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We derive the renormalization-group equations for the Green's functions of an indefinite-metric field theory.
In these equations we retain the mass dependence of the coefficient functions, since in the indefinite-metric
theories the masses cannot be neglected. The behavior of the effective coupling constant in the asymptotic and
infrared limits is analyzed. We illustrate the analysis by means of a simple model incorporating indefinite-
metric fields. The model scales at first order, and at this order also the effective coupling constant has both
ultraviolet and infrared fixed points, the former being the bare coupling constant.

I. INTRODUCTION

The phenomenon of scaling has been observed
in the deep-inelastic scattering of electrons off
proton targets. ' Certain structure functions be-
have in a very special manner as the deep-inelas-
tic limit is taken. It has been noted that one way
to explain this sealing behavior is to consider the
proton as made up of pointlike constituents —or
partons. ' In the deep-inelastic scattering of an
electron off a single such parton the structure
functions also exhibit scaling behavior. It ha.s
been possible to justify choosing these partons as
spin-& quarks. However, in deriving the scaling
behavior of the structure functions for such a
model one must make the extra assumption that
the partons are free objects, or at least that they
behave like free objects during the time it takes
for the incident virtual photon to interact with the
proton. This assumption is justified in the parton
model by choosing to work only in a special infin-
ite-momentum frame, ' a frame which is mathe-
matically not well defined and physically does not
exist.

Many attempts have been made to construct a
field theory to describe this model. In such a
theory the basic fields would be the constituents
and the gluons which are responsible for binding
the constituents together to form a bound state-
the proton. ' With the advent of renormalizable
non-Abelian gauge theories, ' it was seen that one
could construct a field-theory model in which the
constituents were spin-~ fermions and the gluons
were spin-1 non-Abelian vector bosons; more-
over, the model would be renormalizable, but
would it scale, and in what sense could the con-
stituents be free'P

Recently there was also a resurgence of interest
in the renormalization-group work of Gell-Mann
and Low. ' These authors examined quantum elec-
trodynamics to see how the theory behaved under

a, change of renormalization point. Their ideas
were applied to other renormalizable models. '
When the analysis was carried out for a massless
Yang-Mills field theory a remarkable discovery
was made': The effective coupling constant,
which was responsible for the behavior of many
functions of the theory as the renormalization
point was changed, tended to zero as the scale of
the renormalization point approached infinity. (In
models previously examined, it had been noticed,
in lowest order, that the effective coupling con-
stant increased as the momentum scale became
large, though it was not clear whether it remained
finite, or became infinite in the exact theory. )
This phenomenon occurs in the Euclidean region
of momentum space —the theory behaves as if it
were a free theory in the deep Euclidean region
(for many processes this limit corresponds to the
deep-inelastic limit). However, this would not
quite be a free theory, as a free theory would
yield exact scaling in the deep-inelastic limit. In-
stead, the asymptotically free theories, as they
became known, would predict calculable logarithm
violations to the exact scaling results. ' The pres-
ent experimental data are not clear enough to dis-
tinguish, for once and for all, between exact
scaling and logarithm violations; for models pre-
dicting inverse-power deviations in the prescaling
region (characteristic of models which predict
scaling in the limit) have been fitted to the data,
as well as models with the logarithm modifications
to scaling which are associated with asymptotical-
ly free theories. ' Thus, it is not yet clear whether
or not the property of asymptotic freedom is es-
sential to our understanding of physics.

If one believes in the existence of quarks and
gluons, then it may be only by means of asymp-
totic freedom that the experimental results can be
explained. However, all known theories involving
such quantities are beset with divergences, albeit
they are renormalizable. On the other hand, if
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one is prepared to relinquish conventional ideas,
it may be possible to obtain a theory which pre-
dicts scaling, and is finite. At least some theo-
ries are known to exist which are finite in four
space-time dimensions —for example, the indef-
inite-metric field theories. '

It is expected that a finite theory will give good
behavior, as such a theory will not suffer from
undefined (and divergent) integrals in higher-order
corrections. As a first step in the investigation
of the scaling behavior of such theories, in this
paper we apply the renormalization-group analysis
to theories with indefinite-metric fields. The
main changes when compared with other appro-
aches'" are that one must retain the mass depen-
dence of the models to derive the renormaliza-
tion-group equations. In general it seems that the
effective coupling constants of such theories will
have both ultraviolet and infrared fixed points,
though they will be nonzero. To illustrate some
points in the discussion we examine a simple
model, in particular, an indefinite-metric scalar-
field model. For this model we find that the stable
ultraviolet fixed point of the effective coupling
constant is, in fact, the bare (or unrenormalized)
coupling constant. One might expect that this
should be true for all finite theories. ' However,
we suggest that this is not obvious especially when
there are many mass parameters at hand. For the
infrared limit, for example, these extra masses
play a major role in determining the fixed point.

