'; F&=J&

Introduce also the source )if& of this field by M&

endx'e transform Sp of M~ as Sp =S~p

+ 1, . . . , 3k. S and M are related by S„' = —iBZ/5, 'if '„,
M „' = i6A/5S'„. A is the generating functional of a
new type of vertex obtained from Z by Legendre-
transforming the sources of J& and 8 in addition
to the source of A„. The Legendre transform is

A (S'„) = Z (M '„) —( fd' x 8 '„M N . (4.11)

The A vertices obtained by functional differentia-
tion with respect to S are nonlinear combinations
of Green's functions which do not have simple in-
terpretations in terms of Feynman diagrams.
They satisfy equations which are simple general-
izations of the xelations satisfied by the j.PI ver-
tices. The slxnplest of tllese al'e (sylnbollcslly)

A(F'E'}= -A(F'F )A(FlF )G(F"F~),
G(F'ElF ) =G(F'F')G(F'E )G(F'F")A(F'F F"),
G(F'E'F'F') = G(F'F")G(F'F )G(F'E")G(F'F') [A(F "F F'F') +A(F "F F')G(E'F")A(F"F"F')].

(4.12)

(4.13)

{4.14)
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Once the G(F'F ) matrix is inverted so that

A(F'F') =-G(F F ) (4.15)

the A vertices may be solved for recursively in
complete analogy to the j.PI vertices.

Let us a&rite down explicitly the tvro-point A
vex tices. In momentum space, the relevant
Green's functions are„ in the I andau gauge, '

t". Infrared behavior

Replaclllg the solll'ces ltl (4.9) l)y tllell' Legelldi'8
tl ansforDls gives the functIonal 8-symmetry %T
identity for A vertices

r dnx[r" ~ (f»A/6g„„)Z ig-(5A/58~„) ~ (r" x Ss)].=0 ~

(4.24)

G(&'„B')((I)= (0„/(I')()",
G(B'B')(e) =o,
G(J'„B')(e)=0,
G(&'„&'.) (4) = (g,.—4'„(I./e') C~~(e'},

G(&'„&'.)(e) = (g„.—e„e./e')4'~(e*),

Gu'„~.'}(~)= (g„. ~„q./—q'}G .(~')

+ ((I„e.le '}D"((I'} .

(4.1V)

(4.19a)

(4.19b)

(4.19c}

For A vertices with no 8 insertions, (4.24) is ef-
fectively

(4.25)

%hich is formally the same as the 1PI identity.
Taking functional derivatives w'ith respect to 8&

and S~ and Fourier txansformation gives the lom-
enex'gy theorems

Upon inverting the matrix defined by these expres-
sions» we obtaxn the A vex'tices

A(B'B') =0, (4.20)

(4.23a)

(4.23b)

A(g'„B')= q„5", (4.21)

A(JqB ) =0, (4.22)

A(&'„&.) = -(g) —e) e /4')(& ')~~

A(&'„&.') = -(g„.—e„e,/~')(G ')". ,

A(J'„&.')=-(g„,-~„~./~')(G ')4
-(e,e,/e')(D ')" . (4.23c)

Once (4.20)-(4.23) have been written down, all
one has to do is calculate Green's functions and
use (4.12)-(4.14) and their generalizations to high-
er-point vertices to calculate A vextices. In pax-
ticular, perturbation-theory expansions for the A

vertices can be dix'ectly obtained from the pertur-
bation-theory expansions of the Green's functions.

(pl» ' ' ' »Pn» I I» ' » fm» g» &) = 0 for any P( = 0 ~

(4.26)

A~"' ~ is a A vertex for n gauge fields and ~ cur-
1'ellt illsel'tlolls Eqllatloll (4.26) is tI'ue foI' arbi-
trary pB» provided s ~~ 1.

