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We examine the possibility, and its consequences, that in a relativistic local field theory, consisting of
color quarks q, scalar gluon a., color gauge field V„, and color Higgs field $, the mass of the soliton

solution may be much lower than any mass of the plane-wave solutions; i.e., the quark mass mq, the gluon

mass m, etc. There appears a rather clean separation between the physics of these low-mass solitons and

that of the high-energy excitations, in the range of m, and m, provided that the parameters (=(jtL/m, ) and

q=rtt/m are both &&1, where p, is an overall low-energy scale appropriate for the solitons [but the ratio

q/$ is assumed to be O(1), though otherwise arbitrary). Under very general assumptions, we show that,
independently of the number of parameters in the original Lagrangian, the mathematical problem of finding

the quasiclassical soliton solutions reduces, through scaling, to that of a simple set of two coupled first-order
difFerential equations, neither of which contains any explicit free parameters. The general properties and the
numerical solutions of this reduced set of differential equations are given. The resulting solitons exhibit

physical characteristics very similar to those of a "gas bubble" immersed in a "medium": there is a constant
surface tension and a constant pressure exerted by the medium on the gas; in addition, there are the
"thermodynamical" energy of the gas and the related gas pressure, which are determined by the solutions of
the reduced equations. Both a SLAC-type bag and the Creutz-Soh version of the MIT bag may appear, but

only as special limiting cases. These soliton solutions are applied to the physical hadrons; their static

properties are calculated and, within a 10-15%%uo accuracy, agree with observations.

I. INTRODUCTION

ln a previous paper' (hereafter called I), we have
made a systematic comparison between the quasi-
classical soliton results and the exact answer in
a quantum field theory, whenever the exact answer
is available. In a fully relativistic renormalizable
theory of a fermion field interacting with a scalar
gluon field, the exact answer is known only in the
weak-coupling region. There, it is found that the
quasiclassical result becomes exact when the
fermion number N is large. Even when N=2, the
quasiclassical result remains a fair approx.'ma-
tion. For example, the ratio between the exact
two-body binding energy and the corresponding
quasiclassical soliton result is =—0.77 in the weak-
coupling limit. When the fermions are nonrelativ-
istic (like electrons in a crystal), but the scalar
field remains relativistic, exact answers are also
known in the strong-coupling limit. We find that
the quasiclassical soliton result becomes exact for
arbitrary N, provided that the coupling is suffi-
ciently strong; it is also exact in any coupling
range, when N is sufficiently large. It is not dif-
ficult to trace the underlying reason for the valid-
ity of the quasiclassieal description. When N is

there are a large number of real particles
in the system. Similarly, when the coupling is
strong, the number of virtual particles becomes

large. In either case, the system possesses
some large coherent modes of field quanta, which
are accessible to quasiclassical descriptions. It
is quite remarkable that even in the worst case,
N = 2 and weak coupling, the quasiclassical binding
energy derived from the soliton solution remains
a fairly reasonable approximation to the exact
quantum value. (The same conclusion can be
reached if the conserved quantum number, say
N, is carried by a boson field, instead of a fer-
mion field. )

From these comparisons, we infer that strong
coupling is by no means detrimental to a quasi-
classical approximation. " gather, because of
the large number of virtual quanta involved, and
because of the strong potential energy which may
develop against fluctuations, one expects the quasi-
classieal approximation to be more reliable in the
strong-coupling region. With this assumPtion, we
shall in this paper extend our studies of quasi-
classical soliton solutions to quark models for
hadrons, where strong coupling is clearly re-
quired. Our starting point is identical to that of
Bardeen, Chanowitz, Drell, Weinstein, and Yan';
it is also similar to the work of many others. ' '
On the other hand, as we shall see, the details
are different; our analysis of the quasiclassical
soliton solutions will be more systematic. Both a
SLAC-type bag' and the Creutz-Soh version' of the
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with the convention

U(o, , P, )=0. (1.2)

The free quark mass m, and the free vector mass
mv are

m, =go', and mv=fQva y (1.3)

where g and f are the appropriate coupling con-
stants in the theory. These two masses are both
heavy, »1 GeV. In addition, the potential function
U(&r, 1P} is assumed to have a local minimum at
the origin

where the effective masses of the quark and the
vector field ax"e both zero. %e define

p —= U(0, 0, ) &0. (1.4)

For color-singlet states, the average value of
the color gauge field V„ is zero; therefore, we
can simply ignore V„ in a quasiclassical calcula-

NIT bag' will appear only as special limiting
cases.

The specific system that we wish to study con-
tains a quark field g, which has nine components
representing the (3, 3) representation of the color'
SU(3) times the usual' SU(3) symmetry. [The gen-
eralization to SU(4) is straightforward. ] Instead
of a permanent confinement, we assume a very
large mass m, for the free quark, which accounts
for its escape from detection so far. A scalar
gluon field o is introduced to bind the quarks into
observed hadrons. By applying the same mech-
anism as that used in the discussions on abnormal
nuclear states, "we can reduce the effective mass
of a bound quark to almost zero inside the hadx'on,
and thereby realize some of the well-known fea-
tures of a relativistic quark model, such as SU(6)
symmetry" and the related electromagnetic px'op-
erties. In addition, we follow the suggestion of
Nambu" to introduce a color-gauge vector field V„
to unglue the color-nonsinglet states; this necessi-
tates that the vector forces be strong and long
range" inside the hadron. Consequently, the vec-
tor field must also be of a very small effective
mass inside the hadron, though its physical mass
mv in a free state has to be rather large since it
has escaped detection so far. A color Higgs" field
Q is then introduced to achieve this purpose.

The general Lagrangian density 8 of these foux
fields g, o, V» and 1P is given by Eq. (3.8) in
Sec. III. In the Lagrangian density, the potential
function U(o, Q) between the scalar gluon field o
and the color Higgs field P is assumed to have
an absolute minimum at the vacuum value

Under the assumptions (1.5) and (1.7), the low-
lying solitons are characterized by the energy
scales p'/' and p (or s'/'). For convenience in
order-of-magnitude estimations, the dimensionless
ratio between p and p, ',

A —=P/t2,

though arbitrary, will be regarded as 0(1); i.e. ,
A.
' ' is considered to be much smaller than either

(1//, /t/) or (I,/t2), so that (1.7) implies (1.5).
Hence, in a soliton model of hadrons, we expect"

/2 = o(ms), (1.10}

tion for observed hadrons; since these are all
color singlets.

As we shall see, in accordance with the afore-
mentioned description inside the hadron, we ex-
pect the interior of our soliton solution to be in the
neighborhood of 0 = Q = 0. Consequently, the energy
scale of the low-lying solitons is expected to be
at least partly determined by p. Since, in this
paper, we are interested only in soliton models
for hadrons, which are supposed to be much lighter
than the quark and the gluon, we shall always as-
sume

m»p ' and m»p'' {l.5)

where m, is the mass of the gluon field o. [In the
case of o-Q coupling, m, must be more carefully
defined. See (3.29) in Sec. III.]

Near the surface of the soliton, as we shall also
see, there is a rapid transition of the scalar fields,
o and Q, changing from values near (&x, 1P) = (0, 0)
to (o„„1p„,). The simplest way to calculate this
transition is to solve the corresponding mechanical
analog problem of a point particle, whose coordin-
ates are (o, P), moving in a potential -U(a, 1P),
starting from the origin (0, 0) at a finite time,
and reaching the point (o„„@„,) at an infinite
time. Such a transition of o and Q gives rise to
a surface energy density s, which will be denoted
by

s = surface energy/area = —,
' p3 -=—,' m,&„,', (1.6)

where p, , thus defined, has the dimensionality of
a mass. It can be readily verified that if there
is only the c field, without the Higgs field Q, then
m, =m„ the free o' mass; thus, if one wishes, one
may regard m„defined by (1.6), to be an effective
a mass, relevant for the description of the soliton
surface. [See (2.44) and (3.27) below. ] In paraliel
with {1.5), we assume

m, » p. and m, » p, ,

where, in accordance with (1.6),

(~ a 2}1/3



where m~ =—1316 Me& is the average baryon mass
of the observed lowest SU(6) 56 multiplet. It is
useful to define

(—= (ll/m, )' Rnd II=—(ll/m, ).
Both dimensionless parameters are assumed to
be quite small.

In the limit ( and q both -0, at a fixed but ar-
bitrary ratio I)/(, a rather remarkable simplifica-
tion axises. As we shall see, the low-lying soliton
solutions ean be analyzed independently of the
high-energy excitations (which may involve free
quarks, free gluons, etc.). Furthermore, through
scaling, the mathematical problem can be x'educed

to a simple system of two coupled first-order dif-
ferential equations neither of which contains any
explicit free parameters:

A,

= (-1+M' —8')6
dp

(1.12)

dU 2„
+—V= (I+II —V )M.

dp p

+his x'eduction 18 estRblished f1rst 1n Sec. II fox' a
simple system of only color quarks Rnd scalar
gluons, and then in Sec. III for a more general
system including vector color gauge fields and

color Higgs fields. 'The general properties of the
reduced equations (1.12) together with the numeri-
cal solutions are given in See. IID.

In Sec. 1V, it is shown that the resulting low-ly-
ing stRtes exhibit physlcRl characteristics very
sllllilRr to 'tllose of R gRs bllbble (1.8. 'tile solltoll)
lnllllersed ill R Bledllllll (1.8. the VRclllllll):

there is a constant px essure p exerted by the medi-
um on the gas and a constant surface tension s.
In addition, there Rre the "thermodynamical"
energy of the gas and the related gas pressure;
both are determined by the solutions of the re-
duced equations. Also in Sec. IV, we apply these
soliton solutions to the known hadrons. The static
properties agree with observations to within 10-
15% RccurRcy.