II. RENORMALIZATION-GROUP EQUATIONS FOR

INDEFINITE-METRIC FIELDS

The basic idea in constructing an indefinite-
metric field theory is as follows: We begin with
a conventional quantum-field-theory model which
is divergent. We introduce into the model extra
fields which are quantized with "opposite-sign"
commutation relations. They are introduced in
such a manner that the divergent contributions to
scattering amplitudes cancel among themselves.
The result is a finite theory. The extra param-
eters which enter the theory are the masses as-
sociated with these "shadow fields. " In Sec. IV we
consider an indefinite-metric scalar field theory
as one simple example. More complicated models
have been considered, for example, a finite model
of @ED"which has two shadow fermion fields as
well as the electron and photon fields. The differ-
ent results of such models depend upon various
combinations (including ratios) of the many mass
parameters involved. It is clear from the con-
struction of these models that the leading, or
mass-independent, terms cancel among the vari-
ous diagrams which contribute to a scattering am-

plitude. Thus, working in such an approximation
will result in a noninteracting theory —and this
approximation in no way represents the full theo-
ry.

It is usual in applications of the Gell-Mann-Low
approach to the renormalization group to work
only with the mass-independent (i.e., leading)
terms. ' This may be a valid approximation in

simple one-coupling-constant one-mass-param-
eter models. However, in models with more than
one mass parameter we should not ignore these
parameters by setting them to zero, for the rea-
sons given above. Clearly then, we should not use
the Callan-Symanzik equations either, as in that
approach the masses are relegated to a minor
role, while the major results are derived in a
mass-independent limit. Similarly, the more re-
cent mass-independent approaches to the renor-
malization group are not applicable here. " I"or
these reasons we follow the Gell Mann Low -atg--
fvvoach, but retain throughout the mass dependence
of the various functions of the theory. It has come
to our attention that the retention of the mass de-
pendence in this approach has previously been
seen. " However, since we are not examining con-
ventional models in which masses play a minor
role, but rather indefinite-metric models in which
the mass parameters have an important role to
play, we feel that it is both interesting and in-
structive to work through the approach and see the
results develop; and this we now do.

We restrict our attention to renormalizable mod-
els which are characterized by one renormalized
coupling constant gs and (at least) two renormal-
ized masses m and M. We denote the unrenormal-
ized parameters of the model by g„mp and JlIp,
respectively. The renormalization scheme we use
is of the Gell-Mann-Low type. The coupling con-
stant g„ is defined in terms of an n-point (n = 3 or
4) Green's function at a momentum point (possibly
Euclidean) which is determined by an arbitrary
mass parameter p. The wave-function and vertex
renormalization constants, which we collectively
denote by Z, are defined in terms of the propaga-
tors and the proper vertex functions of the theory,
respectively, at momentum points determined by
the mass parameter p. However, the renormal-
ized masses m and M are defined as the positions
of the poles in the momentum-space representa-
tion of the propagators. We also restrict our at-
tention to theories with dimensionless coupling
constants. If we include a momentum cutoff A,
for generality although for our purposes it is not
necessary, then the renormalized parameters and
renormalization constants have the following func-
tional dependence on the bare parameters of the
theory:
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mo Mo A
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M Agp»»»»
m = m(g, mo, Mo, A),

M = M(g, mo, Mo, A) .
I'„(p;g„m„M„A}is an unrenormalized n-point
one p-article i-rreducible (IPI) Green's function,
where P stands for a set of external momenta
(p„... ,p„). The corresponding renormalized
Green's function we denote by F„(p;g„,m, M, g),
and by virtue of the renormalizability of the theory
we have

1„(P;gs,m, M, g)

m, m, A
=Z~ go. . . I'0 p, g, mo, MO, A

P

where ZI- is the relevant combination of renormal-
ization constants. For theories which are diverg-
ent this equation is to be understood to mean that
if we regroup all the arguments on the right-hand
side in terms of renormalized parameters, then
the divergent A dependence is hidden within the
definition of g„, m, and M. Then we can take the
limit A ~ keeping g„, m, and M fixed to find the
left-hand side of E(I. (2). For finite theories we
do not have to worry about the A dependence as it
has already canceled out among the various con-
tributions to Z& and F~.

