Some properties of monopole harmonics

Tai Tsun Wu*

Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138

Chen Ning Yang[†]

Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794 (Received 6 April 1977)

Some properties of monopole harmonics are derived.

In this paper some properties of monopole harmonics¹ will be derived.

I. SIMPLE PROPERTIES

Theorem 1.

$$Y_{q,j,m}^* = (-1)^{q^+ m} Y_{-q,j,-m}$$
.

This is easily proved explicitly. Notice that this theorem holds in both R_a and R_b . It is valid in the gauge of Ref. 1.

- *Theorem 2.* In the explicit form defined in Ref. 1, the monopole harmonics satisfy
 - $$\begin{split} Y_{q,j,m} &= Y_{m,j,q} \quad \text{in } R_a \ , \\ Y_{q,j,m} &= Y_{m,j,q} \, \exp[2i\phi(m-q)] \quad \text{in } R_b \ . \end{split}$$

This is easily proved with the aid of (B7) of Ref. 1. Hou Pei-yu and Hsi Ting-chang of Sian and Peking have pointed out to us that this theorem can be simply understood² if one considers the e-g system as a spinning top.

Theorem 3. If q + q' + q'' = 0 and m + m' + m'' = 0, then

$$\int Y_{a,l,m} Y_{a',l',m'} Y_{a'',l'',m''} d\Omega$$

$$= \left[\frac{(2l+1)(2l'+1)(2l''+1)}{4\pi} \right]^{1/2}$$

$$\times \begin{pmatrix} l \quad l' \quad l'' \\ m \quad m' \quad m'' \end{pmatrix} \begin{pmatrix} l \quad l' \quad l'' \\ q \quad q' \quad q'' \end{pmatrix} (-1)^{l+l'+l''} , \quad (1)$$

where the round brackets are 3j symbols.³

Theorem 4

Proof. We first choose the gauge of Ref. 1 in which the Y's are explicitly defined. It follows from (D2) of that paper that

$$Y_{q,l,m}Y_{q',l',m'} = \sum_{j,m_j} K(q,q',l,l',l'') \times \langle ll'jm_j | lml'm' \rangle Y_{-q'',j,m_j} .$$
(2)

Multiply by $Y_{q'',l'',m''}$ and integrate over $d\Omega$. Using theorem 1 above we find that the left-hand side of (1) is equal to

$$\binom{l \ l' \ l''}{m \ m' \ m''} \ G(l, l', l'', q, q', q'') , \qquad (3)$$

where G is independent of the m's. Now use the symmetry of theorem 2. The left-hand side of (1) is unchanged if we switch all the m's with the q's. Thus

$$\int Y_{a,l,m} Y_{a',l',m'} Y_{a'',l'',m''} d\Omega = \begin{pmatrix} l & l' & l'' \\ m & m' & m'' \end{pmatrix} \begin{pmatrix} l & l' & l'' \\ q & q' & q'' \end{pmatrix} f(l,l',l'') .$$
(4)

To evaluate f, take the case

q'' = -m'' = l'', m' = l', q = l.

The integral in (4) can be evaluated for such a case in a straightforward manner. f(l, l', l'') can then be evaluated. We thus verify (1). If we now choose a different gauge, the integrand in (1) is invariant because of the condition q + q' + q'' = 0. Thus (1) is valid in general.

Theorem 4.

$$Y_{q,l,m}Y_{q',l',m'} = \sum_{l''} (-1)^{l+l'+l''+q''+m''} \left[\frac{(2l+1)(2l'+1)(2l''+1)}{4\pi} \right]^{1/2} {l l' l'' \choose m m' m''} {l l l' l'' \choose q q' q''} Y_{-q'',l'',-m''},$$
(5)

where m'' = -m - m', q'' = -q - q'.

Proof. Comparison of (1) and (2) allows an evaluation of *K*. Substitution of the result into (2) gives (5). Again (5) is valid in any gauge.

Theorems 1, 3, and 4 are generalizations of

theorems for the usual spherical harmonics to the case of monopole harmonics. Another theorem, the spherical-harmonics addition theorem⁴ can be similarly generalized and will be given below in Sec. III.

1018

II. RELATIONSHIP TO $D(\alpha,\beta,\gamma)$

We now use the function d and the matrix D:

$$d_{m'm}^{(j)}(\beta) \equiv \langle jm' | \exp(i\beta J_y) | jm \rangle \quad , \tag{6}$$

$$D^{(j)}(\alpha,\beta,\gamma) \equiv \exp(i\alpha J_z) \exp(i\beta J_y) \exp(i\gamma J_z)$$
(7)

defined in Chap. 4 of Ref. 3. It is easy to explicitly prove⁵ the following.