Because of the rather clean separation of physics
of the low-energy hadron states from the physics
at a much higher energy (- quark mass), identical
results can be derived for these low-lying solu-
tions, whether we Rssume the quarks are integer-
charged'6 or fractionally charged '7 whether th
Rre stable ol' llnstRMe (provided tllat tile Intel'Rc-
tion causing the instability does not play a major
role in the binding). What emerges is the possi-
bility of a relatively self-contained description of
hadron physics in the Ceg range that is based on
the quasielassical soliton solutions of a relativis-
tic local field theox"y. The fact that these low-

lying states form almost a closed system indicates
that the theory can at least be regarded as a phen-
omenologieal one, somewhat analogous to Fermi'8
theory of P decay. The familiar current x current
descxiption of the weak intera, ction, though not
fundamental, seems to be quite adequate up to
the present energy range; it can, be formulated
without any specific reference to the precise nature
of the underlying structure of the weak interac-
tion. Likewise, the Lagrangian density used in
our derivation of the soliton solutions may not be
fundamental. Even some of the "local" fields used
in our description, such as gluon, quark, etc.,
may turn out to be approximate concepts, valid
only at relatively large dista, nces, -10 "-10 '~

cm.

II. SYSTEMS OF QUARKS AND SCALAR GLUONS

A. HBA111toll13A

(2.1)

where o. and p are the sta.ndard Dirae matrices„
o is the gluon field, H its conjugate momentum,
and g,. is the quark field, with the subscript j and

the superscript k varying independently from 1
to 3 representing, respectively, the color-SU(3)
index and the usual flavor-SU(3) index. In this
section, for definiteness, we assume U(c) to be
a fourth-ox'der polynomial of a'. Since, on account
of (1.4), O=O is assumed to be a local minimum,
we have

(2 3)

so that the absolute minimum of U(o) is at &= c„,
eO. In accordance with (1.2) and (1.4), the con-
stant p is intx'oduced in order that

U(&r,'„)=0 and U(0) =p. (2.4)

From the discussions given in the previous sec-
tion, we see that for color singlets, the system
cRn be x'educed to thRt of R sp1n-2 quark field Rnd

some scalar fields. For clax ity of presentation,
in this section we examine a simpler system, con-
sisting of only the quark field and the scalar gluon
field o, without the Higgs field. (The complete
Lagrangian, which contains the vector and Higgs
fields as well, , is given in Sec. IIL) The Hamil-
tonian density K of this simpler system may be
wx'ltten Rs

3C = —,
' 112+ —,'(&o)'+ U(II)
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Without any loss of generality, we may choose
b &0, and therefore o„,&0:

o, = [ b +(b'- —',ac)'~'].3
(2.5)

The free gluon mass m, and the free quark mass
m, are given, respectively, by

m, ' = d 'U/do' at o = a„,,

From (1.9) and (1.11), we see that p/(m, o„,)'
Thus, when g-0, so does &, since in this

limit 4= m,'o„,'/32, and therefore

)(g = g/32.

It is convenient to express the parameters a, b,
c, and p in terms of g, 0„„, and m, . For g«1, we
find

and (2.6)
a= m.'[I --,'t +O(t')],

The parameters a, b, c, and p in U(o) and 3C all
refer to the appropriate renormaiized constants,
and the counterterms in (2.1) are for renormaliza-
tion purposes.

By following exactly the same steps used in
Sec. I of I, leading from Eq. (1.1) to Eq. (1.16) in
that paper, we can decompose our total Hamilton-
ian 8 = j3Cd'r into a sum of two terms: a quasi-
classical part H„, and a quantum correction H„„,

b = -6(m, '/c, ,)[1—«g+ O(t')],

c = 12(m,/&„,)'[I -+«g + O(t')], (2.12)

P = —', m, 'c„,'[g+ O(t')].

Through (1.11) and (2.11), m„o„„and m, may
in turn be expressed in terms of p, , g, and $. Thus
the problem defined by (2.9) and (2.10) contains a
mass p. and four dimensionless parameters $, g,
X, and N (or $, q, f, and N)

H =H, i+H„„. (2.7) B. Reduction of differential equations

E(v): f~f))[-',(v )' U-(v)]d'r, (2.8)

where o(r) is a c-number function of r and e is
defined to be the lowest positive eigenvalue of
the c-number Dirac equation

In the present paper, we are interested only in
states with quark number N» 3. For these states,
just as in Eq. (1.19) of I, the lowest eigenvalue
E of H„, is given by the minimum of the functional

u
iS,

~i(o r/r)v)
(2.13)

In this section, we discuss the simplification of
the differential equations (2.9) and (2.10), when the
parameters $ = ( (((/m, )' and 7) = p/m„defined by
(1.11) and (2.11), are both small.

It is convenient to make the standard separation
of angular variables for the lowest positive-energy
solution of (2.9). We write

( fo' ~ V+ gPo)$= gg. (2.9) where o is the Pauli matrix, u=u(r}, v= v(r}, and

It has been shown elsewhere'" that the eigenvalue
e of (2.9} is never zero (in contrast to the topologi-
cal soliton"). Furthermore, because of charge-
conjugation symmetry, & always appears in pairs:
+leal ~1~21 ''' From(2. 8) ~d(2.9), one se«
that the minimum of E(o) occurs when o is the
solution of

I } 0
)or(

Of kl f

Equations (2.9) and (2.10) take on the radial form

du—= (- f —g&)v )dr

-&'o+ U'(& ) = aN4'Pl, -
where U'(o) =dU/dc and f /~ad'r= l.

It is useful to define

(2.10) dv 2—+ —v = (6 —gc)1l,dr r (2.14)

4=-maximum of U(o} between o=0 and c„, d 0' 2 do'
, + ———U'(o') = Ng(u' —v'),

with f(u' v')+d'r= 1. From (2. 14), we see that

As already mentioned in the Introduction [and as
we shall also show later in (2.44}], in the present
simple case, the mass m, defined by (1.6) is the
same as m, ; thus, (1.8) becomes simply

—(u' —v'} = -4v [~u —(v/r)].dr

We define the dimensionless variable

p= 6r.

(2. iS)

(2.i6}

p=(m, c„„')' '. (2.11) As we shall. see, for N= 2 or 3, in the limit ( and



q both -0 at a, fixed but arbitrary ratio q/$,
through scaling the above rather complicated set
of coupled equations in x can be reduced to the fol-
lowing simple set of two coupled first-order dif-
ferential equations in p:

(2.17)

The relation between these two sets of equations,
(2.14) and (2.17), will be given below. It is quite
remarkable that (2.17) does not explicitly contain
any free parameter, while in the original set of
equations (2.14) there are five independent param-
eter a, 5, c, g, and X (or p, (, g, A, and N)

To see how the solutions of (2.14) can be ex-
pressed in terms of those of (2.17), we first com-
ment on some simple properties of the reduced
equations (2. 17). At p= 0, the initial value A(0)
can be arbitrary, while 0(0) =0 because of the
term 2P!p in the second equation of (2. 17). By
assigning an initial value Pi(0}, we can integrate
{2.17) from p=0 to the point when Ps(p) = A(p), say
at p = p, . Let us define

E =N» [I+ —,(q/n)]+ =, vR'p'+ ,'vR'P— (2.23)

2', '(-» R')+ —,'(—'p/ R)+ p = 0,

(2.25)

R= p, /», (2.26)

where p, and X are defined by (2.11) and (1.9), re-spectivelyy.

Before giving the proof of the theorem, it may
be useful first to discuss its content. For definite-
ness, let us consider in (2.14) a given set of pa-
rarneters a, b, c, g, and p/. The other param-
eters such as p, p, , q/$, and X are then all deter-
mined. On the other hand, from the solution of
(2.17), one has q=q{n), p, = p, (n), and ~c, =u, (n).
We may then use (2.22) to determine n, and (2.21)
t.o determine E.

The physical meaning of the theorem becomes
clearer if we express (2.21) and (2.22) in the fol-
lowing alternative (but equivalent) form, (2.23) and
(2.24), also proved in the next section:

6, =-u(p, ) = i. (p, ), (2.18) ui = (»' /Pl) If i ~ (2.27)

PL

n =-4v p'(ri'+ f. ')dp,
"0 (2.19)

q -=4m p'(u' —ii')'dp. (2.20)

, ), & n

+ 4m — — Xp,
'

0= -2 — — p, —1)g,'+-,'-—

Xp (2.22)

Each initial value u(0) leads to a given set of A„
p„n, and q. It is just as convenient to choose n
to be the independent parameter, and regard ji(0),
p„k„and q as functions of n. The following
theorem (proved in the next section) establishes
the relation between the solutions of (2.14) and (2. 17):

Theorem~ 1. In the limit ( and g both -0 at a
fixed though arbitrary ratio q/l, for N = 2 or 3,
the lowest soliton energy E(&x}, which is deter-
mined by (2.8) and (2.14), is given by

In this new form, we may first derive the func-
tions q= q(n}, p, = p, (n), and u, =Q, (n) from the so-
lution of (2.17), just as in the preceding paragraph.
Next, we use (2.25)-(2.27) to obtain»= »(n), R
=R(n), and u, =u, (n). We then choose R to be the
independent parameter instead of g~ l.e.~ we re-
gard n= n( R), -»=»(R), u, =u, (R), q=q(R), etc.
Equation (2.23) can now be used to derive E =E(R),
and (2.24) to determine R. The parameter R will
turn out to be essentially the radial extension of
the soliton solution. The physical. origin of the
various terms in (2.23) for E(R) can be traced
rather directly. As we shall see, the fermions
contribute an energy +&. The boson field gives a
surface energy &mA2jL(, '; in addition, it has a volume
energy —,

' vR'p+ —,N»(q/n), in which the first term is
due to the integral of U(0) =p over the volume -', vR',
and the second term is due to the deviation 0 10,
and therefore V(o) cp, in the same volume. As
will be shown in the Appendix, Eq. (2.24) is sim-
ply the condition dE(R)/dR =0.

8ince (2.21) and (2.22) depend on q and $ only
through their ratio q/$, one sees that when the
parameters ( and q are both «1 the physics of
these low-lying states becomes separated from
that of high-energy excitations which may consist
of free quarks and free gluons.

As we shall see in Sec. III, theorem 1 is equally
applicable to the general case, which includes not
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only the quark and the scalar gluon fields but also
the gauge and the Higgs fields. The applications of
theorem 1 to the observed hadrons will be dis-
cussed in Sec. I7. Because of theorem 1, the re-
sulting soliton admits of a phenomenological de-
scription very similar to that of a gas bubble im-
mersed in a medium: there is a constant surface
tension s = —,

' p.', and a constant pressure p exerted
by the medium on the gas bubble; in addition,
there is the thermodynamical energy Ne [1+ r(q/n}]
of the gas bubble itself. The details are given in
Sec. IVA.