The renormalization-group equations tell us how

the renormalized functions (Green's and otherwise)
of the theory behave as we change the mass pa-
rameter p. So, differentiating Eq. (2) with re-
spect to p yields these equations, and they can be
written in the form

xr, (P;g„,m, M, q}=O.
(3)

The coefficient functions in this equation are de-
fined by

m M m M A
P gg»» =&& gg 80»

m M 8 m M A
&T' ga»» ~ ln~r 40»

where on the right-hand side after differentiation
we reexpress everything in terms of renormalized
quantities. We have used dimensional arguments
in writing down the arguments of these functions.

Introducing dimensional analysis we can turn (3)
into a scaling equation for F~, and this will be
more useful. We scale all the momenta uniformly,
i.e., P =»P, or (P„.. . ,P„)=«(P,o, . . . ,P~). Then
if D~ is the mass dimension of I"„, dimensional
analysis gives us

(
8 8 8 8

~ —+m +M + p, —-D~
BK gm gM Bp,

"I's(«PO gs m, M', u)=0,
and combining Eqs. (3) and (5) gives us the sealing
equation for I~,

8 m M Q g 9 m M
« —-p g —— +m +M D+y g -——1" («p g m M p)=0.g» ~ ~ ~ ~~ p p g» ~ » ~ g 0»

Despite the nontrivial mass dependence of the functions, it is possible to solve this equation using the same
method as in other approaches, where now we treat m/g and M/y as dimensionless constants. The solu-
tion takes the form

I's(»P„g„,m, M, P) = «sr exP — yr g(«'). . . F„(P„g(«},m(«), M(«), P)
m(«') M(«') d«'

P

in terms of the effective coupling constant g(») and
two effective masses m(«) and M(»). The effective
coupling constant is the renormalization constant
which results from subtracting at a momentum
point specified by wp. It satisfies the differential
equation

~, (;(~) = (( ((;(», „ , )
subject to the initial condition g(1) =g„. The effec-

tive masses are defined analogously by «dm(»)/d»
= -m(«), m(1)= m, and «dM(«)/d«= M(«), M(1)-
= M, with solution the naively scaled masses m/»
and M/», respectively So E(I. (8.) becomes

d m M
« —g(«) = p g(«), —,—

dK pK pK

It is obvious from (V) that the scaling behavior of
the Green's function I'„ is governed by the behav-
ior of g(«) when the scale « is varied Adetaile. d
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examination of the effective coupling constant is
the next priority.

So far in this section we have considered only
the behavior of the one-yarticle-irreducible
Green's functions. To apply the scaling analysis
to the structure functions which are important
from the experimental point of view, it is neces-
sary to examine the shoxt-distance behavior of
products of currents. These quantities are ana-
lyzed by means of Vfilson's operator-product ex-
pansion. ' The renormalization-group equations
for the coefficients of this expansion are of the
same form as those of Eq. (3), except for the y
factor. However, as far as the coupling-constant
part of the analysis is eoneerned the equations,
and the subsequent analysis, are the same as
given here for the one-yaxticle-irreducible Green's
function. ' As we do not examine any models with
physical application in this paper, we do not pro-
ceed with the analysis of the operator-product ex-
pansion.

III. BEHAVIOR OF THE EFFECTIVE COUPLING CONSTANT

%e have seen, in Sec. II, the behavior of the
1PI Green's functions of the models is dependent
on the behavior of the effective coupling constant
g(K) as the scale of the external momenta K is al-
lowed to vary. The regions of interest in the
rallge of K Rl'8 tile llltl'Rviole't ol' asymptotic (K ~)
Rlld the illfrRIed (K '0) liIIlii's.

In the asymptotic region, there may exist a fixed
point of the Gell-Mann-l. ow equation. For this to
oceux' we must have

m M
llm P g(K)~ ~ P(g ~=0-i0)=0

y

K ~eo PK Pit."

so 'tllR't Kdg(K)/d«~0 Rs K ~ RIldg(K)~g+. 111 tile
case g*=0, e.g., in the case of many non-Abelian
gauge theories, '" the theory is said to be asym-
ptotically free. For most known theories, how-
ever, this does not occux. In fact, they do not
even have fixed points. For such theories the ef-
fective coupling constant g(K)-~ either for finite
~ or as K ~, in first-order yerturbation theory.