The 1 enol Inallzation gx'oup equation fox' cur x'ent-
inserted A vertices followers immediately once one
knovrs how to renormalize current-insex ted
Gx'een's functions. The canonical curxent algebra

[j:(x) a'„(y)]~(x.—y.) =g.f'"a'„(x)5'(x -y),
(4.27)

[»'o(x}f ( (y)]5(xn -Q =gnf'~»„(x) 5'(x - y)

(4.28)

(Schwinger terms are removed by introducing a
covariant Tm product for Green's functions) implies
the O'T identities

8)'G(n )[j'„(X)j'„n(X,) ~ ~ jP (X )a'„m+1(X „)~ ~ ~ a'„"'"(X„.)]

= Q 5'(x —x()g,f"&'G( 'n')[jp(x, ) j„' ( mJx'„aim(+x„„)~ ~ a'„"'m(x„, )], (4.29)
POf Ill

where the caret indicates that the field (current) with argument x; is replaced by a;(x) [j', (x)]. In the
above formulas, lovrer-case letters indicate unxenormalized fields and currents, while a zexo subscxipt
indicates an unrenormalized parameter. The recursion relations (4.29) in addition to our knowledge of the
renormalizations of go and Green's functions fox gauge fields tell us hoer to define the renormalized Gxeen's
functions vrith current insertions:

G(n, m) limed -m/n(A)g /n(nA) G(.n)m( A)-
where Z~ renormalizes go.

From (4.30) follows a functional RG equation for Z:

8 8
(I +f) —+) (g—} d'x M„" 5- +y, (g) d'x M," g(M„, M„g, ) ) =0.

8P Bg Ap
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Taking the Legendre transform and rewriting M&, M~ in terms of the new independent sources S„,$~, we

obtain a functional RG equation for A. Taking note of the extra parametric differentiations which arise
because of the shift in independent variables, this reads

9 a
)) —+f) —-) (g) d'»~„„-rg(g) d'x S," ~ A(S„, S„g,p)=0.

8p, ag
(4.32)

Functional differentiation and the scaling equation

)(—+ i( —A(" ~)()(P, )(Q;g, p.)
BA 8P

=(-4+n+3m)A(" )(~ XQ g )() (4.33)

gives the RG equation satisfied by the ~ vertices:

A'" '(P Q g p,) =0 (4.36)

for all P=(p„.. . ,P„), Q =(q„.. . , q„) for m
~ —,[4-nd(g„)]. This behavior may be excluded by
invoking another mild smoothness assumption.
One might, for example, use the unitarity equa-
tions for a conformal-invariant field theory, or
use functional methods. ~3

Accepting our smoothness assumptions, we have
shown that the behavior (2.27) cannot occur in
models satisfying (1.3). This leaves the desired
behavior (2.28) as the only possibility in these
models.

V. EXTENSION TO MASSIVE QUARKS

Our previous discussion in the framework of a
quark-gluon model with non-Abelian gauge coupling

A. —-P —+4 nd -—md& A("' )(AP, )(Q;g, y) =0.
9A, 9g

(4.34)
(The usual IPI vertices with current insertions
have a plus sign in front of d~.)

Assuming again the existence of a second zero
of P(g) at g=g, as )(-0 we approach a scale-in-
variant theory in which the currents must have
canonical dimension d~ (g„)= 3. We then obtain the
scaling behavior

A "'"(LP )(Q.g )()

)(4-nd(t~) -3m[A(n, m)(P q.g ~)g(n, m)() )
X~0

+terms less singular in A],

(4.35)

with g("' )(A) the analog of f(")()() in (3.13).
When the leading behavior in (4.35) is nonzero,

we automatically obtain a contradiction with (4.26).
For fixed n, we may always select an m large
enough, m ~-', [4-nd(g„)], so that the leading )(

power in (4.35) is negative. The only hope for
(4.35) to be consistent with (4.26) is

has implicitly assumed that particle masses are
zero. %e take the underlying color gauge sym-
metry as unbroken, and so the gauge gluons always
stay massless. In the popular schemes of chiral-
symmetry breaking, the quarks have mass, and
these mass terms are postulated in such a way as
to account for the broken chiral symmetry as ob-
served. %e shall now review our previous argu-
ment, noting modifications where necessary to
accommodate the more realistic models with
quark-mass terms.