C. Proof of theorem 1

the transition region R, —r —R, ,

where R is defined by (2.26}, and R, and R, will be
determined below.

(i) Inside region r —R~, . According to (2. 12),
when g =-p/4 is «1, the local minimum a= 0 of
U(a) is almost degenerate with the absolute mini-
mum o.=a„„. Thus, we expect the classical scalar
field o to be near 0 = 0 over a large region of space,
which is defined to be the inside region r ~ R, . As we
shall see, R, & R, although their dif ference is small.
Let a be the average value of 0 in the inside region.
The volume energy due to the integral of U(a) is
—-'rzR'[p+ 2(m,a}'], which should be .

== the total
energy E=O(Iz). [The justification of E=O(lz), of
course, comes from (2.21) and (2.22), which are
yet to be proved. To faciliate our order-of-mag-
nitude estimations, we shall first assume it to be
true. ] As already mentioned in the Introduction,
p=O(p, 4). Since v,

-
=Zz/rrz, and R will turn out to be

O(zz '), it follows then that

a=O(I n). (2.29)

From (2.11), we see that a„„'=p,'/m, =- Zz' r); i.e. , -

a...= (un'").
By using (2.12), we obtain

c=O(r) ') and ba/a=O(rI' -).

(2.30)

(2.31)

Since ga„„=m, and $
—= (p, /m, )'r we also have

g= (gr)) =O(r} ') (2.32)

Thus, in the inside region, since a=O(a) and
da/dr=0(zr/R)r we can approximate

In this proof, we shall assume $ and q both to be
infinitesimal, but regard their ratio r)/$ to be O(1).
It is convenient to divide the space into three re-
gions:

the inside region r~R, =R —O(rrz, '),
the outside region r~R, =R —O(m, '),

(2.28)

U(a) = p+ —,'m, 'a'[1+ O(r)'~'}], (2.33)

and neglect the derivatives of a in the last equa-
tion in (2.14). This leads to

a = (N-g/m, ')(u' —r!') .

As a result, (2.14}becomes

—= [-e+ (Ng'/m, ')(z&' —r~')]v

and (2.35)

A&& 2
+ —v = [&+ (Ng'/rrz, '-)(u' —r!')]u

dr

with f(u'+ r ')d'r = 1. -. By defining

u=(e'/n)' 'zz and r! == (e'/n)' 'z~, (2.36)

zz '(u' —v'-) «1. (2.37)

Thus, we may neglect u' —v' in the equation for 0
in (2.14). Because raR=O(lz '), we may also
neglect the curvature term (2/r)da/dr. Since as
shown in Sec. IIA, I =-p/& -& 1, we may regard
U(a) as approximate degenerate at a=0 and a
= o„„. To the zeroth order in the small param-
eter (2.37), we find in the outside region

and

a(r) —= 2a„,[1+tanh2rn, (r —R,)] (2.38)

u(r) =——v(r) =—exp — ga(r )dr (2.39)

where R„ is a constant, and r =R, lies within the
outside region. The indefinite integral in (2.39)
carries an integration constant, which will be de-
termined by the connection to the inside solution.
By using (2.38), we can simplify (2.39), and de-
rive

u=—v=—u (1+e~'r- n ) e& s (2.40)

where u, is a constant. Since both $ =—(p, /rn, )' and

rI = (Zz/m, ) are «1, for f, = O(ri) we have m, » rr&, .
'Thus, while 0 changes rapidly from near 0 to 0„,
in the region r =R, +O(m, '), u and v change much

where n is given by (2.25), we see that (2.35) be-
comes simply (2.17) on account of (2.16), and that
n is expressed in terms of zz and 8 by (2.19}.

(ii) Outside region r —R, . In the outside region,
we assume 0 rises from near zero to its asymp-
totic value o„„atr= ~. As we shall. see, although
R., &R, which is given by (2.26), R, is also
=R —O(m, ), like R,. From the definition (2.26)
of R, we see that the extrapolation of the inside
solution gives u' —v' =0 at r = R (which is in the
outside region, but quite near r=R, ). Therefore,
we expect u"-—~}' to be small in the entire outside
region; i.e.,
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more slowly. The expression (2.40) can be further
approximated:

region such that

exp[m, (R, —R,)]» 1. (2.49)
uo for y «Rou=v=
u, exp[-m, (r -R,)] for r&R, .

(2.41)

To first order in the small parameter (2.37),
we may substitute (2.41) into the right-hand side
of (2.15), and approximate r ' =—R, '. We obtain,
for r=R, -O(m, '), but «R„

o(R,) —= o„„exp[m,(R, —R,)]«o„,. {2.50}

From (2.29) and (2.30), it follows that ~o~«a„,.
Thus, in both the transition and the inside region

The condition (2.49) is totally consistent with R,
=R-O(m, ') since, for q= O($), m, is»m, . From
(2.38), one sees that

u —v = 2ug (e —Ro )[mq + 2(RO —r)] ~ (2.42) (2.51}
and for z~RO

u' —v'=-2u, '(~-R, ')m, 'exp[-2m, (r -R,)].
(2.43}

In the transition region, u' —v' is given by (2.42);
in addition, r «~n, . Therefore, the third equa-
tion of (2.14) takes on the approximate form

In passing, we note that, by using (2.3S), the
energy f[,'(&o-)'+U(o)]d'r integrated over the out-
side region is given by

—,—m, ' o =Ng(u' —v') = A(R —r), (2.52}

';mR'm, a„,'= &mR2p, ' =- 4''s, (2.44) A= 4u, '(c-R ')Ng. (2.53)

where p is given by (2.11) and s is, as defined
before in (1.6), the surface energy per unit area.
By comparing (2.44) to (1.6), we see that m, = m„
and (1.8) is the same as (2.11).

(iii) Transition region R, —r~R, In thi.s region
o changes sign, so that neither &'o nor u' —v' can
be neglected in the last line of (2.14). However,
it is easily seen from the first two lines of (2.14)
that u and v do not change appreciably in this re-
gion, so that (2.42) continues to hold. We discuss
first the connection between the fermion wave
function u Rnd 8 ln the lnslde solution Rnd tI1Rt ln
the outside solution. As before, let R be given by
(2.26). Although the boundary of the inside region
is within the surface r =R, we may extend the in-
side solution of (2.35), which we shall denote by
u;, v„up to x=R. At r=R, by definition, we
have u, (R)=v;(R)=u, . Thus, by using (2.15), we
find d(u, ' —v, ')/dr = -4u, '(e-R ') at r = R; i.e., in
the region r=R —O(m, ') we have

The desired solution is

o= -(A/m, ')(R —r)+ o,exp[m, (r -R,)], (2.54)

o, = o„,exp[m, (R, —R,}); (2.56)

where ao is a constant to be determined. By as-
suming )=0(q), and by using (2.2'l), (2.32), and

&=O(p), we find A=O(p, '/q). In the transition
region, since r =R —O(m, '), the first term (A/
m, ')(R r) in (2.5-4) is O(prP ') Accord. ing to
(2.31), o„„is O(pq't'). We shall choose o, and

R, such that

o,» o» O(prt3t~)

(2.55)

o,exp[-m„(R, —R,)]«O(pg't') .
As r-R„(2.54) becomes o=—o,exp[m, (r -R,)],
which approaches the same outside solution (2.38),
provided

u, ' —v, ' —= 4u, '(z-R ')(R- r) . (2.45)
at r =R„(2.54) becomes

By matching (2.42} and {2.45}as well as their de-
rlvatlvesy Rt R )~ OQe finds

R, =R —(2m, ) ' (2.46)

R, &R2& Ro. (2.48)

Next, we consider the joining of the scalar field
Let us choose the boundary r =R, of the outside

uo =u

where uo is given by (2.40) and u, by (2.27). So far,
the values of R, and R, are arbitrary, provided
both are R —O(m, '), and

o —= -(Ng/m, ')(u' —v'), {2.57)

which is the same inside solution (2.34).
We note that (2.56) is consistent with o„,» oo

from (2.55}because of (2.49). Moreover, the two
parts of (2.55) are consistent, provided that
m, (R, -R,}»1. This in turn can be satisfied with
R, =R —O(m, ') since m, » m, . The above discus-
sion completes the joining of both the Dirac wave
function, u and v, and the scalar field ~between
the inside solution and the outside solution. The
total energy E of the system is given by (2.S). In
the inside region (Vo)' is -(o/R)'- u4q', which is
much smaller than U(o) -p+ —,'m, 'o'- p'. There-
fore, the integral J[&(&o)'+ U(o)]d'r over the inside
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region becomes, because of (2.34),

4 vR'p+ ,'(N—g/m }2 (u' —v')'d'r. (2.58)

—U o.

'The same integral over the transition region can
be neglected, and that over the outside region is
given by (2.44). By using (2.16), (2.20), (2.25),
(2.26), and (2.36), one sees t,hat the second term
in (2.58) is &Neq/n. Thus, the total energy E is
given by (2.23).

To derive (2.24), the simplest way is to multiply
the last equation of (2.14) on both sides by do/dr,
and then integrate from r to ~. %e find

D. Solutions of the reduced equations

Our starting point in this section is the pair of
differential equations (2.17}. As explained before,
in the paragraph preceding (2.18)-(2.20), the so-
lutions of these equations form a one-parameter
family since the functions u(p), v(p) are completely
determined when u(0) is given. Without loss of
generality we assume u(0) &0.

There is a critical value u„«such that if u(0)
9„,.„ the functions u, 8 become infinite at some

value p, & 1, with u &8 for all 0 & p & p, . Such solu-
tions are of no interest to us, since they do not
correspond to any solution of (2.14). Therefore
we restrict ourselves to the range

2 do' 2,, do'
dr —— Ng(u' ——v'-') —. (2.59)ck dr

u(0) &u,„,, —=1.7419. (2.61)

According to (2.54) and (2.57), at r=R„-,'(d&x/dr)'
=-'(A'/m. ') =O(l 'q'}, c= (A—/-ni ,')(R . R, ) =-O(pq'"),
and therefore U(c) = p+ &m, 'o'=p+O(p'rl), where
p=o(p'}. The right-hand side of (2.59) is domi-
nated by the integration over the region when 0
changes rapidly from near zero to o„. After ne-
glecting O(q) as compared to 1, and by using
(2.38), (2.42), and (2.47), we find that, at r=R„
(2.59) becomes

-P =-3(p'/R) 2Nu, '(e -R '),

The parameter pg can take values from 0 to ~.
When n-0, u(0)-0; when n-~, u(0)-u, „,„. In
Fig. 1, u' —8' is plotted vs p for two initial values
of u(0}, one near 0 and the other near u„,, One
sees that the solution is volume-dominated for
small n [u(0) -0] and surface-dominated for large
n [u(0) -u, „,,].

