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The application of pattern-recognition techniques to the problem of separating reaction mechanisms in high-

multiplicity collisions is explored. The "distance analysis, " which we motivate and explain here, is an

algorithm for finding the most densely populated regions of the multidimensional phase space. It provides a
sensitive and model-independent means of identifying the individual events which make up each of the

regions. It is then possible to use other techniques to interpret these. This procedure could also be useful

outside particle physics. It is very simple and fast, and a detailed account of its implementation is given. As

examples, we analyze the reactions K p ~K m+n p and K p ~K m+n pn at 12.6 GeV/c.

I. INTRODUCTION

Qne goal of phenomenological analyses of high-
energy hadron production is to partition the data
into different reaction mechanisms, and to study
each of these in isolation. It has proved possible
to do this for low-multiplicity exclusive reactions
with three or four particles in the final. state.
Here most of the information is carried by one er
two dynamical variables, and the events can be
classified from the projection oato these vari-
ables. For example, in the longitudinal-phase-
space (LPS) analysis for four-body final states,
two scaled longitudinal-momentum variables are
measured for each event, and the resulting scat-
ter plot shows a rich and readily interpretable
structure. '

Unfortunately, higher-multiplicity final states
are much harder both to analyze and to interpret.
The five-body LPS is a three-dimensional pro-
jection, and very-high-statistics experiments are
necessary to enable us to construct a three-di-
mensional density function from the data. Even
where this has been done, it is difficult to dis-
tinguish clearly different reaction mechanisms. '

There are two possible explanations of this dif-
ficulty. The lack of structure in the three-dimen-
sional projection could be a reflection of little
structure in the full ten-dimensional five-body
phase space. There might be so much overlap
among the "different" mechanisms that there is
only one fairly uniformly populated region in the
phase space. The sudden failure of the five-body
analysis to separate mechanisms, compared to
the four-body results, might encourage this view-
point. Of course, it is also possible that the one-,
two-, and three-dimensional projections that
have been studied are averages that obscure
the interesting structure.

The evidence indicates that the latter is the case.
The fluctuation analysis shows that models in
which only one region of phase space is uniformly
populated are inconsistent with the n & 5 data. '
What is more significant is that this structure be-
comes even more marked as n increases (at
fixed energy), even though the usual plots of the
data show little structure. (Perhaps we should
emphasize that this evidence for separated mech-
anisms also occurs in reactions where leading par-
ticles are not manifestly present. ) lt appears ne-
cessary to be able to analyze these higher-mul-
tiplicity final states in higher-dimensional spaces,
if the reaction mechanisms are to be identified.
Specifically, programs to seek out the one or two
variables that actually separate different reaction
mechanisms begin to fail at n ~ 5. Thus, even if
different reaction mechanisms are actually separ-
ated in the full phase space, their projections on-
to these variables overlap. (A nice review of such
techniques is contained in Ref. 4.) On the other
hand, higher-dimensional density plots require
prohibitive quantities of data. We now briefly
review several approaches for overcoming these
problems.

The basic tactic of the prism-plot analysis' is to
compare the data with a very flexible model. One
needs a fairly good idea of the reaction mechan-
isms and their relative probabilities. The data
are then compared with Monte Carlo-generated
model events by some point-set-comparison meth-
od. Among the advantages of this method is its
insensitivity to the choice of variables. (Jacob-
ian effects in the data will also occur in the mod-
eL) Powerful point-set-comparison and Monte
Carlo programs exist, and make the analysis quite
feasible. " The disadvantages include its model
dependence, and the fact that it is somewhat clum-
sy to vary the model parameters.
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A complementary approach rests on the assump-
tion that events belonging to different reaction
mechanisms will be localized in different regions
of phase space. No a priori model of the reaction
mechanisms is needed. The idea is either to look
for regions with a high density of events, or to
look for boundaries or valleys between regions of
high event density in phase space. The valley-
seeking technique has been explored by Bbttcher
et al. ,' in their analysis of v'p -pv'v'v at & GeVl
c. The method discussed here uses other tech-
niques of pattern-recognition theory to search for
regions of high event density in the multidimen-
sional phase space 8-io

In order to implement these methods, it is ne-
cessary to define the distance between events in
the multidimensional phase space, at least for
events that are "near" to one another. Quantum
mechanics requires only the existence of a prob-
ability density defined on the phase space; how-
ever, any practical definition of local density for
a finite data sample involves the notion of distance
between nearby points.

Distance measures ought to exist, if scattering
amplitudes are analytic functions of the Lorents
invariants formed from the four-momenta. Phase
space is then a Riemann space, which is also a
metric space. This is probably not enough infor-
mation to define uniquely a distance measure, since
the symmetry properties of the space are also
likely to be involved. In particular, we conjecture
that the geometrical properties of non-Abelian
gauge theories of elementary-particle interactions
provide a unique measure of distance between
events. We consider this to be a fundamental
problem worthy of further scrutiny. From the
more phenomenological viewpoint that we must
necessarily take here, the "best" measure depends
on the probability density and the algorithm to
seek clusters.

Practically, the problem of defining a distance
measure is not as serious as it might first appear.
For parameterizing density, a reasonably good
measure is needed only for nearby pairs. All that
is needed for widely separated events is the fact
that they are, indeed, far from one another, so
only a rough estimate of these distances is need-
ed. This reduces the problem to one of finding
a local distance measure. Here the results be-
come rather insensitive to the precise form of
the metric, as long as certain general require-
ments are satisfied. The measure must carry in-
formation on many of the independent degrees of
freedom of the final state. This will include mul-
tibody information. It must also respect, at least
to some degree, certain obvious symmetry prop-
erties, such as rotational and I.orentz invariance,

since events related by symmetry transformations
should correspond to the same point in phase
space.

