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Recent discussions on the degeneracy of classical gauge vacuums assume that spacelike hypersurfaces in an
(n + 1)-dimensional space-time have the topology of n-dimensional spheres. We poini out a connection
between this assumption and the requirement that the conformal group acts properly as a group of
transformations on space-time. The latter is possible only if the Minkowski space M"*! is enlarged to a
compact manifold M"*' by the addition of suitable points at infinity. Spacelike hypersurfaces in M"*' do

indeed have the topology of S".

I. INTRODUCTION

In a recent work, Belavin et al.' constructed a
solution of certain Euclidean gauge theories which
was localized in both space and “time” (the
“pseudoparticle”?). Subsequently, it was pointed
out®:* that classically the vacuums of such theories
in Minkowski space are degenerate, and that the
pseudoparticle describes tunneling between these
vacuums when these theories are quantized.?™
The nature of the true vacuum in quantum theory
is thereby profoundly affected. The properties of
this new vacuum in turn lead to important physical
effects,

In the work hitherto, the demonstration that
classical gauge vacuums are degenerate has re-
quired the critical assumption that spacelike
hypersurfaces in Minkowski space are to be com-
pactified in a suitable fashion. [This assumption
comes about because of the imposition of boundary
conditions at infinity on the gauge functions. Cf.
Ref. 4, Eq. (5) and what follows.] Thus, in 1+1
space-time the spacelike hypersurface R' is to be
compactified to the circle S', while in 3+ 1 space-
time R?® is to be compactified to the three-dimen-
sional sphere $3. (In both these examples, the
compactification can be achieved by the addition of
a single point at spatial infinity, say by stereo-
graphic projection.) It is easy to show that the
preceding degeneracy of the vacuums is nof pres-
ent if spacelike hypersurfaces are (noncompact)
Euclidean spaces. Thus the conclusions regarding
the structure of the vacuums seem to rely heavily

on an assumed topology of spacelike hypersurfaces.

On the other hand, we are aware of no detailed
argument in the literature on gauge vacuums which
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justifies such assumptions on the global topology
of space-time.

In this paper, we suggest that the conformal
group may provide a clue as to the appropriate
topology of space-time. The free Yang-Mills La-
grangian is known to be formally invariant under con-
formal transformations. It is also well-known,
however, that the conformal group does not act
properly as a transformation group on the usual
(noncompact) Minkowski space M"*!, This is pos-
sible only if M "*! is conformally compactified to
a manifold M "*!.> Thus if we are to maintain the
conformal invariance of Yang-Mills theories in a
literal sense, they have to be formulated on M "*!
rather than on M"*!, The importance of working
with M "*! when investigating the conformal prop-
erties of zero-mass fields has been most empha-
sided by Penrose.® We point out in this paper that
the topology of M "*! is such that spacelike hyper-
surfaces in M "*! have the structure demanded by
discussions on gauge vacuums.

The manifold M "*! has the topology of S"xS'.°
This means that if the space- and time-dependent
gauge group is G, the elements {g} in G can in
general be classified by fuo topological numbers
p and 0. Here, if the points of S"X S are denoted
by (P, @), where PeS" and Q€ S, then p charac-
terizes the degree of mapping (the topological
number) of g when regarded as a function of P with
fixed Q. Similarly ¢ characterizes its degree of
mapping when regarded as a function of @ with
fixed P. The classification of classical gauge
vacuums in the literature utilizes only the number
p. Thus it may seem that conformal compactifica-
tion gives rise to an additional topological number
o with possible physical significance. We show,
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however, that the Hamiltonian formulation is con-
sistent with the requirement that every physically
meaningful variable is invariant under gauge
transformations g with p =0 and any value of o.
Hence a vacuum with o #0 is “gauge equivalent” to
the vacuum with ¢ =0. Therefore it seems difficult
to give a physical meaning to ¢ without additional
ad hoc assumptions about the nature of the Hamil-
tonian. The net result is that we are left with a
classification of classical gauge vacuums only by
the number p. This is of course what has been
suggested in the literature.

The emphasis on the Hamiltonian approach in
our discussion is due to the fact that we are not
aware of any other systematic method for quantiza-
tion of classical theories. It may be that the lack
of an invariant meaning for ¢ is peculiar to this
approach, and that there are alternative ap-
proaches to quantum theory where o acquires sig-
nificance.