We shall first discuss the two limits n-0 (MIT-
type) and n-~ (SLAC-type).

(i) When n«4w, both lt and 6 remain small for
0 & p & p, . Thus we may neglect the nonlinear terms
in (2.17), obtaining

which is (2.24}. From (2.23) and (2.24), and by
using (1.11), (2.11), and (2.25), one derives (2.21)
and (2.22). This completes the proof of theorem l.

There is an alternative way to derive (2.24),
which mill be given in the Appendix. %e recall
that froin the solution of (2.17), we can obtain the
functions p, =p, (n), q=q(n), and u, =u, (n) Conse. -
quently, at a given set of parameters N, g, p, m„
and m„(2.25) and (2.26) may be used to define
e=e(n) and R=R(n) Of cours. e, we may equally
well choose R to be the independent variable, and
regard e=&(R) and n=n(R). Equation (2.23) then
gives E=E(R). As will be shown in the Appendix,
(2.24) can also be established by setting

d8 2—+—v = f4 .
dp p

The solutions to (2.62) are elementary and

140-

120-

100

(2.62)

(2.60)

From the discussions given in the Appendix, one
sees that (2.59) implies dE/dR =0; thereby, one
gains a further insight into the interrelation be-
tween these equations.

%e note that the discussion of the inside region
shows that the "reduced" functions u and 8 are
proportional to the actual quark wave function u, v.
Hence all physical averages with respect to the
quark density can be calculated from u, 8, the con-
tribution from r &R, being negligible.

I

CQ

40-

n—= 34s
I

0.5 1.5 2.0

FIG. l. g -e vs p for (47t'} n«1 (with an arbitrary
scale for g2 —82} and for (47t }~n = 3.53 X 106 (with the
exact scale for g —8 }.
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u=u(0)I, (p) =u(0)p 'sinp,

8=11 0j,(p) =A(0)p '(sinp —pcosp).

We then have j,(p, ) =j,(p, ) or

p, = 2.0428,
1 24lr Tl=u(0)'p,

i
i (2p, )i =1.6545u(0)2

A I] r

u, =[u(0)p, ' sf up, ]~= 0. 114 9(n/4ll,

(2.63}

16-

14-

12-

«» 10L
tl

r«

St.
l

600

- 500

- 400&»

- 500 «»

- 200

I

l- 100

4w 'p'(u ' —38')dp=
3(p, —1)

0.2 0.6 0.8

= 0.6530 z,
Pg

4x p'u8dp=
6(p, —1) (2.64)

FIG 3. 6 8y v solzd curves) andn u +v (da, shed curves)
o p= p~

——t. when pg

one uses the left-hand
For small p,

— an scale for the or '

p, the right-hand scale.
rdinate; for large

= 0.6199n,

Py 44x p'(u+ 8')dp =
6( 1)

ll

= 2.2175m,

mate equations

(2.66)

X=@V

Q2 2 (2.65)

T = 2(p —1),
and neglectin g terms of relative order v'

y/(xT'). One thus obt '
o aeons from (2.17) th e approxi-

1.0

li = 0 (n') .

In Fig. 2 we plot u 8 "' "' d"
Mq ~ 8 +v and

(ii) The case of large
considering first the lim' '

xx arge g can best be under stood by
e limiting solution for u 0

= g„«. This initial value yieldsg . ue yields a definite pair of
graphed ln Flg. 3. Ar u, v which are

manner in which this a e
ecome lar ge. The

xs appens can be found by let-

(2.67}

X X X+/ y y=yTi~ T T=T/T (

which leaves

1 ~ 1$ 2 6S

(2.66) invariant. The fun

omp etely determined b

The solution that becomes inf' 'es xn inite as w -0 is

x=3 iT/-',

which explazns why we regard v 1
to be the same order r

For finite n» 4w th f
close to the "crit

w, e unctions and v lie very

p= 1+0(n 'i'). In thi
critical" curves except ln a region

this region the

x and y remain f' t
s, ut instead of obe

'n rnite at v=0 and'n t — n y decreases to
p, —1).

The finite solutions of (2.66 wi
deal can be dre uced to a sin le u

'
with which we must

0 Q,S
rr
C%

«»
~ 0.6

«%

(2.69)

0.4
«»
«»

P 0.2
CD

«0

0.5 1.0
P

2.0

FIG 2. B(p)/N(0), 8(p)/8(0) a -' " ~ 0)FIG 2. " ","
u ), and tu (p)+8 (p)j/sc'(0)

o p= pi ——2.0428 when n —0'.

with the boundary conditions "=z sons y = 0 at 7 =+ 1, and

scale for 7 whi
The first coondztxon sets the

7, w ich would otherwise
h o h fns ormation like 2.n

' .68). The second
es x, y obe 2.6y . 7) th g o

p —0 n '~'), where 9 and 8 are
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almost the same as their limiting values for g —o0.

The results corresponding to (2.64} in the limit
g-~ are

p, =1+(S.53lz/n)"',

n=3. 53lw(p, —1}',
3.531( ),

1

4z p'(u' —38')dp= 3n,
(2.70)

quantity u' -8' decreases monotonieally from p=0
to p= p, . If IV(0) &~2(i.e., N&74. 84), the quantity
u' -8' increases monotonieally from p=0 to a maxi-
mum at p = p &p„and decreases monotonieally
from p= p to p= p, ,

Proof. Let y = u' —62
~ and z = (9/u) —p. Then from

(2.17}we obtain

dp
—--= 4p uRz

477 p uv dp = pQ y

dz 1

dp
=u (y —1)y —2p z —l. (2.72)

4z p'(u'+ 9') dp = n,
For p-0, y-u(0)', p'z-dz/dp, and(2. 72) be-

comes

4 = o(n"')
3 =u(0)' —2.

dp
™ (2.73)

The solutions of (2.69) are plotted in Fig 4, with
the asymptotic forms (2.67) shown for comparison.
The relation n = 8zu, '(p, —1) is exact in this limit,
as seen from the equation J xdh=x&+ —,'y', which
follows from (2.69}.

We note that it is possible to eliminate 7. in
(2.66}y OI' ~ 1I1 (2.69). Let use def ills a = T x =1 x
and b = 'y = ty Fro.m (2.66), we see that

db b —a
da a(b+3)

'

(iii) For intermediate values of n, the equations
(2.1V) have been integrated numerically. The quan-
tities u, 8, u'+8'j and u' -8' are graphed against
p for several values of g in Fig. 5.

I'rom the arguments of the previous section, we
see that u'+ 8'-is proportional to the quark density,
while u' —P is proportional to the gluon field in-
side the hadron, o =—-(e/g)(u'-6'). The following
results on u' —8', u, and u'+8' are rigorously
true:

Theorem 2. If IV(0) &M2 (i.e. , n & 74.84), the

2.5

1.0

0,5

Let u(0) & ~2 then z ls IIlltlally 11egatlve,
Suppose that z(p) =0 has a root between 0 and p, .

Let p be the smallest such root. Then z must be
increasing at p, and so from (2.72} we have

0& = [u '(y —1}y]-,—1, (2.74)

where the subscript p denotes p= p. Now, by
definition, p, is the (smallest) root of y(p) = 0.
Hence,

0&Y &u for p& p&.

Since p& p„(2.74) and (2.75) imply

1&[u '(y —I}yl;&y(p}—1,
which, on account of (2.71), leads to

(2.75)

y&y(p)=y(o)y f oo'o"yyy(o)=o(o)', (o.yo)

contrary to hypothesis. [We know that z &0 for
0&p& p; in addition, from (2.75), u&0 for p&p„
and since from (2.1V), d(p'o)/dp= p'(1+y)u &0, 9
is also &0 for 0&p&p, .]

The contradiction shows that z has no root be-
tween 0 and p, . Therefore it remains negative,
and the first part of theorem 2 follows from (2.71)~

Now let u(0) & ~2. Then z is initially positive,
as seen from (2.73). By integrating (2.71) from 0
to p„we see that z cannot remain positive through-
out; therefore it has a root. Let p be the smallest
positive root of z(p) =0.

If z(p) = 0 possesses a second root between p
and p» let p'be the smallest such root. Then dz/
dp must be negative at p and positive at p', so that
from (2.72) we find

"40 3.0 -20 „-10
r

0.0

FIG 4. Solut10Ds x(7) and y(7) Of (2.69).

1.0
[u 'y(y —1)]z»&[u 'y(y —1)1,-

which, because of u 'y= 1 —(0/u}'=I-(p+z)' ~ may
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4.0
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0.8
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0.4
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P

O.f

I I I I , 70

6- n ~ 258 / &~ -60 30- n ~ 1,631

C%
4
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. 3cn

-40 ¹

C%
+

30

-20

t
25-

¹

C%
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¹cn

10-

.1000

t
-8OO f»

4

- 400
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0.4 0.6
p

0.8 0,2
1 ~

10 1.2

FIG. 5. u(p), 8(p) (solid curves) and u (p)+8 (p) (dashed curves) vs p from p=0 to p=pg for n=9.43 [in (a)], 20.5
[in (b)3, 47.8 [in (c)], 117 [in (d)], 259 [in (e)], and 1631. [in (f)]. The right-hand scale for the ordinate refers in (c) and
(d) to u2+82 and u —v~, in (e) to u +8 alone, and in (f) to u +8 only for p&0.75. The left-hand scale refers to every-
thing else.

be revrritten as

[y(P') —1](1 P")» &[y—(P) —1](1 P) (—2 77)

Now, y(p) &y(0) =u(0)' &2 since z is positive be-
tween 0 and p. Therefore y(p) —1&0, so that

[y(p} —1](1-P) & [y(P) —1](1 p") . (2-.78)

On the other hand, 1 —p'2= (yu ');. &0 and y(p)
&y(p') since z is negative (and therefore dy/dp is
negative} between p and p'. Thus

of z(p) =0. The second part of theorem 2 now fol-
lows from (2.71).

