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Some properties of monopole harmonics are derived.

In this paper some properties of monopole har-
monics® will be derived.

I. SIMPLE PROPERTIES

Theorem 1.

Y:,l.m: (_1)q+mY—q.l,-m .

This is easily proved explicitly. Notice that this
theorem holds in both R, and R,. It is valid in the
gauge of Ref. 1.

Theorem 2. In the explicit form defined in Ref.
1, the monopole harmonics satisfy

Y Y,,. inR, ,

adm- L mia
Y im=Y m .o €Xp[2ipm—¢q)] inR, .

This is easily proved with the aid of (B7) of Ref.
1. Hou Pei-yu and Hsi Ting-chang of Sian and
Peking have pointed out to us that this theorem can
be simply understood® if one considers the e-g sys-
tem as a spinning top.

Theovem 3. If g+q’+q” =0 and m+m’ +m”=0,
then

fYq'l’qu'.ll'mIqul'lU,mlldQ

_ [(2z+ 1)(217+1)(21" + 1)] 1/2
- 47

l ll lll l ll l” , .
X (_1)l+l +1 , (1)
mom' m" q q/ q”

where the round brackets are 3 symbols.?

Theorem 4.

Proof. We first choose the gauge of Ref. 1 in
which the Y ’s are explicitly defined. It follows
from (D2) of that paper that
Yﬂ.l,qu'.l',m’ = E K(quly l,1 ’7 l")

iym;

x(ll'jm,.]lml'm’)Y_q,,’j,mj .2

Multiply by Y ;v ;» ,» and integrate over d2. Using
theorem 1 above we find that the left-hand side of
(1) is equal to

l ll lll
(m ' m,,) G(L,v,1",q9,9',9") , 3)
where G is independent of the m’s. Now use the
symmetry of theorem 2. The left-hand side of (1)
is unchanged if we switch all the m’s with the ¢’s.
Thus

[Yatn¥ arsirmr Y ar, i

l l’ lll l ll lll
= L. @)
m m' m"J\q q' q"

To evaluate f, take the case
qllz_mll___l”, mlzll, q:l .

The integral in (4) can be evaluated for such a
case in a straightforward manner. f(7,1’,1”) can
then be evaluated. We thus verify (1). If we now
choose a different gauge, the integrand in (1) is
invariant because of the condition g +g’+q” =0.
Thus (1) is valid in general.

LU A A
vegmegnegn | (20+1)(21 +1)(217 +1) ] /2
Ya.l,qu’.l’.m’z Z (_1)1” et [ 47 ( ) Y—q",t”,-m" ’

G

where m” =-m-m', q"=-q-q’.

Proof. Comparison of (1) and (2) allows an eval-
uation of K. Substitution of the result into (2) gives
(5). Again (5) is valid in any gauge.

Theorems 1, 3, and 4 are generalizations of

’
m m mll q ql ql/

(5)

theorems for the usual spherical harmonics to the
case of monopole harmonics. Another theorem,
the spherical-harmonics addition theorem® can be
similarly generalized and will be given below in
Sec. III.
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II. RELATIONSHIP TO D(a,8,y)

We now use the function d and the matrix D:
d),(B)=(im'|exp(isd )| jm) , (6)
D9 (a, B,y) =exp(iad,)exp(iB,) exp(iv,) (7

defined in Chap. 4 of Ref. 3. It is easy to explicitly
prove® the following.
Theovem 5. In region a,

Yo 1m0, 0) = [(21+1)/4n]/2ei (@ mog ) (g) .
(8)
Notice that
D(a +2m,B,y)=D(a, 8,y +21) = (-1)*D(a, B,7) .
9)
It is convenient to remember that
a0, =a@,emininm (10)
ai).(m)=sm+m’)(-1)-"
and that the matrix d satisfies
dd=1.