Theorem 5. In region a,

$$Y_{q,l,m}(\theta,\phi) = [(2l+1)/4\pi]^{1/2} e^{i(q+m)\phi} d^{(l)}_{-m,q}(\theta) .$$
(8)

Notice that

$$D(\alpha + 2\pi, \beta, \gamma) = D(\alpha, \beta, \gamma + 2\pi) = (-1)^{2j} D(\alpha, \beta, \gamma) .$$
(9)

It is convenient to remember that

$$d_{m'm}^{(j)} = d_{mm'}^{(j)} e^{-i\pi(m-m')} ,$$

$$d_{m'm}^{(j)} = \delta(m+m')(-1)^{j-m} .$$
(10)

and that the matrix d satisfies

 $\tilde{dd} = 1$.

It follows from this and from theorem 2 that in region a,

$$(D^{-1})_{mm'} = \left[4\pi/(2l+1)\right]^{1/2} e^{-im'(\gamma+\alpha)} Y^*_{-m',l,m}(\beta,\gamma) .$$
(11)

III. MONOPOLE-HARMONICS ADDITION THEOREM

Consider a rotation of coordinate axis⁶ by Euler's angles α , β , γ which changes the coordinates r, θ , ϕ of a point to r, θ' , ϕ' , where

$$\begin{aligned} \sin\theta \, e^{i\phi} &= -\cos\theta' \sin\beta \, e^{-i\alpha} \\ &+ \sin\theta' \big[\cos(\phi' - \gamma) \cos\beta \, e^{-i\alpha} \\ &+ i\sin(\phi' - \gamma) e^{-i\alpha} \big] \end{aligned}$$

 $\cos\theta = \cos\theta' \cos\beta + \sin\theta' \cos(\phi' - \gamma) \sin\beta , \quad (12)$

 $0 \leq \beta \leq \pi$, $-2\pi \leq \alpha \leq 0$, $0 \leq \gamma \leq 2\pi$.

Under such a transformation the usual spherical harmonic Y_{lm} undergoes a linear transformation

$$Y_{lm}(\theta',\phi') = \sum_{m'} Y_{lm'}(\theta,\phi) D^{(l)}_{m'm}(\alpha,\beta,\gamma) .$$
 (13)

These are the equations⁶ given in Ref. 3. For monopole harmonics, as already discussed in Eq. (50) of Ref. 1, the same transformation gives

$$Z_{q,l,m}(\theta',\phi') = \sum_{m'} Y_{q,l,m'}(\theta,\phi) D_{m'm}^{(l)} , \qquad (14)$$

where Z is $Y_{q,l,m}(\theta', \phi')$ but in a different gauge. To change Z into $Y(\theta', \phi')$ we need to multiply by the factor $T_{a'a}$ given by Eq. (46) of Ref. 1. Thus

$$Y_{q,l,m}(\theta',\phi') = B(\alpha,\beta,\gamma)e^{-iq\Omega}\sum_{m'}Y_{q,l,m'}(\theta,\phi)D_{m'm}^{(l)}(\alpha,\beta,\gamma) ,$$
(15)

where Ω is defined to be the solid angle subtended at the point *P* by the shaded area in Fig. 1. In other words

 Ω = solid angle at 0 between shaded area

and the extension of the line P0

= area of spherical ΔABP

on the unit sphere.

By a well-known theorem,

$$\Omega = R + Z + Z' - \pi . \tag{16}$$

This function has the required discontinuity¹ of 4π . It is easy to see geometrically that

$$Z = \phi - (-\alpha - \pi), \quad Z' = \gamma - \phi' \quad . \tag{17}$$

To determine $B(\alpha, \beta, \gamma)$ we put the point P at B, i.e.,

 $\theta' = 0, \quad \theta = \beta, \quad \phi = -\alpha - \pi, \quad \Omega = 0.$

The left-hand side of (15) becomes then, in region a,

$$[(2l+1)/4\pi]^{1/2}e^{i(q+m)\phi'}\delta_{q+m} = [(2l+1)/4\pi]^{1/2}\delta_{q+m},$$
(18)

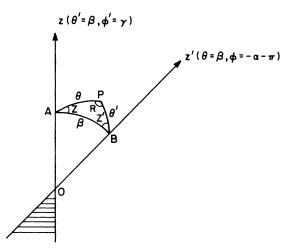


FIG. 1. Rotation of coordinate axes. The rotation changes the spherical coordinates of P from $(1, \theta, \phi)$ to $(1, \theta', \phi')$. The transformation is explicitly given in (12). The spherical coordinates (Ref. 6) of the z axis are $\theta'=\beta$, $\phi'=\gamma$. Those of the z' axis are $\theta=\beta$, $\phi=-\alpha-\pi$. Angles Z and Z' are given by (17). ABP is a spherical triangle on the unit sphere around the origin O.

while the right-hand side becomes

$$B(\alpha, \beta, \gamma) \sum_{m'} Y_{q,l,m'}(\beta, -\alpha - \pi) D_{m'm}^{(l)}(\alpha, \beta, \gamma) .$$
(19)

Equating (18) and (19), and using (8), (7), and (10), we obtain

$$B(\alpha,\beta,\gamma) = e^{i q(\alpha+\gamma)} \quad . \tag{20}$$

Thus we have, using (16) and (17), the following theorem.