Theorem 3. If u(0) &1 (i.e. , n &20.47), the func-
tion u(p) decreases monotonically fronl p= 0 to
p= p, . If u(0) &1 (i.e., n &20.47), then u(p} in-
creases monotonica11y from p=O to a maximum at
p= pp &p„and decreases monotonically from
p= pp to p= pg ~

Proof. The first equation in (2.17) may be writ-
ten as

[y(R —1](1-p") &[y(P') —l](1 p")-{2.79)

Combining (2.77), (2.78), and (2.79), we have
a contradiction. Ther efore there is no second root

dQ
=V&~

P
{2.80)
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u&(p) = y(p) —1 = u' —8' —1. (2.81)

As p-O, su(p)-u(0}2 —1. Thus, when u(0)&l,
u&(0) &0. Furthermore, when u(0) &1 &v 2, we know
from theorem 2 that du&/dp= dy/dp &0 for 0 &p~ p, ;
consequently u (p) &0, and therefore u(p) decreases
monotonically.

Next, we consider the case u(0) &l. Since u&(0)

&1 and u(p, ) = -1, in the interval from p=O to
p= p» there must be a root of u&(p)=y(p) —1=0.
From theorem 2, one can show readily that there
is only one such root. By using (2.80) we estabbsh
theorem 3.

Theorem 4. If u(0) &I/W2 (i.e., n&9.618), the
quantity u'+ 8' decreases monotonically from p= 0
to p=p, .

Proof Let.

+ v' increases monotonically froxn p=0 to a maxi-
mum at p= I &p„and then decreases monotonically
from p=l to p= p, .

2. From (2.1V), one sees that as p-0, 8/p
-~3 "(0)[l+u(0)']&0, and when p= p„d8/dp=[l —(2/
p, )]u{p,), which is positive if p, &2 (i.e. , u{0)
&0.3066, n&1.901) and negative if p, &2. From
our numerical solutions, we find that 8(pl has at
most one maximum between p=0 and p= p, . Thus,
if u(0) &0.3066, 8(p) increases monotonically from
p=O to p= p, . If u(0) &0.3066, 8(p) increases mono-
tonically from p= 0 to a maximum at, say p= p,'
+pl y

and then decreases monotonical ly from p = p,'
to p= p~.

3. An exact relation among n, q, p» and u, may
be derived by noting that (2. 1V) has the consequence

dp
[p'(u' 8')'—+ 2p'(u'+ 8') -4p'u8]

and (2.82) = 2p'(u'+ o') —p'(u' —8')'. (2.86)
Z -=(uy/8) —p ',

where, as before, y=u'-8'. From (2.1V), we find
Multiplying by 2m and integrating from 0 to p»
we have

81pu~ p~ (p& —1)= tl —2&j ~ (2.8V)

dZ 8 dg g 2 Q7)+~ -Y-g +2 —+p
dp v dp v p

(2.83)

where the subscript l denotes p= l. Since Z(l}=0,
by using (2.83) we find

[82(8'+u'+ 1)+u'(1 —2u')], . (2.85)
V

For u(0) & I/W2, which is less than both 1 and» 2,
we have (dy/dp), &0 by theorem 2, and (1-I'),
&0 by theorem 3. Hence, (2.85} leads to (dZ/dp),
&0, which contradicts the hypothesis that Z(p) = 0
has a root between 0 and p, . From (2.82) and

(2.84), we also see that, when u(0) &I/v 2, dY/
dp &0 as p-0. Theorem 4 is then proved.

Bem''ks.
1. From our numerical solutions, we find that

for u(0)&1/W2, (i.e., n&9.618), the quantity u'

As p-O, since 8/p- su(0)[I+u(0)'], we have

pZ —2[1+u(0)'] '[u(0)' ——,'] . (2.84)

Hence, for u(0) & I/v 2, pZ &0 as p-0.
Suppose that, when u(0) & 1/v 2, Z(p) = 0 has a root

between p=0 and p= p, . I.et p=i be the smallest
such root. Thus, Z(p) must increase at p=l; i.e.,

III. INCLUSION OF VECTOR AND HIGGS FIELDS

a, b, e vary from 1 to 8,
p, , v, X vary from lto4, (3.1)

vary from 1 to 3.

In this section we consider the general case in
which, in addition to the spin--, quark field g and
the scalar gluon field o introduced before, there
are also the color-SU(3) gauge field V„and the
color Higgs field Q. Through the spontaneous-
symmetry-breaking mechanism, " the eight vector-
field components of V„are all going to be mas-
sive; the number of scalar-field components of
P must, therefore, be more than eight. Since the
color SU(3) is expected to remain a good (or, at
least, approximately good) symmetry after the
spontaneous-symmetry-breaking mechamism, the
I.agrangian density that one starts from should be
invariant under a larger group 9 which includes the
color SU(3) as a subgroup. There is a certain ar-
bitrariness in choosing the group 9 and the repre-
sentation of Q. For definiteness, we adopt the
specific example discussed by Sirlin and ourselves
in an earlier paper. " We assume 9 to be SU(3)
x SU(3) and p to form the (3, 3) representation of
9. [In addition to 9, there is the usual flavor
SU(3), or SU{4).] Thus, @ consists of nine com-
plex scalar fields Po and P, where, here as well
as throughout the paper, the subscripts
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It is convenient to represent the gauge field and

the Higgs field by 3 x 3 matrices:
but

qk ~ kgb' (3.7)

(3.2)

where A, = (-', }'~' times the 3 x 3 unit matrix, and
A.,'s are the 3 x 3 Qell-Mann matrices which satisfy
the usual relations

where u) -=(u)",.) is another x-independent 3 && 3 uni-
ts.ry matrix with det = 1. [The generalization of the
flavor transformation group to SU(4) is straight-
forward. ] The general renormalizable form of
Z can be readily found:

and

tr(X, X(,}= 25,(,& [)(„X~]= 2iF,~,X„

(A.„X(,]= 2D, („A,++ 5,(, .

(3.3)

(3.8)

All repeated indices are to be summed over. The
gauge field forms a (8, 1) representation of 9, the
gluon field o is invariant under 9, and each of the
flavor components of the quark field gk forms a
(3, 1) representation of 9. In terms of the com-
ponents g~j introduced in Eq. (2.1), we may write

qk

where

V„„-=—,X.(V„„),

(3.9)

qk yk

qk

(3.4}
Qt+ gf QtV

Xjg

The group 9 = SU(3) x SU(3) consists of the trans-
formations

V„-uV„u, P -uQv,

ug, o o',
(3.5)

D, &P = (D)Q) and D,gt = (D Q)t- (3.io)

and U(o, (t)) is a fourth-order polynomial in o and
Because of our convention x„=(r, it), we have

where u and v are two arbitrary x-independent
3 & 3 unitary matrices with det= l.

The Lagrangian density Z is assumed to be invar-
iant under a local SU(3} gauge transformation

As already explained in the Introduction, the
function U(o, (P) satisfies (1.2) and (1.4); i.e., it
has an absolute minimum at (o, (t)) = (o„„(t)„„)and
a local minimum at the origin (o, (P) = (0, 0), with

V„-u(x)V„u(x) —— u(x},i 9u(x)

(t) -u(x)(t), P'-u(x)g', o- o,

(3.6)
and

U(o„„,(P„,) =0

(3.ii)

where u(x)~u(x)=1 and detu(x)= 1; in addition, 2
is invariant under the global 9X SU(3) transforma-
tions, where 9 is given by (3.5), and the extra
SU(3) group denotes the usual flavor transforma-
tions, under which V„, 4, and a are all invariant,

I

U (0, 0}=- p & 0.
Both 0, , Q„, are assumed to be t0. The general
form of U(o, (P) that satisfies these properties still
contains a rather large number of constants a,
b, . . . , a', b', . . . , a", b", . . . , defined as follows:

U(o&(p)= zao'+ —bo'+
4

co'+p+a&tr((p (p)+ Mb'det(t)+(b de&t t) (])t

+ c ' tr[((t)'(P)']+ d'[tr ((Pt(P)]'+ (a"o+ c"o') tr ((P&(t) )+ —,'o[b "det(t) + (b" det(P }t]. (3.12)

At first sight, it seems almost unmanageable to
discuss such a general case with so many indepen-
dent constants. As we shall see, the problem is
actually quite simple, provided that the param-
eters $ and q, introduced in (1.11), are both small,
«1. Of course, in the present general case, be-
cause e is coupled to ~t), there are many scalar
masses. The definition of m, used in (1.11) has to

I

be made precise. [See (3.30) below. ]
To begin with, we may adopt the unitary gauge

by choosing the transformation u(x} in (3.6} so
that, for a=1, 2, . . . 8,

(3.iS)

everywhere. " We may then write
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a=0„,+R',

p= Q„,+ 2X„(R+iI)+H,

where

(3.14)

U(o, Q) = ~(MRRR + 2MR„, RR'+ M„,R,R")
1 2 2 1

+ ~m~'I'+ gm 'H '+ ' (3.15}

where the three dots denote cubic and higher-order
terms in the fields R, R', I, and H, . The mass
squares mg mH and the eigenvalues m,

' and m, '
of the matrix

/MRR

!M =-!

RR' R'R')

(3.16)

are all positive; these parameters are related to
the constants a, b, c, a', b', . . . by

H= pe+, ,

and R, R', I, and H, are all Hermitian fields. For
simplicity, we assume the constants b' and b" in
(3.12) to be real, and therefore @„,is real Be.-
cause (o, P) = (o„„,P„,) is the absolute minimum
of U, BU/so= BU/BR = BU/BI = BU/BH, =0 at (o, 0&)

=(o, , p„,). Near (o, p)=(o„„@„„),we may ex-
pand

U(o, &f&) = p+

~ciao'+

a'tr(Q~Q)+ (3.20)

where the three dots denote cubic and higher-order
terms in 0 and P. Clearly, both constants a and
a' are &0, in order that the origin be a local mini-
mum of U. In the present case, there are many
scalar masses. For simplicity, we assume all
scalar masses in the theory m~, m„, m„m„
a' t', and a"t' to be large [where m, ' and m, ' are
the eigenvalues of the matrix (3.16)], &'- the lowest
soliton mass -1 QeV. Furthermore, for simpli-
city we assume them to be all of the same order
of magnitude. It is appropriate to call

g' ' = "0 mass" near the origin . (3.21)

(3.22)

As we shall see, a' ' is relevant for the descrip-
tion of the interior of the soliton. For the surface
of the soliton a different definition of "o mass" will
be introduced. In order to do that, let us consider
the following (hypothetical) problem of a topologi-
cal soliton solution in one space dimension.