In the infrared limit, also fixed points may ex-
ist. In this case we must have

m M
»mP g(K) —,—= P(gl ~ -~)=0
K~Q

so that here too

K —g(K)-0 as «-0 and g(K)-g .
dK

However, for those theories which are asymptot-
ically free it is usually argued that in the infrared
limit they will be subject to slavery, that is,

g(K} ~ as K tends to zero,
ox' some small finite numbex.

%e will now see, to first order, that for finite
theories it is most likely that there exist finite
nonzero fixed points in both limits.

The p function, defined by EIl. (4}, has the fol-
lowing structure:

m M A
Q f Qj

(e.g. , in P' theory Z~ = (Z~)'/Z&~
or in QED Z, =Z, Z, '~'/Z, ). (11}

However, to have the P function in a usable form
we must express it in terms of renormalized
quantities only. If we had an exactly solvable mod-
el, then we could analyze the effective coupling
constant in an exact manner. However, exactly
solvable models have little or no application, as
yet. The models in which we are interested ean
be solved in perturbation theory, at best. For
this reason, the analysis and results of this sec-
tion are valid only in perturbation treatments, and
at that only in first order.

Bearing this in mind, let us suppose that, to
first order,

g~-1+gQx, .
Then we can invert Elf. (11) to read

m M A
go=ga(1 -gKXI) =gs ZI gal &, ~ ~ (13)

So, to this order

tn M 8
p g ~ ~ g p ~ $+g

8
=g„p, —(1+g„x,)

g+ fixed y

(14)
where it is important to note that in the final ex-
pl 8ssloI1 'the pRI'tlR1 del'lva'tive ls (8/8 il}g K„~g~ slid
not (S/ail), n„~ as is usually understood.

%e are now in a position to solve the Gell-Mann-
I.ow equation at this order. The equation can be
rewritten as



8
« —g(«) =g(»)(g»)

d» s(p«)

X [I+g(») X,(«)]x(„)ax~

where X,(») is obtained from X,(}n/W, MIN, A/[()
by the replacement p —p~. The solution to this
equation is

g(») =
(1+g„X,) -g„X,(«)

' (16)

clearly all the ~ dependence is contained within
the function X,(») =X(}n/g«, M/p«, A/p«). For
those theories mhich are finite, the A dependence
is absent, so that we have then X,(m/g«, M/g«).
The x limit is, in this case, the same as the
limit m, M-O in constant mtio. It is not at all
obvious that X,(») 0 in this limit, and indeed one
would expect the limit to depend on the ratio M/m
somehow. Homever, in Sec. IV me mill show that
for a simple model X,(«)-0 in this limit. If g(»)
remains finite in taking the»-~ limit, and X,(«)
vanishes in this limit, then there exists a stable
ultraviolet fixed point

8z
1+g„X,

which, by virtue of Eq (13) is. just the bare cou-
pling constant, i.e.,

main fixed), and a finite limit for X,(») could re-
sult.

In the infrared region (» « I) the situation is
quite analogous to the above. For finite theories
the limit is equivalent to the constant-ratio infin-
ite-mass limit m, M-~. %e mill see in Sec. IV
that for a simple model this limit depends upon
the ratio M/}n and is nonzero. For divergent the-
ories, again me can have the A dependence through
A/t[, , A/m, or A/M. In the former case the factor
lnKmill blowup in the limits-0. Thus, if the sign
of the coefficient of ln« in Eq. (16) is positive, we
mill have infrared freedom, while if it is negative
me mill have infrared slavery. It is usually
argued, in the absence of mass dependence, that
an asymptotically free theory mill have infrared
slavery. In the latter tmo cases above, the K-~
limit corresponds to the limit m, M, A ~ in con-
stant ratio (so that M/m and A/}n remain con-
stant).

The result that the ultraviolet fixed point can be
the bare coupling constant (and is for a model) has
been derived at first order only. It mould be pre-
ferable to see this result occur in higher orders.
As a first step in this direction me consider the
second-order renormalized coupling constant

ga go gr go(I+goXi+go X2) ~

If we invert this equation to express the unrenor-
malized constant in terms of the renormalized
constant, me find

For the particular model it is gratifying that this
result follows, as it agrees with results obtained
in other models" (see Sec. V).