There is no compelling physical reason why
zero-mass field theories should be formulated in
such a way that they are literally invariant under
the conformal group. Thus our discussion only
points out a connection between the structure of
gauge vacuums and the topology of M "*! and does
not really justify the assumption in the literature
on the topology of spacelike hypersurfaces. It is
interesting, however, that the global topology of
space-time seems to play such an important role
in determining the properties of gauge theories.
Perhaps the correct approach for the determina-
tion of this topology requires considerations based
on general relativity, and the latter influences
particle physics by affecting the topology of the
gauge group and hence the nature of the true vacu-
um. Such an influence can be quite substantial
although gravity is a weak force, as is evident
from the dramatic impact on gauge theories that
results from the compactification of spacelike sur-
faces.?™

In Sec. II, we briefly review the method for the
conformal compactification of the Minkowski space
M"*!, We also sketch the proofs of the results
that the compactified manifold M "** is $"xS' and
that the spacelike surfaces in M "*' are S™. In
Sec. III, the gauge properties of physically mean-
ingful variables are analyzed in the Hamiltonian
framework. It is shown that only the topological
number p can be given a well-defined physical
meaning within this framework.

II. THE CONFORMAL COMPACTIFICATION
OF MINKOWSKI SPACE

The conformal group C(n, 1) of the Minkowski
space M "*! contains elements which map points of
M™*! to infinity. A simple example is inversion I

which acts as follows:

Moy —Ix=2. @.1)
I X

Thus I sends the entire light cone about the origin
to infinity. It follows that C(n, 1) does not act
properly as a transformation group on .’171"“, and
that it is necessary to add points at infinity to
M"™*! if we want a well-defined action of C(x, 1).
This enlarged manifold will be denoted by M "*!,

The structure of M"*' is most easily inferred
by observing that C(n, 1) is locally isomorphic to
the pseudo-orthogonal group SO(n+1,2). The latter
acts linearly on the (z+ 3)-dimensional real vector
space V"*3 with the diagonal metric (+—— ¢« —+).
Further, it maps null rays through the origin of
V "*3 into other null rays through the origin. The
manifold M "*! can be identified with the (projec-
tive) space of these null rays.® The details of this
identification are given below. The induced action
of SO(n+1,2) on M"*'c M"*! is locally identical
to the action of C(n, 1). The space of the null rays,
however, is larger than /7 "*', and these additional
points are what is needed to compactify M "*! to
‘w n+ l.

We shall now make the preceding ideas precise.
Let £=(¢,, &, ..., £ns,) denote a vector in V™3,
The null cone N through the origin is specified by

N={E|E2 =2k 2meee — kL 20, =0, (2.2)
We exclude the origin £ =0 itself from N. A null
ray [£] through ¢ in N is, by definition, the set

{rE] = <A <w, 1% 0}. (2.3)
Thus the space {[EJ} is nothing other than N when
regarded as a projective space. Clearly

(€] = [A£] (2.4)

for any real nonzero A.

The null ray [£] can be labeled by a suitable
point n=A§ on this ray. When y=§&,, +§£,,, is not
zero, one such choice of n can be obtained by
noticing that owing to (2.2),

_ v (i % 1<_£"sa)
= (b £nn. 3 (10E00), 2(1- E00).

(2.5)

Here the index ¢ runs from 0 to n and £%£, is the
Minkowskian scalar product £§2 —£ % —«-c ~£ 2.
With the choice A=1/y,

= [(en me et

oL 0S5 e

for y#0, [£] is thus uniquely labeled by
(1/y)(gs 15 -+, £,). The correspondence between
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a point x& M™! and £ is given by
xo=8a/v, v#0. (2.7)

The map (2.7) from the rays [£] with y#0 to the
points x €M™ ! is clearly one to one and onto. We
see from (2.7) that the rays [£] with y=0 can be
thought of as additional points at infinity of the
Minkowski space. The inclusion of these points
changes the latter to M "

The topology of M"*! can be determined by in-
troducing new representative points for the null
rays as follows: From (2.2),

Pt b = 8+ 7 e e by P
=72 (2.8)

say. Here 7 cannot be zero since we have excluded
the point £ =0 from N. Thus

[ﬁ] = [(goy Ep seoy En+ v §n+z)] » (2.9)
where
SIS LIy

The £’s thus constitute an S"XS!. We cannot yet
conclude that M™* is also S"XS* since both ¢ and
-£ give the same null ray:

[E]=[-E] . (2.11)

The topology of the manifold (2.10) with the identi-
fication of £ and -£ is still S"XS! (see Ref. 5) so
that

M"™1=8"XSt,

(2.10)

(2.12)

The parametrization of x in terms of é can be
obtained by writing an arbitrary vector £ in two
ways:

E=9(x,5(1+x%,3(1 = x?)) (2.13)
=rk. (2.14)
Hence
=2k 8, b
S S N A 2.15)
[ "