In this (hypothetical) problem, x, = (x, it) and the
Lagrangian density is

1 ao ey Oy„

m~' = a' —O'P„„2(+c'+3d'}@„„'

ms' = a' ——,'b'Q, ~ 6+(c'+ d')Q„„'

MRR = a'+ b'@„,+ 6(c'+ 3d')@„,'

M„,„,= a+ bo„,+ 2co,~'+ 6c"Q„„',

(3.1'l)

where

$0 = p, ,+ ~zX~(R+ iI)

and U, is related to the same U in (3.8}by

(3.23}

such that the limiting function U, (o, &f&,) has two
absolute minima, at (o, p, ) = (o„„,d&„„) and

(o, g, ) = (0, 0), with

and Uo(0, 0) = Uo(o„„,Q„)= 0 . (3.24)

V„-uV.„u~, H -uHu, g -uP, (3.18)

and R, R' and I are all invariant; of course, the
flavor-SU(3} symmetry (3.'I) also remains valid.

When (o, P) = (a„„P„,), the masses of the vec-
tor field V„and the quark field g~ are given, re-
spectively, by

mv =f4vac and m4f = go'vac & (3.19}

they are both also assumed to be large, »1 GeV.
When (o, p)= (0, 0), both fields V, and lB' are of
zero mass.

Near the origin (o, P) = (0, 0), we have

MR„. = 46 (a"+ ,' b"p„+2c"—-o„„)p,

It can be readily verified that after the spontaneous
symmetry breaking, the system remains sym-
metric under a global (i.e., x-independent) color-
SU(3} transformation {u]'

It is straightforward to see that there is a t-inde-
pendent topological soliton solution, which satis-
fies

1 do ' 1 dR '- 1 dI' ~

+ — —+ ———U, =O.
2 dx 2 dg 2 dx

(3.25)

A convenient way to visualize the solution is to
consider the mechanical analog problem of a point
particle of unit mass, whose position coordinate
is (o, cb,) [i.e. , (o, R, I)] and whose time coordinate
is x, moving in a potential —U„. Equation (3.25},
then, denotes simply the law of conservation of
energy of the particle. According to (3.24), the
potential —U, has two peaks at (o, P,) = (0, 0) and

(o, P, ) = (a„„d„,}. There is clearly a solution,
described by a path P, in which at "'time" x = —~
the particle is on one of the two peaks, but when
x-+ ~ it moves onto the other peak. 'The corre-
sponding one-space-dimensional soliton solution
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rrp(x) =- o{x)

pl, (x) =—Q, (x) along P.
{3.26)

(-ia &+gpo)g=~g,

and o, 8, andI satisfy

(3.33}

Its energy is given by the path integral along P: (3.34)

2 U,dx= -'a'~'v 'y= —'m o (3.27)

where a' t' is as introduced in (3.21) and y is a
dimensionless number. In accordance with (1.6}
and (1.8),

tl = ('81 (X„)
We now define

nl. = m, /y' = a' "-/y

and, as before in (1.11),

$ = (tt/m, )' and 1I = (tl/I, }.

(3.28)

(3.29)

(s.so)

The purpose of these definitions is to make the
quantity tl'$/1I independent of y, so as to justify
the second line of {3.35) below. Then y will not

appear in the final equations (3.41) and {3.42).
We recall again that if the system consists of

only the quark field and a single scalar field o,
without the Higgs field (I5, then as in Sec. II, by
solving the corresponding one-dimensional prob-
lem for U, = —,'a(o —o„,)'(o/cr„, )', we would obtain

and 7Rq= pig= 0

and cr, R, I to be all c-number functions. Just as
in (2.8), for color-singlet states with a quark
number Pf = 2 or 3, the soliton energy is given by

where P= Q„,+ 2X,(R+il), e is the lowest positive
eigenvalue of the c-number Dirac equation

The definition of tl given above by (3.28) then be-
comes identical to that of (2.11) in Sec. Il; the
same applies to the definitions of $ and q. In the
following, for convenience of order-of-magnitude
estimations, we regard

(s.sl)

We now return to the original Lagrangian (3.8).
For color-singlet states, we may set in the quasi-
classical solution

Assuming that the two parameters ( and g defined
above are both small, «1, we may now go through
exactly the same argument used in Sec. II C. We
first divide the space into three regions: inside,
outside, and transition, in accordance with (2.28).

In the inside region x~R„we have

(t}=0.
So far as the solution o and I' is concerned, the
entire discussion given in Sec. IIC, from (2.33)-
{2.36), can be carried over to the present case,
without any change except that m, is replaced by
a' t', therefore, just as in (2.16), (2.25), (2.26),
(2.34), and (2.36), we have, for the present case,
also

p=Er, p, =&A,

n = (ge)'N/a = e.'Nl}/(tl'-$, ),
u = (~'/n)'"u, v = (~'/n)"'v,

(3.35)

o = (Ng/a) {u' —-v'),

where tl, t, and 1} are defined by (3.28) and (3.30).
Eqllatlolls (3.33) and (3.34) call liow be agaill I'e-
dlleed to (2.17)q with ll alld v 1 elated to $ 'till ollgll

(2.13) and (3.35).
In the outside region x~R» the present case is

slightly more complicated than the simple system
discussed in Sec. II. Both Q and o rise from zero,
or near zero, to their respective vacuum values
o„, and Q„„. This results in the replacement of
(2.38) by

o(R) =—a~(r -R,}
(3.36)

where o'~ and qb~ are the appropriate one-space-
dimensional solutions given by (3.26). Equations
(2.39) and (2.41)-(2.43) remain valid. Just as in
(2.44), in the present general ease, the energy
integrated over the outside region is, because of
(3.2V),
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3 gR pleo~~ —3 wR p. —478 8 p

in accordance with (1.6).
In the transition region 8,~ r «R„ the entire

argument in Sec. II C, leading from (2.45) to (2.58),
is applicable, except that m, is replaced by a' '.
Thus, the soliton energy E, defined by (3.32}, is
given by

E = x~[1+ -,'(q jn)]+ —', wR' p, '+ —,
' wR'P, (S.SV)

which is identical to (2.23). Next, we multiply the
three equations in (3.34) by do/dr, dR j«, and
dl/dr, respectively; after integrating from r to
~, we obtain the generalization of (2.59):

IV. STATIC PROPERTIES OF HADRONS

We start from the general system considered in
Sec. III, and assume, as before, that the param-
eters $ =- (pjm, )' and q =- (p/m, ) are both small,
«1. As we have seen, independently of the num-
ber of parameters in the original Lagrangian (3.8),
in the limit when $ and g -0, at a fixed though
arbitrary ratio q/$, the low-lying soliton states,
at a given N= 2 or 3, depend only on an overall
energy scale p, and two dimensionless parameters
A. =p/p' and q/$. The application of these soliton
solutions to the observed hadrons will be discussed
i.n this section.

dr — —+ —+

Ng(u—' —v') — . (3.38)

By going through the same argument, which is
given immediately after (2.59) in Sec. IIC, but
with (2.38) replaced by (3.36) and m, by a'~', we
find that at r =R„after neglecting O(7)) as com-
pared to 1, (3.38) becomes

-p = —,(p'/R) —2Nu, '(a -R '), (3.39)

which is again identical to (2.24). By using the
third equation in (3.35), one sees that

(3.40)

Consequently, (S.SV) and (3.39) can also be written
in a form identical to (2.21) and (2.22):

A. Phenomenological description

For the moment, let us leave aside the soliton
problem and discuss instead a hypothetical analog
system, consisting of a gas bubble of radius R
immersed in a medium. We define

E -=thermodynamical energy of the gas,

s =- surface tension,
(4.1}

p =-pressure exerted on the ga,s by the medium.

Each of these terms contributes a part to the
(total) energy of the system, which may be written
as a sum

(4 2)

whex'e, under the assumption that s and p are both
constants,

(4.3)
n+ &0 +3&-

+ 'F — — XPj (3.41)

The radius R is deterxnlned by

(4.4}

0 2 1

(3.42}

where X =p/p' is defined by (1.9). Thus, the theo
rem statedin See. IIB is apPlieable to the general
ease as &cell, provided that p, (, and g are de-
fined by (3.28)-(3.30).

Through (3.35) we may also use (S.SV) to deter-
mine the function E =E(R). By following the same
a.rgument given in the Appendix, but replacing m,
by a'~', we can show that (3.39) is equivalent to
the condition dE(R)/dR =0, just as in the simple
case, discussed in Sec. II.

QE = 2E, + 3Ep.

It is convenient to introduce

(4.6)

(4.V}

The appropriate thermodynamical energy E, to
be used depends on, among other things, the heat-
transfer condition (e.g., isothermal or adiabatic);
its dependence on R can be rathex' complicated.
However, so far as the equibbrium configuration
and its immediate neighborhood are concerned,
we may assume a simple power law

(4.5)

whexe 4 and K are both positive constants. Equa-
tion (4.4) gives
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(b)

2—

P(
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(solid curve), and q/n (dashed curve) vs u(0). See (2.&8)—(2.20) and (4.12) for their definitions.