For divergent theories the A is very much pres-
ent. Since me are restricting our attention to re-
normalizable theories, and me are working within
the context of' perturbation theory, the A depen-
dence is at most logarithmic. X, can directly de-
pend on A through A/[J, A/m, or A/M. In the first
case, X,(«') will depend on A/p» through the fac-
tor In(A/[}, ») = In(A/p) —In». Thus, in the limit »
—~ this term mill approach -~. This could give
rise to an asymptotically free theory if the over-
all coefficient of In» in the denominator of g(«) is
positive. If, however, this coefficient is negative,
then g(») will approach infinity for a finite value
of » (e.g. , a regular Q' theory) In either of th. e
latter cases above, X,(») can at most depend on «

through }n/p«and M/p«. Thus, X,(») cannot be-
come infinite unless the theory is infinite in the
zero-mass limit. If this mere to occur, then
again asymptotic freedom could result. Other-
wise, the a -~ limit mill be equivalent to m, M, A

0 in constant rat@ (so A/rn, A/M, and M/}n re-

a
1+g„X,+g„'(X,-X,')

In terms of the renormalization constant F the P
function takes a particularly nice form. %e have

m M 8
P Ay ——-So& —&+Zox~+go'&, ,

and reexpressing each go on the right-hand side in
terms of renormalized quantities me find, to this
ordery

P Cay y =NR

8 8
+g p —X -2X p, —XR gp 2 1 gp I,

and this is clearly equal to

x g —[(+x x, +x *(x,-x,'}[)BP
4'~ flxcd p

11ei y
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(2o)

However, it is not a simple problem to solve the
corresponding Gell-Mann- Low equation; this takes
the forrg

mechanism which will cause the cancellation of
divergences.

%e can think of the extra field y, as a. type of
regularization of the original model. The self-
interaction term in (24) is such that we can view
the effect of the Q, field as giving us an effective
propagator"

where A(K) and B(x) are known but extremely
complicated functions of x. Here, B(K) corres-
ponds to the two-loop corrections to the coupling
constant. Infact, even when A and 8 are taken to
be independent of K, as in the usual approaches,
an explicit solution to this equation is not known.

IV. ILLUSTRATION USING A SIMPLE INDEFINITE-METRIC
FIELD THEORY

To illustrate the analysis presented in Sec. II
and IQ it is of benefit to examine a model in detail.
The model we consider is probably the simplest
example —an indefinite-metric version of a self-
interacting scalar-field theory. The general idea
is as follows: %e begin with a self-interacting
scalar-field theory, described by the Lagrangian

(21)

[4,(x), 4,(s)] = o&(x -x),
then the extra field «I), will satisfy

[4.(x), 4.(y)l = -~&(x —y) .

(22)

(23)

For this model it is sufficient to add just one extra
field. In other, more complicated models, for ex-
ample when treating quantum electrodynamics
more than one such field may be required. Actual-
ly, in the finite model of @ED, the extra fields
satisfying the opposite-sign quantization conditions
are Fermi fields, so they obey opposite-sign anti-
commutation rules.

%e add Q, to the model as shown in the Lagran-
gian function

7 =2 [(s,y,)'-m, '4,'] --,'[(s„q,)2-M, '@,']

This theory is divergent but renormalizable. To
make the model finite we add extra scalar fields.
These fields are quantized with the opposite sign
to p„ i.e., if the Q, field obeys commutation rules

m —M~
(k'-m, ')(u'-m, ') '

This modification will be sufficient to make (most
of) the integrals of the theory well-defined) so
that no momentum-space cutoff is required. An
alternative approach is to treat the fields separ-
ately, the g, being a shadow field; in this case
we need to retain the cutoff A to make separate
integrals well-defined, but in summing up the dia-
gram contributions the A dependence will be seen
to cancel out.

Unfortunately, as it stands the model described
by (24) is not totally free of divergences. The low-
est-order mass-shell corrections to the propaga-
tors remain, i.e., those diagrams with at most one
internal line. It is clear, however, that any dia-
gram of the original theory with more than one in-
ternal line will be made finite. This is easily seen
because the divergent (primitive) diagrams in the
original theory, besides mass renormalizations,
were those in which each integration loop had two
propagators, and Eq. (25) is sufficient to make
these finite. Thus, only the mass renormalizations
remain divergent. This will not affect our analysis
anywhere; however, we note that if we restrict the
interaction term in (24) to be normal ordered then

1—4—, ~(4 i+ 4 ~)' ~ (24)

%e see here the manifestation of the negative-
metric quantization in the sign of the free p, La-
grangian. The effect of this is to give the y, Feyn-
man propagator an extra minus sign. It is this

FIG. 1. All diagrams contributing to coupling-constant
renormalization at second order.
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such divergences no longer appear, i.e., the inter-
action is (-1/4!)I:(&P,+4i,)':.