It follows from this and from theorem 2 that in
region a,

(D) e = [47/ (204 D] 2emim' OOy x 1 (By)
(11)

III. MONOPOLE-HARMONICS ADDITION THEOREM

Consider a rotation of coordinate axis® by Euler’s
angles @, 8,7 which changes the coordinates
v,0,¢ of a point to »,6’,¢’, where

sinf e'® = —cosf’ sinBe~©
+sin6’[ cos(¢p’ —y)cosBe 2
+isin(¢p’ - y)e ] ,
cosf=cosb’ cosB+sinb’ cos(¢p’ —v)sing , (12)

OspBsnm, -2r<a<0, Osys2r.

Under such a transformation the usual spherical
harmonic Y,, undergoes a linear transformation

Y in(0,8")= 2 Vi (6, )00 (a, B,7) . (13)

These are the equations® given in Ref. 3. For
monopole harmonics, as already discussed in Eq.
(50) of Ref. 1, the same transformation gives

Zq,l,m(elr ¢'): Z Yq,l,m’(e) ¢)D£nl’)m ’ (14)

where Z is Y, ; .(6’,¢’) but in a different gauge.
To change Z into Y (6, ¢') we need to multiply by
the factor 7,,, given by Eq. (46) of Ref. 1. Thus

Yq,l,m(917 ¢,)
= B(a’ B, 7)9_“92 Yq,l_ml(ea ¢)D£,|l')m(a, B, ‘Y) )

(15)

where Q is defined to be the solid angle subtended
at the point P by the shaded area in Fig. 1. In
other words

Q2 =solid angle at 0 between shaded area
and the extension of the line PO
=area of spherical AABP
on the unit sphere.
By a well-known theorem,
Q=R+Z+2Z'-7. (16)

This function has the required discontinuity® of 47.
It is easy to see geometrically that

Z=¢p—(-a-m), Z'=y-¢'. aam

To determine B(a, 8,y) we put the point P at B,
i.e.,

0'=0, 0=8, ¢p=—-a-7m, =0,
The left-hand side of (15) becomes then, in region
a,

(21+1)/4n ]2 m e’y | =[(21+1)/4n]?6 .. ,

(18)

2'(8:B8,p=-a-r)

FIG. 1. Rotation of coordinate axes. The rotation
changes the spherical coordinates of P from (1,6, ¢) to
(1,6’,¢’). The transformation is explicitly given in
(12). The spherical coordinates (Ref. 6) of the z axis are
0'=B, ¢'=v. Those of the z’ axis are =8, ¢p=—a —.
Angles Z and Z’ are given by (17). ABP is a spherical
triangle on the unit sphere around the origin O.
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while the right-hand side becomes
B(a, B,Y)Z Yo im(B—a— ﬂ)Dfn'.)m(a, B,v) -
ml
(19)

Equating (18) and (19), and using (8), (7), and (10),
we obtain

Bla, B,y)=e* " | (20)

Thus we have, using (16) and (17), the following
theorem.

Theorem 6. Under the transformation (12), in
region a,

Yq,l,m(9l7 ¢,)
=l -0=R Sy (0,0)DL(a, B,y) , (21)

where R is the angle defined in Fig. 1.

We can write this equation in a more convenient
form by operating with D! on both sides, obtain-
ing

Z (D—l :nm'Yq,l.m((),’ ¢I) = eia(®’—¢-ﬂ)yq’l,m,(9’ ¢‘) *

m

(22)
Using (11) one reduces this to
2 Vom0 80Y 311 n(B)
m
=[(21+1)/4n]?Y, ; _,.(6,0)
x ei(e8'=a"Y) p-i(aR+¢'Z-a'm) , (23)

where we have put ¢’ = -m’, and have used (17).
Now in the x’y’z’ coordinate system, the angular
coordinates of P and A are respectively 6, ¢’ and
B,v. Thus we change notation as follows:

91:__'31’ ¢’='}", Z:RI R (24)
and obtain Fig. 2. Equation (23) then becomes

Theorem 7.

