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Some properties of monopole harmonics
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Some properties of monopole harmonics are derived.

In this paper some properties of monopole har-
monics' mill be derived.

I. SIMPLE PROPERTIES

Theorem 2.

=(-1)" Y, ,
This is easily proved explicitly. Notice that this
theorem holds in both R, and B~. It is valid in the
gauge of Ref. 1.

Theorerpg g. In the explicit form defined in Ref.
1, the monopole harmonics satisfy

Proof. %e first choose the gauge of Ref. 1 in
which the Y 's are explicitly defined. It folloms
from (D2} of that paper that

Y, , „Y.. . = Q K{q,q', l, I', I")
J ~ m ~

x{IIqm,.~imf'm')Y, „,. (2)

Multiply by F,„7tt „and integrate over dQ. Using
theorem 1 above we find that the left-hand side of
(1) is equal to

lt ltl

G (I, I', I",q, q ', q '),

Y, ~
= Y ~, expt2ig(m-q)j in R, .

This is easily proved with the aid of (87) of Ref.
1. Hou Pei-yu and Hsi Ting-chang of Sian and
Peking have pointed out to us that this theorem can
be simply understood' if one considers the e-g sys-
tem as a spinning top.

Theorefr7 3. If q+q +q =0 and PR+tn +Pl =0,
then

where G is independent of the m's. Now use the
symmetry of theorem 2. The left-hand side of (1}
is unchanged if me smitch all the m's mith the q's.
Thus

fYq 7 ttt Yql 7 I tnt Yqlt 7 tl tttttdQ

[Il } I II II/

/

f(I, I', I") (4)
(m m' m"f (q q' q")

mYqt 7 t mZqtt 7 tt mttdQ

(21 + 1)(2l '+ 1)(2I"+ 1}
4m

where the round brackets are Sj symbols. '

To evaluate f, take the ca.se
tl ~ll ll/ ~/ lt

The integral in (4) can be evaluated for such a
case in a straightforward manner. f(/, I', I") can
then be evaluated. We thus verify (1). If we now

choose a different gauge, the integrand in (1) is
invariant because of the condition q+q'+q" =0.
Thus (1) is valid in general

Theorem 4.
)g i g (2l+ 1)(21 + 1)(2l + 1)

l l' l" 'I l l' l

qi t ttt q ~
t 7 t I /lg ttg -q tt tt tt

7
tl

where m" = -m-m', q" = -q -q'.
Proof. Comparison of (1) and (2) allows an eval-

uation of K. Substitution of the result into (2) gives
(5). Again (5) is valid in any gauge.

Theorems 1, 3, and 4 are generalizations of

theorems for the usual spherical harmonics to the
case of monopole harmonics. Another theorem,
the spherical-harmonics addition theorem' can be
similarly generalized and mill be given below in
Sec. III.
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II. RELATIONSHIP TO D(n, P,y)

We now use the function d and the matrix D:

d(J) (P) =-(j m'(exp(iPJ, )~j m}

D")(a, P, y}-=exp(ia J )exp(iP J,)exp(i' )

(6)

defined in Chap. 4 of Ref. 3. It is easy to explicitly
prove' the following.

Theorem 5. In region a,

Y, (8, P) = [(21+1)/4w]' 'e'("~)@ d«& (8

(8)

Y, (. (8', Q')

=B(a, P, y)e ""g'Y. . .(8, P)D(„',~ (a, p, y),

(15}

where 0 is defined to be the solid angle subtended
at the point P by the shaded area in Fig. 1. In
other words

0= solid angle at 0 between shaded area

and the extension of the line PO

= area of spherical hA. BP

Notice that

D(a+ 2m, P, y) =D(a, P, y+ 2m) = (-1)'~D(a, P, y) .

on the unit sphere.

By a well-known theorem,

Q=R+Z+Z' —g . (16)

It is convenient to remember that

z
)zt fyt )yt 1' y

d(„",(m) = 5(m+m')(-1)' ",
and that the matrix d satisfies

dd=1 .
It follows from this and from theorem. 2 that in
region a,

(10)

This function has the required discontinuity' of 4z.
It is easy to see geometrically that

Z=y —(-a -v), Z'=y —y' .

To determine B(a, P, y) we put the point P at B,
i.e. ,

0'=0, 0= I3, Q = -a —n', 0=0 .
The left-hand side of (15) becomes then, in region
0)

(D '), =[4w'(21+1)]'"e ' '""Y*,, (P, y) .
[(21+ 1)/4p]" 'e' " )~'5

+
——[(21+1}/4z]' '6,+~,

(16)

III. MONOPOLE-HARMONICS ADDITlON THEOREM

sine e'~ = -cos6}'sinP e

+sin8'[cos(Q' —y)cosine '

+ isin(Q ' —y) e "],
cos8= cos8' cosP+ sin8' cos(P' —y)sinP, (12)

0&P&n, -2n &o. &0, 0&y&2r.