In Sec. III we have seen that to determine the
behavior of the effective coupling constant it is not
necessary to know the P function; all we really
need is the renormalization of the coupling con-
stant. The first-order corrections come solely
from the proper-vertex corrections —as in this
model there are no wave-function renormaliza-
tions until at least second-order corrections are
calculated. In Fig. 1 we list the different diagrams
which contribute in this order. Basically, how-

ever, there are only three different diagrams to
be considered; the remaining ones have the same
structure.

The three basic diagrams, with momentum con-
ventions, are shown in Fig. 2. We denote the con-
tributions from Figs. 2(a), 2(b), and 2(c) by I„ I„
and I„respectively, and they are, taking account
of symmetry factors, as follows:

p -v, +v„=- (v~+v, )

FIG. 2. Momentum conventions for coupling-constant
renormalizations.

4m' '~' 1+(1-4m'jp2)»' I

1+ lim ln, — 1 —
2 ln I

A2 4M2 1/2 ] + (1 4M2/p2)1/2
1+ lim ln

{
A' 1 m'-M' ' 1 m2-M~

1+lim ln —,—— 1+, —A ln —1+P' 2 P' .2 p'

1 m'- M' 1 m'- M' - 1 n~'- M' 1 m'-M'1+, +A ln —1+, +A —— 1—,—A ln —1—,—A
2 p' p2 2 p2 2 p'

1- ~ +A ln —1- +A

(27)

(26)

m'-M' ' 4m' '~'
A= 1+

P P

If we letP'=P, +P, andP =P, +P„ the contributions of the remaining diagrams on the second and third rows
of Fig. 1 are got by making the replacements P-P' andP-P" in I„ I&, and I,. We see above that the A de-
pendence cancels in summing up the various contributions, yielding finite coupling-constant renormaliza-
tions.

Following the renormalization procedure outlined in Sec. II, we define the function X„where 8, = (1
+goX,) to lowest order, in terms of the corrections I„ Ii„and I, at a, symmetric renormalization point

(29)

Summing up all contributions at this momentum point, we can then display the x dependence of X,(s),
which governs the asymptotic behavior of the effective coupling constant [see Eqs. (16)], as follows:

3 o 'I' 1+(I+ir/s')' ' ' ~' ' ' 1+(1+a'/x')' '
32vr' ' 1 (1+ /s')'~' x' 1 (1+ '/x')"'

2 K' m
~
1+s'/4K' —II (K)

(30)

with B(s) = (I+s'/2x'+&'/16K')'I2 and o. = 3m'/ii2, a' = 3M'/p, ', n'= n' —n, s'= a'+ . (Note: X,(s) is
got from X, by the replacement p, - ys. ) It is not obvious from this expression that X,(~) even remains
finite in the limit s -~; however, by rewriting X,(s) as
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1/2 1/2 - ~ 1/2 t ~

1/2

X,( )=, ((+ —,) ~ ( ! ( ~ —
) ~ ( — (( ~ —,) —( (n (( ~ —,)

—(

I 1/2 I 1/2 ~ I 1/2 ' I 1/2

+ 1+—, +1 ln 1+ —, +1 — 1+ —, —1 ln 1+ —, —1
K „K I K L K

S2 $2 S2 S2
—1+ 2+B K ln 1+,+B z — 1+-,— —B(~ ln 1+ 2

—B K
4z 4z' 4z' 4K

(y' ln(y'+ (gin(y n'+ +
2 2-2 ln2+

2K ZK
ln2x' (31)

go'X, + X, + 1/go & 0 . (32)

Writing f(X) g, 'X'+ X+ 1/g, we see that f(X)at-
tains a minimum value at X = -1/2g„and the
minimum value is —,'g„. Thus, we see that the con-
dition (32) is always satisfied, given that both g,
and g„are positive. In fact this gives us a restric-
tion on the allowed values of M to ensure the ex-
istence of the fixed point —only those values which
give g„&0 are allowed.