The topology of spacelike surfaces in M" ' follows
from (2.15). Consider, for instance, the surface
%,=0. By (2.15) and (2.10), x,=0 implies §,=0,
£..0.=21. It is sufficient to consider the solution

PY

£,42=+1 in view of the equivalence

[(Oy E],’ ooy En-rp —1)] = [(Oy —gp voe !_€n+p + 1)] °
[Note that tl}e right-hand side of (2.15) is invariant
under £ --£ as it should be.] Thus,

(O, %pyeeny 2)= 2——1 ©,%,...,8). (2.16)
n+1+1

Such a surface is therefore parametrized by
(,%,...,%,,), which spans an S". It follows
that the time-zero surface in M"" ! is an §". 1t is
not difficult to show, by using a diagrammatic
representation of M " ! for example,® that every
spacelike surface in M™ ! is also an S".

The compactification of spacelike surfaces of
Minkowski space to S” is achieved here by the ad-
dition of a single point at spatial infinity as in the
literature on gauge vacuums. This can be seen
from (2.16), which shows that spatial infinity cor-
responds to £,,,=-1. By (2.10), the latter implies
that E, = §2= «++=%,=0. Thus spatial infinity is
represented by one point of S",

The circle S! in the S"XS* decomposition of
M™?! describes null rays in Minkowski space. The
points at infinity of each null ray in the past and
future are to be identified. We refer to the next
section and to the literature® for a discussion of
this point.

[Il. HAMILTONIAN DYNAMICS AND GAUGE VACUUMS

In this section, we first make a few remarks
concerning the arbitrariness in the time evolution
of canonical variables in gauge theories. We then
discuss what we mean by physically meaningful
variables (or physical variables for short) in any
theory. Using this discussion, we finally show
that the topological number p introduced in Sec. I
can be given a physical meaning while the number
o does not have such a meaning.

In a gauge theory, not every variable has a well-
defined time evolution. Suppose that S(x,) denotes
a possible set of values of the variables of the the-
ory at time x, when the boundary conditions S(0)
are specified at time zero. Then we have the free-
dom to perform a gauge transformation at time x,
with a gauge function g(x,,%) to get another possi-
ble set of values S®(x,) for the variables. Clearly
the variables, which are not invariant under g,
will fail to have a well-defined time evolution.
Note, however, that such gauge transformations g
are not entirely arbitrary, since the transformed
variables S®(x,) must reduce to the given boundary
conditions S(0) when x,~ 0. To analyze the con-
sequences of this restriction, consider the trans-
formation laws of the Yang-Mills vector fields
A% (1=0,1,2,3) and the corresponding conjugate
momenta 7§ (¢=1,2,3). (The canonical variables
cannot be chosen arbitrarily on the physical sub-
manifold of the full phase space. In particular,
mg =0 on this submanifold.®” This is the reason
why we ignore it in the discussion.) When the
global group is semisimple, these laws are given
by®
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o, ¢ -
@, EAgT(a):gaug Y+ -go,87h, (3.1)
Py=n{T(a)=gP;g™" . (3.2)

Here T(a) are generators of the Lie algebra of the
global symmetry group. Since both sides of these
equations must coincide at time 0, we find the fol-
lowing restrictions on g in the semisimple case:

g(0,%)=1, (3.3)
9,£(0, X)=0. (3.4)

For an Abelian group, the canonical momenta are
gauge-invariant since the adjoint representation is
trivial. Further, the vector field A, for the group

U(1) for example transforms as A,~A, + (i/e)gd,g .

Thus, in the Abelian case, the transformation laws
of the gauge fields require only the weaker condi-
tion 8,¢(0, X) =0 instead of (3.3). However, it is
evident that one recovers (3.3) in this case as well
by enlarging the system to include an appropriate
“charged” field which transforms according to a
nontrivial representation [for instance, a field ¢
which transforms as @(x) —e!*® @(x) under g(x)
=e'*®] We shall therefore assume the validity

of (3.3) and (3.4) for all groups.

Equations (3.3) and (3.4) specify a certain normal
subgroup G, of the full (space and time dependent)
gauge group G with which we can transform the
variables of the theory at any time ¢ in a fashion
consistent with time evolution. Let us next define
the physical variables of any theory as those which
have a well-defined time evolution; their values at
any time ¢ are thus uniquely determined by appro-
priate boundary conditions at time 0. (We find such
a definition reasonable.) It follows that the physi-~
cal variables of a gauge theory are invariant under
the action of G,. The group G, is not the full group
G. In particular, by (3.3) and (3.4), G,nS={e},
where § is the usual space- and time-independent
global internal-symmetry group. Thus G/G, 8.
Elements of G/G, can map solutions involving.
physical variables alone into inequivalent solu-
tions. Hence the theory will retain a nontrivial
symmetry group G/G, even after we eliminate the
unphysical variables or gauge degrees of freedom.
In cases where G/G, is larger than §, the nontriv-
ial symmetry group of the theory is larger than
the global group §. The degeneracy of the classi-
cal gauge vacuums found in the literature is due
to this circumstance and the fact that G/G, has a
nontrivial action on the vacuum sector.