Hence,

E 2+l
E 2+ L+k

(4.8)

pendix], and by using (2.87), we find that for the
soliton problem k is a function only of n, given by

k(n) = Szzu, 'p, '( p, —1)/(n+ —,q)

This simple system carries four constants: s, p,
k, and K or, the equivalent set,

1
n —zq

1n+2q ' (4.12)

E, R, k, andi. (4.9)

Returning now to the field- theoretic problem
we see that, by comparing (4.2}with (3.37), the
phenomenological description used above can be
directly transferred to the soliton solution. The
thermodynamical energy of the gas is

E, =No[1+ 2(q/n)]. (4.10)

dlnE
dlnR (4.11)

By comparing (3.39) with (4.6) [or by directly dif-
ferentiating (4.10), as done explicitly in the Ap-

In addition, there is a surface energy E,= 4''s
3 7TR' p,' due to the surf ace tension s = -' p' and a

6
volume energy E~= (4zz/3)R'p due to the pressure
p of the surrounding medium, which is really the
vacuum since, according to (1.2) and (1.4), p
= U(0, 0}—U(o„„@„„).The resulting sum of these
three energies is exactly (3.37}. A more general
definition of the exponent k introduced in (4.5) is

2+ l+kRE =,
2 )

(n+ 2q)Np, , (4.13)

which together with (4.12) introduces a constraint
on the four parameters in (4.9).

If the complete Lagrangian is known, then z}/$,
Iz = (6s)'~', and p are all determined; among these,

where z(zn), p, (n), and q(n) are all defined in Sec.
II; these functions are determined by the solutions
of the reduced equation (2.17). In Fig. 6(a), n is
plotted vs the initial value u(0) of the solution u( p)
of (2.17); likewise, in Fig. 6(b), p„k, and q/n
are also plotted vs u(0). The functions p, (n), k(n),
and q(n} can then be deduced from these two figure.
by eliminating u(0).

As noted in (4.9), the gas-bubble problem is
characterized by four phenomenological constants.
On the other hand, the soliton solution (at a given
zV = 2 or 3) depends only on three parameters:
X=p/Iz', and zl/$. By using (2.26), (4.8), and
(4.10), we find
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p and p can be directly used in a phenomenological
description, while the physical interpretation of
q/( is a less direct one. For phenomenological
descriptions, a different choice of the three inde-
pendent parameters can be either k, s, and p or,
since k=k(n),

n, s, andp. (4.14)

k ~ 0.7895 and q/n~ 0.2352. (4.15)

As the ratio X = p/p, ' varies from 0 to ~, one sees
that by using (4.3) and (4.7) I also varies from 0 to
1. Thus, from (4.8}, it follows that at any given
k = k(n)

Of course, since g/$, A. =p/p', and n satisfy (3.42),
all these sets of parameters are equivalent. We
note that from Figs. 6(a) and 6(b), the function k(n)
is single-valued, while its inverse n(k) is double-
valued. Hence, the set (4.14) may well be the most
convenient one to use.

From Fig. 6(b), one sees that k = 1 and q/n = 0 at
both limits n -0 and n —~. At n = 79 [u(0) —= 1.42],
k has a minimum and q/n a maximum; the bounds
thus set are

B. Baryon and meson masses

In our model, the low-lying solitons are color
singlets; the color nonsinglets have all been un-
glued by the strongly interacting vector gauge
field. These low-lying solitons will be identified
as the observed hadrons. Within our approxima-
tion, the energy levels exhibit a typical SU(6) de-
generacy. " (For the present discussion, we as-
sume the tluarks have only three flavors. ) The
baryons are the color singlets of the three-quark
system; the lowest energy state belongs to the 56
representation of SU(6), which consists of the
usual spin-& SU(3) decuplet and the usual spin--,'

SU(3) octet. The mesons are the color singlets of
the quark-antiquark system. The lowest-energy
meson states have a 36-fold degeneracy, consist-
ing of two SU(6) representations, 35 and 1; alter-
natively, these states can also be resolved into the
usual vector and pseudoscalar nonets. The mass
of these soliton solutions is given by (3.37) and
(3.39). We have

E=m~ for N=3

(4.22}
2 E 3

2+k E 3+k ' (4.16} E=m„ for N=2,

which together with (4.15) leads to

—~ ~~ 0.7917.2 E
E

Also, from (4.10) and (4.15) we obtain

(4.17}

(4.1&)0.8947»—~ 1.
Eg

Similarly, we can set bounds on Na/E and RE/N.
At a given n, we have

where m~ denotes the lowest baryon mass averaged
over the 56 representation, and m„ the corre-
sponding lowest meson mass averaged over the
vector and pseudoscalar nonets.

Qf course, we may also adopt the phenomeno-
logical description developed in the previous sec-
tion. For definiteness, we may choose, as in
(4.14}, n, s =

—,
' p', and p to be the independent

phenomenological constants in the theory. It is
instructive to first examine some limiting cases:

(i) n 0. Fro-m (2.64), (4.10), and Fig. 6(b), we
see that in this limit

2n Na 3n
(n+ ~q)(2+ k) E (n+ ~q}(3+k)

(4.19}

and, since Rz=p»

By using (4.12}and (4.15), we find

[1+ ~(q/n)](1+ 3k)p, ~ ~ [1+-,'(q/n)](1+ —,'k)p, .
N

(4.20)

p, = 2.0428, k = 1,
q/n = 0, E~ = Np, /R .

Hence, (4.2) and (4.6) become

E=Np, R '+4mR s+ -mR P

and

Np, = 8mR~s+ 4mR4P .

(4.23)

(4.24)

0.641————N& 3
E 4

~ 3.0642.
3 N

The upper bound on RE/N is reached as n -0.

(4.21)

'The problem is then completely determined by the
two remaining constants s =

—,
' p.' and p. By using

(2.13), (2.63), and (3.35), we know that in this
limit the charge density g~P and the scalar density
gtP$ of the quark wave functions are distributed
entirely uithin the soliton volume (See esp.ecially
theorems 2 and 4 in Sec. IID. ) Furthermore, in
this limit, since E,=Na, the scalar fields (gluon
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o and Higgs P) only contribute directly to the vol-
ume energy E~= -'nR3p and the surface energy E,
=4mR's = —

3 nR'p3. 'The following are two extreme
cases:

Case (ta). In addition to n-o, we may take the
limit s-0. Thus, E,=O, and we find

we have E,=O,

N = 4~R'P,

E= 'Ne-= 'W2-(vP)' 'N' '
3 3 y

and (4.29)

N= 4v(P/2. 0428)ft',

E= 4Ne= 4W~(vpp«(2 0428}3t~N «
(4.25) Case (ttb} In.the double limit n-~ and p-o,

we have E~ = 0 and, since s =
—,
'

p,3,

N= —,'v(t &)',

E = ,N& = (9—v/2)'t'pN't',
This double limit n-0 and s -0 gives the Creutz-
Soh version' of the MIT bag. ' (We note that the
description of the vector gauge field in our model
is quite different from that in the MlT bag. Also,
our model does not give permanent quark confine-
ment, except in the limit when m, = ~.)

Case (t 5) In the.double limit n -0 and p -0,
then E~= 0, and because s = —,

' p3 we have in place
of (4.25)

N = -'v(ttR)'/2. 0428,

Z = -', N. = (9v/2)"'(2. 0428}2t't N"',
(4.26)

q/n= O, Z, = N/ft.

Hence, (4.2) and (4.6) become

E = NR '+ 4@Res+ ~ wR3p

(4.27)

(tt) n-~. From (2.70), (4.10), and Fig. 1(b), we
see that in this limit

(4.30)

In case (iib), both the quark wave function and
the energy density of the gluon and the Higgs field
concentrate on the surface of the soliton, similar
to the SLAC bag. ' [Note, however, in our field-
theoretic model the symmetric point (o, @)= (0, 0)
is a local minimum of U(o, @), while in the SLAC
version it corresponds to a local maximum. In
order to have the vector gluon be effective in un-
gluing the color nonsinglets, we must have m~ =—0
inside the soliton solution, "which makes it de-
sirable to have the symmetric point (o, P) = (0, 0)
be a local minimum of U. ]

Rem''ks.
A. At any finite n40, inside the soliton the gluon

field 0' IQay deviate appreciably fron1 being a con-
stant o =0. Hence, in accordance with (4.10), E,
contains an additional part ,'Ne(q/n), —besides the
total quark energy Ne. In addition, 0 -=-dlnE, /
d lnR becomes different from l. Only in the limit
n-0, or ~, xs 4=1 and N&=E, .

B. %e may choose, instead of g, s=-'p3, and

(4.28)
p, A =ply', and q/( (4.31)

N = 8''s+ 4''p .

By using (2.67)-(2.69), we find that the charge
density of the quark wave function gtg ~u'+6'
=—2x of (2.65) now concentrates entirely on the
surface r=R of the soliton solution. 'The corre-
sponding scalar density gt@ ~t7' —6'=y of (2.65)
also peaks near the surface at r=R[I —O(n 't')],
but then drops quickly to zero at z=R. %bile the
quark wave function in these two limiting cases,
n-0 and ~, behaves totally differently, the gluon
and the Higgs fields exhibit the same character-
istics. Since E~=N& in both limits, the scalar
fields contribute only directly to E, and E~. Again,
we exar ine two extreme cases:

Case (tta). In the double limit n-~ and s -0,

n = 0(q/$) as q/$ -either 0 or ~. (4.32)

At any finite fixed q/g v 0, as A. -o (3.42) reduces
to

(4.33)

which gives a finite nonzero n; as X-~ (3.42)
leads to, because of (2.70),

as the set of independent parameters, where q and

$ are defined by (1.11}, as before. Then

n=n(X, q/5)

is given by (3.42). Both X and q/$ vary from 0 to
At any finite fixed value of A.,
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(4.34)

Thus, n-0 only when g/$ -0, while n- ~ when
either q/$-~, or X-~, or both.

C. Charge radius, magnetic moment, and g& /g& of the nucleon

Let r„, p,„, and g„/g» be, respectively, the
root-mean-squared charge radius, the magnetic
moment, and the ratio between the axial-vector
and the vector P-decay coupling constants of the
nucleon, where the subscript 1V denotes either the
neutron n or the proton p. In our model, we have

» 2 = (p2)/q2» 2 = 0
p

where

1.6—

1,4

1.2

1.0

0.8

(p')=n ' '4vp'(8'+8')dp;
0

/ 2
Pp = Pp~& y Pyt= —3Pp

where

Py

Pp= 3n ' 4wp'u8dp;
0

(4.35)
0.4,

0.2—

5

where, as before

4v p'(u' —38')dp,
0

0
I i i & & I

I

1 A

(jc

U (0)

Py
n = 4v p'(u'+ 8')dp.