In the infrared limit, however, X,(z) remains
nonvanishing, and we have

li X,( ) = 2 (( — , , ) —-=K, (0) .M+m M
M2 m2 (33)

In fact, in this limit X, —X,(K) & 0 for all values of
K and X, —X,(z) —X, —X,(0) as z —0. Thus, a
stable infrared fixed point exists also for this
model and is given by

&a
1 +gs X~ gs X~(0)

we see in fact that, as g-~, X,()() has a vanishing
limit. A computer analysis of the function X,
yields the following properties: (1) X,(z) &0 for
all finite z if Me m, (2) X,()()- 0 monotonically
as ~-~. The effective coupling constant is g(~)
= I/[I/gs+ X, —X,()()]. If X,&0 is such that I/gs
+X,&0, theng(z) decreases from gs (a positive
number) to g„/(1+g„X,), the stable ultraviolet
fixed point which is the bare coupling constant. On

the other hand, if X,& 0 is such that1/g„+X, & 0, then
the numerator of g()() will vanish for a finite value
of tr —that value such that X,()()= I/gs+ X,. In this
case there does not exist a fixed point, since g(~)
becomes infinite for finite w.

We can check whether or not this latter case can
occur. Using Eq. (12) we have

gs =go(1+goX))

and if we have bothgo&0 and g~ &0 then the func-
tion X, must satisfy X,&-1/g, . We have seen
that to ensure the existence of the fixed point we
must have X, & -I/gs. This condition can be re-
written as

where, as before, X, = X,(~) ~, =, .
To understand the scaling behavior of the 1PI

Green's functions we need to examine the yz func-
tions defined in Eq. (4). Since to first order there
are no wave-function renormalizations (either in-
finite or finite), then at this level of perturbation
theory y~ =0. This tells us that to lowest order
the model scales. To have more confidence in
this result we should examine the next order of
perturbation theory; however, we have seen that
at that level we are not able to predict the behavior
of g(z). For this reason we do not proceed fur-
ther with this analysis.

V. DISCUSSION AND REMARKS

The existence of finite fixed points for the ef-
fective coupling constant in simple (one-coupling-
constant) indefinite-metric field theories constitu-
tes the main result of this paper. To derive this
result we examined the renormalization-group
equations which were applicable to such models.
These equations and their solutions, for the one-
particle-irreducible Green's functions, differ from
the usual cases examined, especially in the im-
portance attached to the mass dependence. We
saw that a possible value for the ultraviolet fixed
point is the bare charge of the theory, and this
value was attained for the model of Sec. IV. That
this result should be true has previously been
argued. ' Recently, it has been shown to be true
also for a solvable model —the Zachariasen mod-
el." In deriving his result the author used the ex-
act theory, not a perturbative approximation as in
this paper. He found that, prior to taking the in-
finite cutoff limit (A-~), the effective coupling
constant has as limit the bare coupling constant
as a was allowed to go to infinity. However, in
that model, in taking the limit A-~ afterwards
the bare coupling went to zero, thus exhibiting
asymptotic freedom. The present author wishes
to emphasize that in the perturbation-theory ap-
proach of this paper the result g(~)-g, as ~-~
does not necessarily follow. One must examine
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the different models to see whether or not the re-
sult holds.

By working throughout in R region of momentum

(zP,) space such that m/pz and M/pz were not

sepRlRtely set to zexo, we seelrl to have restricted
the analysis of this papex to the prescaling region
of momentum space. However, in going to the
large-v limit we pass over smoothly into the scal-
ing region. Thus, this approach will also yield in-
foxmation about the approach to scaling behavior
for such flnlte lTlodels. It is interesting to note
that if we had naively ignored the masses of the
theory and applied the conventional analysis, ' the
xenormalization-group equations would have re-
duced to

p. —I'a(P;g„, m, M, p)=08

Bp

tn place of Eg. (3)~ since ln that case the P and 'yr

functions vanish trivially. However, we also see
ln this approximation that fol the lndeflnlte-metric
theory all corrections to the coupling constant van-
ish owing to the cancellations caused by the sha-
dow fields. Thus, the coupling constant will re-
main the bare coupling constant; there mill be no
renormalization. The eaxlier sections of this pa-

with X, given by Eq. (30) with z = 1. The infrared
fixed polQt 18

ZR

1+g„[X,—X,(0)j
(35)

with X,(0) given by Eq. (33). Examining both X,
and X, —X,(0) in this limit we find

per show that this cannot be true in general, es-
pecially if the ratios of masses have a role to
play. To say this another way, this naive xesult
can be valid only if: (1) the (masses-0 indepen-
dently) limit oi the massive theory, and (2) the
zero-mass version of the theory ax'e exactly equiv-
alent.