Z Ya.l,m(ﬁ'ryl)Y:',z,m(lg’ ¥)

=[(21+1)/(4m)]/?Y ;, _o1(6,0)
X i(aY'=a'Y) p-i(aR+a’'R'~q' ) ., (25)

where 6, R, and R’ are defined in Fig. 2, and all
Y’s are evaluated in R,. [IfY,, .(8',y")is eval-
uated in R,, and Y, ; .(B,7) in R,, then one should
replace the factor e!(¢Y'=¢'Y ip (25) by e*(e7 "*a'7),
Similar changes are necessary for the other two
combinations of regions.]

IV. ROTATION AROUND z AXIS BY 360°

A spin-} system acquires a phase factor of -1
when rotated by 360°, How does the e-g system in
a state /=3 acquire such a factor? This problem

8 P(ﬁ’l'f’)
<1R > ! 1
B Q=y-y
A(BvY) B B

FIG. 2. AABP in the new notation after substitution
(24). Inthe x"y’z’ coordinate system the spherical co-
ordinates of P and A are as shown.

appears at first very puzzling since the monopole
harmonics Y ; ,, are functions of 6, ¢ (see Table 1
of Ref. 1) and a rotation by 360° around the z axis,

0'=0, ¢'=d+A, (26)

where A=27, seems to leave all Y, ; , unchanged.
The resolution of this difficulty lies in the fact that
under a rotation (26) a gauge transformation is
necessary. The inclusion of the gauge transforma-
tion leads naturally to the phase factor of -1.

To see this point more clearly, take g =3 and
I=}. In this case, the harmonics v&rY,,, ,/, ,, are’

1
m:é m==—3

P\ = —e%(1 - cos)!/? Y9 = (1+cosb)/?
¥ =e"i%(1 + cosh)?
(27

while the transition function S=¢/@ /(¥ is e*®. If
¢ is replaced by ¢’=¢ + A of (26), the correspond-
ing table is

P = =(1 - cosh)"/?

o)

m=—
@ = (1+ cosh)"/?
o B
YO'=e 19181 4 cosB)?

(28)

ofe

m=

lP(»fa) r_ --e"d“eié(l - 0089)1/2

2" = =(1 - cos6)/?

while the transition function is now S’ =e*%ei®, To
compare (28) with (27) we first perform a gauge
transformation on ¥} and y’. In R, we multiply the
wave functions by e~*4/2 and in R, we multiply the
wave functions by e'®/2:

YO = e YD = P2 (29)
obtaining
P9 = —et®eif/2(1 — cosh)V?,
YD " =e2/2(1 4 cos)'/? |
PP "= —et2/2(1 - cos6)V?

YO =i®=18/2(1 4 cosh)V? .

(30)

Now we find the transition function §7 = y”(®)/y”(®
=e'® which is the same as S. The wave functions
Y% and ¢” can thus be properly compared with ¢,
and _. Indeed we find (in both R, and R,)

Y=ty gn = emit/zy (31)
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Thus under a rotation (26), the m=3 state acquires by (29),

a phase factor ¢'2/?, and the m=-% state acquires

a phase factor e~#4/2, When A =27, both phase

factors are -1. which agrees with (21) above (as it should), since
We notice that the gauge transformation in R, is, R=0, ¢’ - ¢ =A for the rotation (26).

’ 'A ”
Yo =t B2y
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$Equation (12) is also the definition of the transformation 6, ¢— 6’, ¢’ for Chap.4 of Ref. 3. To show this, we takel =1
in (4.1.4) of Ref. 3 and readily verify that it is equivalent to (12). (The definition given in Ref. 3 at the bottom of p. 53
is incorrect.) Equation (12) can also be written in Cartesian coordinates:

X cosa cosfcosy — sina siny coso cospsiny + sina cosy —cosa sing x
y |= | — sin@ cosBcosy — cosa siny — sing cosB siny + cosa cosy sina sing y’
z sinp cosy sing siny cosf z’

Thus the z’ axis is along the direction 6=8, ¢ =—a — 7, and the z axis is along the direction §’=8, ¢’=y. These are in-
dicated in Fig. 1. The identity transformation corresponds to a=—m, 8=0, y=m.