Thus, (p'), p» and g„/g» are functions only of
n, their values are plotted in Fig. V. Because of
(2.26) and (2.25), each quark carries an energy

e = p, /R = p(n/N)' "(»ill) ' '. (4.36)

The derivation of (4.35) follows the standard
route" Let g denote the quark wave function
whose total z-component angular moment is —,';
i.e. , g is given by (2.13) with

' ('1

In either the Gell-Mann-Zweig quark model, or
the Han-Nambu model, one can readily show that

FIG. 7. The integrals (p ), pp=E'pp and g&/g&vs
u(0), which ranges from 0 to u~ =—&.74&9. See (4.35) for
their definitions.

2p~ —2p~ + 4p —3 = 1.4891/e,

r„=o,

given in (4.35) follow. The corresponding expres-
sion for r„ is obvious, and that for p„ is due to the
relevant SU(6) Clebsch-Gordan coefficients. We
list below the values of these quantities for the
limiting cases that have been examined in the pre-
vious section.

(i) n -0. In this limit, p, = 2.0428, u, and v

are given by (2.63). By using (2.64), we find (4.35)
becomes

$ gr 'd'r gtg d'r, 4p 3
(4.38)

r x gtngd r P~gd r (4.37)
and

2
Wn= -3Ppy

and

a*a lf »'.e&'.= gtP d'r

Hence, the expressions for r~, u~, and g„/g»

5p,
gw/g»= 9( 1)

——1.088.
1

Case (i a). If in addition to n -0 we assume s -0,
then by using (4.25), since N = 3, we have
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and therefore, from (4.38),

»p = 5.956/nra and pp =- 1.653/rrrs .

(4.39)

(4.40)

Pp= (3&) r 4n= ~Ppr (4.43)

CQse (lf rl) 'If L.n addition 'to 8 ~r we assume
s-0, then we have, just as in (4.39),

and therefore, from (4.43).

r'p = 4/rprrr and pip =-4/(3rHs) . (4.44)

Case (fi fr}. If in addition to n-~ we assume
p-0, then, just a.s in (4.41).

and therefore, from (4.43},

rp = 9/(2rns) and pp = 3/(2rns) . (4.45)

These limiting values are also summarized in
Table I. For comparison with experimental re-
sults, it is more convenient to use the average nu-

Case(ib). If in addition to y&-0 we assume p —0,
then by using (4.26) we have

(4.41}

and therefore, from (4.38),

»p= 6. f01/mrr and pp= 1.860/rrra . (4.42)

(fi) rr -~. In this limit, p, = 1 and the fermion
wave functions P~ and 8 both concentrate on the
surface r = R. Hence,

cleon mass w~, =- 939 MeV as the basic energy
scale, rather than ~u~ ==—1316 MeV, the baryon
mass averaged over the 56 representation of SU(6).
From 'I'able I, we conclude that for applications
to hadrons, the parameter n could be either O(l)
or smaller. In any case, it should be away from
the n —~ limit. Otherwise, g„/g» would be —,',

and the charge density would be distributed only
on the surface of the soliton; both features seem
to be quite different from those of the physical
nucleon.

In this paper, we have presented a new formula-
tion of the relativistic quark model of hadrons,
based on the quasiclassical soliton solutions of
local field theories. %e have shown that, once
the low-lying soliton mass is assumed to be much

smaller than the masses of the plane-wave solu-
tions (i.e. , quarks, gluons, etc. ), then under very
general conditions, independently of the number of
constants in the original. Lagrangian, the descrip-
tion of the solitons depends only on three pheno-
menologlcal pal ametel s: pg~ s q

and p~ as given
by (4.14). There is a direct physical interpretation
of these parameters. The soliton (i.e., the had-
ron) resembles a. gas bubble immersed in a medi
um (i.e, the vacuum); p is the pressure exerted
by the medium on the gas bubble, s is the surface
tension, and n determines the thermodynamic func-
tions of the gas. In the double limit jg -0 and s -0,
one obtains an MIT-type bag, while in the opposite
extreme pg —~ and p -0, a SI AC-type bag.

Such reductions occur frequently in physics,
whenever the system under consideration contains
two or more very different scales of length (or
energy). As examples, one may mention Fermi's

TABLE I. Root-mean-squared charge radius x&, magnetic moment p~, and g&jgz of the
nucleon N. The parameters ~=P/p =-P/(6s) and n are defined by (1.9) and (2.19). In the
last two rows, ' volume" and "surface" mean, respectively, within the volume" and "on the
surface" See Sec. IVC for further details.

Experimental
value

Theoretical value in some limiting cases
n 0

3.86/m„

2.79/(2m@)

4.25/m„ 4.78jmg

2.66/(2m@ )

3.21jm~

2.14j(2m„)

scalar-fieM
energy density

charge density

surface volume surface
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P-decay theory of weak interactions, the usual
scattering length and effective-range approxima-
tion of nuclear forces, etc. In all these cases, if
one starts from the underlying Lagrangian, it may
be difficult to give a rigorous proof of the validity
of the approximations used. Quite often, this dif-
ficulty is con1pounded by lack of knowledge of the
correct basic theory. The same is true here. In
our case, one of the important quest. ions is the
validity of quasiclassical soliton solutions in the
strong-coupling region. For a fully relativistic
local quantum field theory, this question is not
resolved. However, in the case of nonrelativistic
fermions interacting with bosons (which can be
relativistic), the answer is known: the quasiclas-
sical solution does give an accurate descriPtion
when coupling is sufficiently strong

Because the solitons are solutions of a local
field theory, it should be possible to calculate ma-
trix elements of operators between different soli-
ton states, e.g. , nuclear charge form factors with
large momentum transfer, m-decay rate, etc. Some
of these calculations are under investigation.

(2.35) as a function of r and n; i.e.,
u = u(r, n) and v = v(r, n)

with

(A5)

(u'+ ~r') r ' dr = 1, (A6)

where, at r = R (n),

u(R, n) = v(R, n) -=u, (n}. (A7)

HFp= «(»

where

(A8)

HF = -ia V+gPO»

o = o(r, n) = (Ng/m-, ') (u' —v')

(A9)

(A10)

and P=tt(r, n) is related to u(r, n) and v(r, n) by
(2.13). From (A6), one has

(5Hr)$+ He5tl' = (5E)(+ E (5$),

where

(A11)

Equation (2.35) can be written in its original form
(2.9):

APPENDIX 5Hz ——gtl5o= (Ng/m, -')5(u' —v'). (A12)

dE
(Al)

By using (2.58), we may rewrite (2.23} as

E(R) = Ne+ 2v(Ng/m, )' r 'dr(u' —v')'
0

In this appendix, we give an alternative proof
of (2.24}. In accordance with (2.60) and the dis-
cussion preceding it, in this alternative proof one
should first start from the expression E = E(R},
given by (2.23}, and then derive (2.24) by setting

In this variation, r is kept fixed, but n —n+ 6n.
Since 4v f, !Pter'dr=1, on account of (A6), we
find, upon multiplying (All) by g~ and integrating
from r=o to R,

R

5& = 4v r 'dr[/ (Hr —e)5$+ gp'pit&5o],
0

which, through partial integration and because
of (A8}-(A10), may be written as

R

5e = 4vR'(u 5~& —v 5u)z —4v (m, '/N )o5or 'dr,
0

+ g7TR p, + 37TR p» (A2) (A13)

where u and v are solutions of (2.35), and u = v at
r=R. Thus, the variation of E is

2 R

5E = N5e+ 4v r 'dr(u' —v') 5(u' —v')
mo 0

+ 4vR'5R[~(p, '/R)+ p] . (A3)

Throughout this appendix, we keep the param-
eters N, g, p, m„and p fixed. Since in (2.17)
each solution determines a definite value of n, de-
fined by (2.19), we may regard the solution of
(2.17) as a function of p and n; i.e. ,

where the subscript R denotes r=R,
8

5u = u(r, n) 5n,
an

and

8
5v = v(r, n) 5n.

an

Because

u(r, n) = (e'/n)" 2u(p, n},

v(r, n) = (e'/n)" '8!(p, n),

(A14)

(A15)

u = u(p, n) and v = f (p, n), (A4) where p = re and e = e(n)i we have

where p varies from 0 to p, (n). We may then use
(2.25) and (2.26) to define a ——e(n) and R =R(n), or
its inverse function n = n(R). Through (2.16),
(2.36), and (A4}, we may regard the solution of

u5v —veau =
n

8r5«u- v —v
Bp Bp

a - a
+On u v —v u

~n ~n
(A16)
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By using (2.17), and noting that the derivative
d/dp there is the partial derivative s/sp above,
%e ObtaUI

1C 8 —8 —8 = — Q—8+'14 + 8 + (&l —8 ) (A17)
~P ~P P

and their lengths are, respectively, Lc„=5X and
I.» = 6p, . The ratio I,c-„/L» is the slope of CB.
By using (A18) and setting p = p„we find that this
slope is

-4', '(I —p, ') .

{u' -8') = -48[u —(8/p)] . (A18)
~x

6n=6X=4u, '(1 —p, ')6p, . (A21)

At /'=R» p= p~y Q =8=-Q)~ and therefore

u 8 —8 — --u = —— (8' —8')
~N ~'lt 2

I
~Pl

Because of (A17)-(A21), at r=R (i.e., at p= p, ),
(A16) becomes

{M6t& - t&6u)„= 2 u„'(I - p, ')(R6a - 6p, );

I.et us define

X(p, n) -=u'(p, n) —8'(p, n) . (A20)

therefore, (A13) reduces to

«+« ~ N ~6~~'d~=-8mB'u '
& -R ' I

Since X(p, n) =0 at p= p, (n), it follows then that
X{p,n+ 6n) = 0 at p = p, (n)+ 6p„where 6p, = (dp, /
dn)6n In the (.X, p) plane, we may consider an in-
finitesimal right-angle triangle ABC, vrhose ver-
tices are A = (0, p, ), I3 = (0, p, + 6p, ), and C = {6X,
p, ), where 6X-=[SX(p, &t)/Sn)6n. Hence, the point
A lies on the curve X(p, &t) vs p, and the points 8
and C on the curve X(p, n+ 6&t) vs p; CA is & AB,

By using {A3), (A10), and (A22), we obtain

6E=4vR'6R[ 2Nu, '(e --R ')+p+ 3(tt'/R)].

Thus, dE/dR =0 gives (2.24).

(A23)
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