An interesting comment on the results obtained
here is that after all the renormalizations have
been carried out, we should reproduce the known
px'opertles of the fi)' -scRlRr-field model ln the lim-
it M„„h„„,~ going to infinity —namely, that in low-
est order the Gell-Mann-I ow equation has an un-
stable ultraviolet, but stable infrared, fixed point
at the oxigin of coupling-constant space. The ul-
traviolet fixed point is

3, — 41+~+1 3o.
X, - 2, -inn'+ 41++ ln

~
— +2 — +ln~ +terms which vanish as e'-~,

32m' 41+~ —1 64

where, as before, n=3m'/p, ', n'=3M'/p',

1~co~ X~ —in& Rs Q

Clearly then X, tends to -~ as M ~. %6 have
seen that X,&-l/gs, provided that both g, and ga
are positive. Then for some finite value of M,
X,+ 1/gs will vanish. Thus, in taking the limit
~uay~eical ~ we have destx'oyed the stRble ultx'R-

violet fixed point.
Turning to the infrared fixed point given by Eq.

(35), we note that X,(0) has the correct structure,
in terms of n', to cancel the parts of X, which are
divex gent when M„„~,&,& ~. So in this limit

3 — Vj+ ++1 3nX, —X,(0)-, v'1+nln~

This gives us a mass-dependent nonzero lnfrared-
stable fixed point. Remembering that in the con-
ventional treatments of the ~I)' theory the mass m
is neglected, we consider the m 0 limit of this
expression. Vife find

X, —X,(0) -inn as n 0,
i.e., X, —X,(0) +~ as m 0,

which gives us a vanishing infrared fixed point in

the zero-mass limit. If we were to allow g~ &0,
then it would be possible, for certain values of rn,
that the denominator of (35) would vanish —thereby
destroying the infrared fixed point, however, such
a choice for gR would not be of physical interest.

Of course, it is not clear what is the physical
significance of these first-order perturbation-the-
oxy fixed points. In taking account of higher orders
they may well be destroyed. On the other hand, the
fact that the ultraviolet fixed point is the baze
cowpling constanI, , and a similar result has been
dex'lved gxgctly in Rnothex' Inodel, leRds us to be-
lieve that the ultraviolet fixed point, at any rate,
exists independently of the pex'tul'bRtloQ 3ppl oxlIQR-
tion.

To draw any conclusions from the analysis of the
effective coupling constant which would have phys-
ical consequences, we need to examine the ques-
tion of scaling. We have seen already that in the
model of Sec. IV, at fixst oxdex the function yx. ,
which gives the anomalous behavior of the Green's
functions, vanished identically. %6 cannot con-
clude much from this —at most that the theory



l6 INDEFINITE-METRIC FIELDS AND THE RENORMALIZATION ~ ~ ~ l085

gives naive scaling at this order. It is necessary
to go to higher orders to learn the nontrivial struc-
ture of the functions y~. However, there are in-
definite-metric theories in which the lowest-order
calculations give nonvanishing yz functions in the
renormalization-group equations. For example,
in the finite model of @ED' we can explicitly check
the anomalous dimensions of the renormalized
fermion propagator. Since all the integrals in the
model are well-defined, we can simply scale the
momentum in the expression for the renormalized
propagator. It is necessary, however, to renor-
malize the fields at off-mass-shell points, and not
on mass shell as done in Hef. 10. Ne find that the
renormalized fermion propagator has the same
scaling behavior as the bare propagator, i.e., the
anomalous dimension of the fermion field vanishes

even though the ultraviolet fixed point g~ may not
vanish. Thus this model appears to scale; though
one must further check the operator-product ex-

pansion.
It is interesting to compare this conclusion with

the result of Callan and Gross. " These authors
show for a wide class of field theories that the ex-
istence of Bjorken scaling must imply that the
origin of coupling-constant space is an ultraviolet-
stable fixed point of the renormalization-group
equations. Essential to the proof is that the theo-
ries have positive-definite metric. So their result
is not applicable to the models considered in thj.s
paper, as our models have indefinite metric.
Thus, indefinite-metric theories may have the
property of Bjorken scaling, and have nonzero
stable ultraviolet fixed points of the Gell-Mann-
Low equation.
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