Physical variables as we have defined them are
what are called first-class variables in the theory
of Hamiltonian systems with constraints.®”” In the
latter, the Hamiltonian contains Lagrange multi-
plier terms involving first-class constraints.® The

arbitrariness in the choice of the Lagrange multi-
pliers means that the physical variables must have
(weakly) zero Poisson (or rather Dirac) brackets
with these constraints in order to have a well-de-
fined time evolution. Since first-class variables
are also defined by the same requirements, we see
that physical and first-class variables are the
same.

The connection between this property of physical
variables and their invariance under G, comes
about from the fact that the Lagrange multiplier
terms are the generators of an infinitesimal gauge
transformation.!® Therefore when we solve Hamil-
ton’s equations, the effect of these terms is to per-
form a gauge transformation with an element g € G
at each time x,. Further, when x,~0, the vari-
ables at x, will necessarily reduce to the boundary
conditions S(0). Thus g € G,. 1t is also easy to
show that we can perform such a gauge transfor-
mation with any element ¢ & G, by a suitable choice
of Lagrange multipliers.'® It follows that a vari-
able will have a well-defined time evolution if it is
a first-class variable, or equivalently if it is in-
variant under G, (on the constrained hypersurface
in phase space).

Since the definition of G, depends on the time 0
through (3.3) and (3.4), it may seem that the defini-
tion of physical variables depends on this time.
However, this is not the case since the set of all
constraints is invariant under time evolution.
(Dirac in fact constructs the full set of constraints
by demanding that the time derivative of a con-
straint also be a constraint.®"’

We shall now characterize the elements of G, in
terms of the topological numbers p and ¢ which
were defined in the introduction. The number p is
the degree of mapping of g(x,, X) when we restrict
it to a spacelike surface, for instance when we re-
gard it as a function of X for fixed x,. Condition
(3.3) implies that the elements of G, should havep=0,
since they can be continuously deformed to the
identity mapping by changing the parameter x, to 0.
Next we show that there is no restriction on the
elements of G, as regards the topological number
0. As remarked earlier, the circle S! associated
with the number ¢ may be thought of as a light ray
whose past and future end points are identified.

Let us write

- -v v,
(%45 x)=(u 5 u;- n) , (3.5)
u=tan3p , (3.6)
v=taniq , (8.7)

where 7 is a spatial unit vector. Then as p is var-
ied for fixed ¢, we clearly generate a light ray.
We can regard p as the coordinate of S* with the
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identification of points p and p +27. |Equation (3.7)
shows that ¢ and ¢ +27 are also to be identified.]
Let g, (P) be a gauge transformation which depends
only on p and has topological number 0. It is re-
quired to fulfill the periodicity condition g4(p)

=g,(p +27) since it is a function on S'. We can
assume that g,(0) =1 by replacing g,(p) by
2o(P)g,(0)"! if necessary. This replacement leaves
the number o unaltered. Next consider /,(p)
=g.(p-q-sin(p—9q). Since p—g - sin(p -g) cov-
ers S! exactly once as p increases by 2m, h(p) is
also characterized by the number 0. Further, since

9 .
5‘5[1’— q - sin(p - 4)]}

b A ]
=1 _ 9p  9q
[1-cos(p ‘1)]<ax0 - ax()) .
=0, (3.8)
we find
hn(p) Ip:qz 1 ’ (3.9)
)
—h, =0. .
ox, 0P| _, (3.10)

Since ¥,=0 corresponds to p=¢q, it follows that
ho € G,. We can thus conclude that while p=0 for

all the elements of G,, there is no such restriction
on 0. The classical gauge vacuums can be charac-
terized by the value of p, but not by the value of ¢
since 0 is not invariant under the action of G,. The
elements of the factor group G/G, are associated
only with the number p.

The argument given above seems to generalize
even to situations where the topology of space-time
is not S"X S'. It suggests that the only topological
numbers of gauge functions which can be given a
physical meaning are those associated with a
spacelike hypersurface (or more generally with a
hypersurface like the null plane on which the can-
onical formalism is set up).
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