Our argument relies on the confrontation of the
information from the low-energy theorem and that
from the consequences of an assumed IR fixed
point for the RG equation. The low-energy theo-
rems (3.11) and (4.26) are derived using purely
the short-distance or UV behavior of Wilson co-
efficients. The UV behavior is always independent
of the presence of masses. In the language of the
RG, the mass-insertion term in the inhomogeneous
RG equation can always be neglected in the UV
region. " This can be equivalently stated as the
UV vanishing of the steinberg RG-equation effec-
tive mass. '4 The conditions for the validity of the
low-energy theorem therefore remain unchanged
whether the quarks have mass or not.

At this point we must discuss the predictions
of the decoupling theorem" (DT). In any IR limit,
the DT says that the behavior of a theory with
massive particles is the same (up to finite renor-
malizations) as any other theory with any addition
a/ number of essive particles of the same type.
Thus a pure Yang-Mills theory is predicted to
have the same IR behavior as a Yang-Mills theory
containing an arbitrary number of massive quarks.
The DT is a statement true in finite orders of
perturbation theory, and its validity in the exact
theory has never been established. Since low-
energy theorems are derived for models with suf-
ficiently many fermions, irrespective of their
masses, the theorems are still valid if all quarks
acquire masses. If we now apply the DT, we get
the result that the theory without any massive
quarks must obey the same low-energy theorems.
Thus even though these low-energy theorems as
oxiginally derived need the presence of fermions,
by application of the DT to the exact theory, we get
the low-energy theorems for any theory with fewer
massive fermions, including pure Yang-Nil. ls theo-
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ries.
Next we consider the part of the argument con-

cerning the consequences of an IR fixed point.
The behaviors (3.13) and (4.35} of the appropriate
vertex functions are predicted by relying on the
neglibibility of all masses in the IR limit. This
negligibility is justifiable in either of two circum-
stances.

First, we consider again the inhomogeneous RG
equation

& ——p —-nd+4 I' "(&p,g, m; p, ) = ni'" .(
8 8

9A. 9g

(5.1)

The mass-inserted right-hand side can be neg-
lected if its power behavior is less singular than
that of I' " in the IR limit. If mass insertions
can indeed be neglected, we have the IR behavior

(n)(g) ~ g4-nn
k 0 (5 2)

&I (n)(y) ~ gde —nn

p
(5.3)

where de is the IR dimension of the mass opera-
tor 8=4m%. This gives the condition

de &4, (5.4)

which appears to be rather unlikely. Equivalently,
one may demand the vanishing of the Weinberg ef-
fective mass, and this again gives the condition(5. 4}.
If the mass-inserted Green's function is not neg-
ligible compared to 1 " in the IR limit, the true
IR behavior cannot be determined from (5.1)evenas-
suming an IR fixed point. The behavior can be
more complex than a power, and the concept of
IR anomalous dimension may not make any sense
at all.

The second, actually simpler, circumstance
which justifies neglecting masses is the validity
of the DT for the exact theory. Neither of (3.13)
and (4.35) makes reference to the number of fer-
mions present, and so application of the DT re-
sults in these behaviors being valid with no modi-
fication necessary even in the presence of mas-
sive quarks.

To summarize, the extension to massive quarks
leans heavily on the validity of the DT in the exact
theory. Making that assumption, we can extend
the validity of our low-energy theorems to any
AFNAGT of Yang-Mills gluons and quarks of arbi-
trary nonzero mass. The DT says that the conse-
quences of the IR fixed point are not changed by
adding masses. Hence, we obtain the previous
contradiction in every case and predict infinite
IR effective coupling for all AFNAGT's.

This result remains correct even if there are

VI. DISCUSSION

Our arguments in several places depend on the
assumption that the R transformation commutes
with the gauge-invariant cutoff-removal limit. In
symbols, we had to assume that if

F(A) = lim E~(A), (6 1)

where E(A) is a. renormalized operator and Fz(A)
is the corresponding regulated operator with A the
cutoff, then

E(A+r) = lim FA(A+r). (6.2)

Because of the implicit nonoperator formulation
of these regularizations, it is difficult to access
the validity of such interchanges. However, it is
possible to avoid having to make this assumption
by deriving a (non-gauge-invariant) point-separated
regularized expression for F(A}. With this regu-
larization, I' becomes an explicit operator func-
tion of A so that (6.2) manifestly follows from
(6.1). The effect of the R transformation could
then be rigorously established, just as was pre-
viously done for quantum electrodynamics.