Under such a transformation the usual spherical
harmonic Y, undergoes a linear transformation

Y, (O', P') = Q Y, , (8, P)D~ }~(a,P, y) . (13}

Consider a rotation of coordinate axis' by Euler's
angles o. , P, y which changes the coordinates
r, 8, P of a point to r, 8', 4)', where

z(8 =P, g = y)

z'(8=P, P=-n-r)

(14)

where Z is Y, , (O', P') but in a different gauge.
To change Z into Y(8', p') we need to multiply by
the factor T...given by Ec(. (46) of Ref. 1. Thus

These are the equations' given in Ref. 3. For
monopole harmonics, as already discussed in Eq.
(50) of Ref. 1, the same transformation gives

Z, (8', P') = Q Y, ,(8, P)D~ )~,
I'IG. 1. Rotation of coordinate axes. The rotation

changes the spherical coordinates of P from (1, 8, ft)) to
(1,8', ft)'). The transformation is explicitly given in
(12). The spherical coordinates (Ref. 6) of the z axis are
O'=P, (t)'=y. Those of the z' axis are H=P, P=-0. -~.
Angles Z and Z' are given by (17). ABP is a spherical
triangle on the unit sphere around the origin O.



while the right-hand side becomes

(19)

Equating (18) and (19), and using (8), (7), and (10),
ere obtain

FIG. 2. MBP in the new notation after substitution
(24). In the x'y'z' coordinate system the spherical co-
ordinates of P and A are as shown.

Thus we have, using (16) and (1"/), the following
theol em.

Theorem g. Under the transformation (12), in

reg1OQ gy

y, , .(g', ((')
=""-'-"g y, , .(g, y)D.'„(o,f), y), (»)

where 8 ls the angle defined 1Q Flg. 1.
Vfe can write this equation in a more convenient

fox m by operating with D ' on both sides, obtain-
1Ilg

Q (D-l)i y (gl yt) ei«(4'-$ B)y (g-y)

appears at first very puzzling since the monopole
harmonics I', , are functions of g, P (see Table 1
of Ref. 1) and a rotation by 360 around the z axis,

(26)

where A=2m, seems to leave all I, , unchanged.
The resolution of this difficulty lies in the fact that
ullder R I'otatloI1 (26) R gallge tl'Rllsfol'nlRtloll ls
necessary. The inclusion of the gauge transforrna-
tion leads naturally to the phase factor of -1.

To see this point more clearly, take q = —,
' and

E=-,'. In this case, the harmonics ~nF, ~, ,~, „are'

Using (11) one reduces this to

gy, , .(g', e')y,*,.(Il, y)

(((;) = -e'i'(I —cosg)'"

g(,') = -(1—cosg)'~'

(((') = (1+cos g)
'~'

{I("=e '~(1+cosg}'~',

= t(2I 1)«.]"'y„. ..(g, 0)

x & ( AI'e- ' )e&I-i(«B+«'z e'e) -(23)

while the txansition function 8=g" /g~~~ is e'@. If
p is replaced by p'= p+ n. of (26), the correspond-
ing table is

~h~~~ we have put q' = -III', and have used (17).
Now in the x'y'z' coordinate system, the angular
coordinates of I' and A. are respectively 6}',Q' and

p, y. Thus Ne change notation as follows:

{I)(')'= -e'~e"(I - cosg)"'

{I(e) =-(1—cosg)'~'

P" ' —(1+cosg)'~'

g(b) c-ig-id(1 cosg)1/«

gt pt @t ~t g Rt (24)

Rlld obtR111 Flg. 2. EqllRtloll (23) 'tlleI1 llecollles
TAeoxe teal 7.

gy, , .()3', y')y,*,.(u, y)

= [(2I+ I)/(«)]'~'y„i, , (g, o)

&&
ei(«I' ' )e&I-i( +-«I'I«'-le' )«e(26)

where 6}, R, and R' are defined in Fig. 2, and all
I"s are evaluated in R, . [If y, , (P', y') is eval-
uated in ft, , and y.. . (P, ) } in ft, , then one should
replace the factor e'(')' ' "in (25) by e'('" ")'.
Similar changes are necessary for the other two
combinations of regions. ]

A spin-~ system acquires a phase factor of -1
'%hen rotated by 360 . How does the e-g system 1n
a state E=-,' acquire such a factor'P This problem

while the transition function is now 8' = e'~e' . To
compare (28) with (27) we first perform a. gauge
transformation on g,' and tt}'. In R, we multiply the
wave functions by e ' ~' and in R~ we multiply the
wave funct1ons by e

obtaining

{}(;)"= -e'ee' '(1 —cosg)'~',

{(')"= e ' ~'(I + cos g}'~',

y(,')" = -e'~ "(1-cosg)"',
{)")"=e'~ ' ~'(I+cosg)'~'

Now we find the transition function 8"= (("('/{)t"("
=e'@ which is the same as 8, The wave functions
g" and g" can thus be properly compared with g,
and (I) . Indeed we find (in both Jtand R,,)
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Thus under a rotation (26), the m=-,' state acquires
a phase factor e' ~', and the m= --,' state acquires
a pha8e factor g '+~ . When g = 2g, both pha8e
factors are -1.

We notice that the gauge transformation in R, is,

by (29),
,&,(~) '

&~ «2„(~)"

which agrees with (21) above (as it should), since
R=O, P' —P =b, for the rotation (26).
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Equation (12) is also the definition of the transformation 8, $ 8', ~II' for Chap. 4 of Ref. 3. To show this, we take/ =1
in (4.1.4) of Ref. 3 and readily verify that it is equivalent to (12). (The definition given in Ref. 3 at the bottom of p. 53
is incorrect. ) Equation (12) can also be written in Cartesian coordinates:

cosa cosp siny+ sinn cosy
—sine cosp siny+ coso. cosy

sinp sing

x~ coso cospcosy- sine siny —coso slnp ' x
—sin& cosp cosy —cosQ sUly sin@ slnp

sinp cosy cosp ,

z'

Thus the z' axis is along the direction 49= p, p =-0. —n, and the z axis is along the direction 8'= p, p'=y. These are in-
dicated in Fig. 1. The identity transformation corresponds to o.=- x, p= 0, y= w.