Theorem 6. Under the transformation (12), in region a,

$$Y_{q,l,m}(\theta',\phi') = e^{iq(\phi'-\phi-R)} \sum_{m'} Y_{q,l,m'}(\theta,\phi) D^{l}_{m'm}(\alpha,\beta,\gamma) , \quad (21)$$

where R is the angle defined in Fig. 1.

We can write this equation in a more convenient form by operating with D^{-1} on both sides, obtaining

$$\sum_{m} (D^{-1})^{l}_{mm}, Y_{q,l,m}(\theta',\phi') = e^{iq(\phi'-\phi-R)}Y_{q,l,m'}(\theta,\phi) .$$
(22)

Using (11) one reduces this to

$$\sum_{m} Y_{q,l,m}(\theta',\phi') Y_{q',l,m}^{*}(\beta,\gamma) = [(2l+1)/4\pi]^{1/2} Y_{q,l,-q'}(\theta,0) \times e^{i(q\phi'-q'\gamma)} e^{-i(qR+q'Z-q'\pi)}, \quad (23)$$

where we have put q' = -m', and have used (17). Now in the x'y'z' coordinate system, the angular coordinates of *P* and *A* are respectively θ', ϕ' and β, γ . Thus we change notation as follows:

$$\theta' = \beta', \quad \phi' = \gamma', \quad Z = R', \quad (24)$$

and obtain Fig. 2. Equation (23) then becomes *Theorem 7.*

$$\sum_{m} Y_{a,l,m}(\beta',\gamma') Y_{a',l,m}^{*}(\beta,\gamma)$$

= $[(2l+1)/(4\pi)]^{1/2} Y_{a,l,-a'}(\theta,0)$
 $\times e^{i(q\gamma'-q'\gamma)} e^{-i(qR+q'R'-q'\pi)},$ (25)

where θ , R, and R' are defined in Fig. 2, and all Y's are evaluated in R_a . [If $Y_{q,l,m}(\beta',\gamma')$ is evaluated in R_a , and $Y_{q',l,m}(\beta,\gamma)$ in R_b , then one should replace the factor $e^{i(q\gamma'-q'\gamma)}$ in (25) by $e^{i(q\gamma'+q'\gamma)}$. Similar changes are necessary for the other two combinations of regions.]

IV. ROTATION AROUND z AXIS BY 360°

A spin- $\frac{1}{2}$ system acquires a phase factor of -1 when rotated by 360°. How does the *e*-*g* system in a state $l = \frac{1}{2}$ acquire such a factor? This problem

$$A(\beta,\gamma) \xrightarrow{\beta} \beta^{(\beta',\gamma')} B \xrightarrow{\beta' R Q} \beta' Q = \gamma - \gamma'$$

FIG. 2. $\triangle ABP$ in the new notation after substitution (24). In the x'y'z' coordinate system the spherical coordinates of P and A are as shown.

appears at first very puzzling since the monopole harmonics $Y_{q,l,m}$ are functions of θ, ϕ (see Table 1 of Ref. 1) and a rotation by 360° around the z axis,

$$\theta' = \theta, \quad \phi' = \phi + \Delta$$
, (26)

where $\Delta = 2\pi$, seems to leave all $Y_{q,l,m}$ unchanged. The resolution of this difficulty lies in the fact that under a rotation (26) a gauge transformation is necessary. The inclusion of the gauge transformation leads naturally to the phase factor of -1.