Another nonrigorous aspect of our work has
been our use of functional methods to deduce the
consequences of R invariance. It would again be
straightforward but tedious to check these results

some massless quarks present. This can be seen
in the following manner. Suppose we are inter-
ested in a theory containing K& '4'N massless
quarks. Construct a PV theory containing I' =M
+K flavors of quark, where M is a number of
massive quarks such that E satisfies (1.3). This
theory has the IR behavior (3.11) and (4.26). An

application of the DT now implies that this IR
behavior is identical to that in a theory with the
M massive fermions deleted; i.e. , the low-energy
theorems must also be true for FD theories of
massless quarks.

The DT is thus seen to lead to a considerable
extension of our results. However, it is conceiv-
able that the DT is not applicable for our purposes.
This is true not because we believe that massive
fields may generate long-range forces in AFNAGT's
(the IR behavior should be determined solely by
the behavior of the massless quanta), but because
it is not obvious that the finite renormalizations
induced by the presence of massive particles can
be neglected in the exact theory where the exis-
tence of R symmetry is a consequence of renor-
malizations. The finite renormalizations could
conceivably add up to zero or infinity in the exact
theory and ruin our analysis. We must assume
that they do not.
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F(A) = F(A+ r),
which really read something like

F(A) =F(A+r)+ lim (lnA) 'G(A) .

(6 3)

(6.4)

It is conceivable that, even though (6.3) is form-
ally true, the slowly vanishing term in (6.4) can-
not be neglected in the field equations.

At this point, we re-emphasize the nonperturba-
tive nature of the R-symmetry relations (6.3).
The symmetry is not present classically or in
any finite order of perturbation theory. It and
the consequent WT identities [(3.11),(4.26)] are
properties of only the exact theory. Likewise,
the consequences [(3.13), (4.35)] of the RG equa-
tion with an IR fixed point are valid only for the
exact theory. Our conclusion is thus also valid
only for the exact theory. This result is perfectly
consistent with the absence of IR singularities"
in inclusive cross sections in finite orders of
perturbation theory since results obtained in
finite orders of perturbation theory are irrelevant
to the confinement issue. "

Even if the IR strong-coupling limit were
rigorously established by our methods, the con-
clusion that color would then be confined would
remain to be definitely established. However,
confinement is physically reasonable and is sug-
gested by the works" mentioned in Sec. I.

using rigorous structural methods. This has al-
ready been done for the gauge-field vertex func-
tions, but remains to be done for current-field
vertex functions.

A final possibly troublesome point is our neglect
of terms of order (lnA) ' in deducing the sym-
metry relations

(6.6)

The RG again gives the IR behavior (3.11) with

d(g, u. ) =1+y(g-, o'-), (6.7)

and the It symmetry (present only if F &N} again
gives (3.13) so that (6.7) must be negative. Com-
parison of (6.6) and (6.7) requires that o! = 0, and

we conclude that an IR fixed point can only occur
at the Landau gauge. Proceeding as in Sec. IV

again disproves the existence of such a fixed point.
However, we cannot conclude that g(0) = ™,be-
cause of the other possible types of behavior such
as limit cycles.

Returning to the Landau gauge, we may con-
clude that all AFNAGT's confine color, if all of
our assumptions are valid. The importance of
this conclusion would seem to justify further
investigations of these assumptions. Work in this
direction is in progress.

We have stressed that (2.26) is derived only in

the Landau gauge. If this does indeed imply con-
finement, then the obvious gauge invariance of
the confinement concept implies confinement in
all gauges. This need not mean that g(0) = ~ in
all gauges. The strong-coupling limit is hopefully
a sufficient condition for confinement, but not

necessarily a necessary condition.
In spite of the greater complexity of the RG

equations in non-Landau gauges, our methods
still lead to some interesting conclusions. Con-
sider an IH-stable fixed point at g =g„, n = n„.
The conditions for the existence of such a fixed
point are

(6.5}
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