To see this point more clearly, take $q = \frac{1}{2}$ and $l = \frac{1}{2}$. In this case, the harmonics $\sqrt{4\pi} Y_{1/2, 1/2, m}$ are¹

$$\frac{m = \frac{1}{2}}{\psi_{+}^{(a)} = -e^{i\phi}(1 - \cos\theta)^{1/2}} \qquad \psi_{-}^{(a)} = (1 + \cos\theta)^{1/2}} \\ \psi_{+}^{(b)} = -(1 - \cos\theta)^{1/2} \qquad \psi_{-}^{(b)} = e^{-i\phi}(1 + \cos\theta)^{1/2} ,$$
(27)

while the transition function $S = \psi^{(a)}/\psi^{(b)}$ is $e^{i\phi}$. If ϕ is replaced by $\phi' = \phi + \Delta$ of (26), the corresponding table is

while the transition function is now $S' = e^{i\Phi}e^{i\Delta}$. To compare (28) with (27) we first perform a gauge transformation on ψ'_+ and ψ'_- . In R_a we multiply the wave functions by $e^{-i\Delta/2}$ and in R_b we multiply the wave functions by $e^{i\Delta/2}$:

$$\psi_{\pm}^{(a)''} = e^{-i\Delta/2} \psi_{\pm}^{(a)'}, \quad \psi_{\pm}^{(b)''} = e^{i\Delta/2} \psi_{\pm}^{(b)}, \quad (29)$$

obtaining

$$\psi_{+}^{(a)''} = -e^{i\phi}e^{i\Delta/2}(1-\cos\theta)^{1/2},$$

$$\psi_{-}^{(a)''} = e^{-i\Delta/2}(1+\cos\theta)^{1/2},$$

$$\psi_{+}^{(b)''} = -e^{i\Delta/2}(1-\cos\theta)^{1/2},$$

$$\psi_{-}^{(b)''} = e^{i\phi-i\Delta/2}(1+\cos\theta)^{1/2}.$$
(30)

Now we find the transition function $S'' = \psi''^{(a)}/\psi''^{(b)}$ = $e^{i\phi}$ which is the same as S. The wave functions ψ''_{+} and ψ''_{-} can thus be properly compared with ψ_{+} and ψ_{-} . Indeed we find (in both R_{a} and R_{b})

$$\psi_{+}'' = e^{i\Delta/2}\psi_{+}, \quad \psi_{-}''' = e^{-i\Delta/2}\psi_{-}.$$
 (31)

Thus under a rotation (26), the $m = \frac{1}{2}$ state acquires a phase factor $e^{i\Delta/2}$, and the $m = -\frac{1}{2}$ state acquires a phase factor $e^{-i\Delta/2}$. When $\Delta = 2\pi$, both phase factors are -1.

We notice that the gauge transformation in R_a is,

by (29),

$$\psi_{\pm}^{(a)'} = e^{i \Delta/2} \psi_{\pm}^{(a)''}$$
,

which agrees with (21) above (as it should), since R=0, $\phi'-\phi=\Delta$ for the rotation (26).

*Work supported in part by the U.S. ERDA under Contract No. (11-1)-3227.

Work supported in part by the National Science Foundation under Grant No. PHY7615328.

¹Tai Tsun Wu and Chen Ning Yang, Nucl. Phys. <u>B107</u>, 365 (1976).

²Hou Pei-yu and Hsi Ting-chang, Scientia Sinica (to be published).

³A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton Univ. Press, Princeton, N.J., 1960).

⁴Cf. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, London, 1946), p. 328; Ref. 3, p. 63.

⁵This theorem in region *a* is already known in the literature. See I. G. Tamm, Z. Phys. <u>71</u>, 141 (1931); D. G. Boulware, L. S. Brown, R. N. Cahn, S. D. Ellis, and C. Lee, Phys. Rev. D 14, 2708 (1976).

⁶Equation (12) is also the definition of the transformation $\theta, \phi \rightarrow \theta', \phi'$ for Chap.4 of Ref. 3. To show this, we take l = 1 in (4.1.4) of Ref. 3 and readily verify that it is equivalent to (12). (The definition given in Ref. 3 at the bottom of p. 53 is incorrect.) Equation (12) can also be written in Cartesian coordinates:

[x	1	$\cos\alpha\cos\beta\cos\gamma - \sin\alpha\sin\gamma - \sin\alpha\cos\beta\cos\gamma - \cos\alpha\sin\gamma$	$\cos\alpha\cos\beta\sin\gamma+\sin\alpha\cos\gamma$	$-\cos\alpha\sin\beta$	[x]
y	=	$-\sin\alpha\cos\beta\cos\gamma-\cos\alpha\sin\gamma$	$-\sin\alpha\cos\beta\sin\gamma+\cos\alpha\cos\gamma$	$\sin \alpha \sin \beta$	y'.
z		$\sin\beta\cos\gamma$	$\sin\!eta \sin\!\gamma$	$\cos\beta$	z'

Thus the z' axis is along the direction $\theta = \beta$, $\phi = -\alpha - \pi$, and the z axis is along the direction $\theta' = \beta$, $\phi' = \gamma$. These are indicated in Fig. 1. The identity transformation corresponds to $\alpha = -\pi$, $\beta = 0$, $\gamma = \pi$.