Section II contains a brief introduction to pat-
tern-recognition techniques for finding clusters of
points in a multidimensional space. The basic no-
tion is the minimal spanning tree. " (Although we
do not directly compute these objects, they form
the conceptual basis of our analysis. ) We then
describe our variant of a pattern-recognition meth-
od that has proved suitable for analyzing multi-
body exclusive data. It is closely related to the
shared-neighbor techniques discussed in Refs.
8-10. A detailed outline of a fast and efficient
algorithm for doing the "distance analysis" is de-
scribed in the Appendix.

The problem of the distance measure is dis-
cussed in Sec. III, along with a report on our pro-
gress.

Section 97 includes, as an example, a study of
two final states observed in 12.6-Gev/c K p col-
lisions: K p -K g'm p and K p -K"m'm pm'. In the
four-body fina1 state, we reproduce well-known
results: Beam excitation is about twice target
excitation. We also resolve several mechanisms
within each of these. The five-body final state is
more complicated, although there is a vestige of
the beam and target excitation.

II. THE DISTANCE ANALYSIS

'The main objective of this section is to give a
brief conceptual account of the basic methods for
recognizing and separating clusters of points in a
multidimensional space. s ' One approach utilizes
the minimal spanning tree. " Although the distance
analysis is based on this idea, it does not require
their explicit calculation. In this section we de-
fine the minimal spanning tree, describe a naive
method for finding clusters, and then discuss im-
provements which render the method applicable
to hadron data. This should provide a rationale
for the distance analysis which we outline. A de-
tailed description that is suitable for writing
a computer program is given in the Appendix.

Minimal spanning trees (simply called "trees"
below) are constructed as follows: Consider the
set of N points in a multidimensional space for
which the distance between each pair of points is
defined. We call the ,N(N —1) lin—es along which
these distances are measured branches. The tree
is the unique set of N —1 branches that connect
all points together and for which the sum of the
branch lengths is a minimum. It can be construct-
ed by starting with any point e„and finding the
point e, which is closest to e,. Next find the point
which is closest to e, or e„and add it to the tree
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by the shorter branch. Continue the process until
all N points are added to the tree.

A simple (but naive) proposal for finding clusters
of event points is to cut all branches of the tree
that are longer than a threshold distance r. This
will break ug the tree into disconnected subtrees
(clusters) whosebranches are all shorter than ~.
For a proper choice of r, these subtrees might
be identified with different reaction mechanisms.
(See Ref. 11 for more details. )

In practice this procedure is quite unstable un-
less the clusters of points are widely separated.
A small increase in ~ triggers a transition from
many small subtrees (some due to statistical
fluctuations) to one large tree encompassing several
clusters of points. (Of course a few small sub-
trees will be left over. ) In hadron data, back-
ground events and small overlaps of different
clusters easily provide series of branches by
mhich different regions of high density "chained"
together. One basic problem with this method is
that is does not focus clearly enough on regions
of high density.

Clearly, our goal is separate regions of high
density. This can be done directly, or by seeking
out the valleys (regions of low density) between
the regions of high density. 'The latter proposal
is explored in Ref. 7; we nom discuss our tech-
nique for directly searching out regions of high
density.

The distance analysis (and also Wishart's hier
archical mode analysis'which motivated us) param-
eterises the density of points (or hadronic events} by
the distance to the 4th nearest neighbor, where 4 is
preassigned. '" For anN of several hundred to sev-
eral thousand events, 0 of five to ten provides a
fairly stable definition of the clusters found. " The
basic idea is then to build trees out of the events
that are the most dense (events that have the
shortest distances to the kth nearest neighbors}.
Background and overlap events in regions of low

density are omitted from the trees, and the chain-
ing problem is avoided, but at the cost of not ne-
cessarily classifying every event in the sample.

'The distance analysis is a method of construct-
ing trees, beginning with the most dense events
and proceeding to the least dense. The main prob-
lem is one of organization: determining what frac-
tion of the most dense events should be included,
and what value of r (the maximum branch length
of the subtrees} should be taken. Let us first in-
troduce some terminology. The "halo" of event i
is the set of its k nearest neighbors. 'The "radius
of the halo of i,"R„is the distance to i's 0th
nearest neighbor. The "ith event to become dense"
is the event with the ith smallest value of R, .

Roughly, the distance analysis proceeds in the

following stepwise fashion: At the ith stage, the
ith event becomes dense by taking r=R, . Then
construct the tree from the i dense events, and cut
the branches with r &R,. The subtrees resulting
from this division then give the cluster classifica-
tion at the ith stage of the analysis.

Again, the question arises, at what stage (choice
of r) should the analysis be stopped. We do not
have a precise answer, and the decision depends to
some degree onthe }udgment of the analyst. (Ex-
amples are given in Sec. 1V.) For small values
of i, many clusters will emerge, of which some
are due to statistical fluctuations while larger
clusters are often physically significant. For in-
termediate values of i, cluster formation will
stabilize and increasing i will simply add new
events to subtrees which already exist. A long
plateau of stability is a sign of significant cluster-
ing. Finally, the clusters mill collapse due to
chaining as i is increased, although very widely
separated clusters may not collapse for r =R„.

In carrying out the 1th stage, it is not necessary
to construct trees explicitly, and some may find
it confusing to contemplate trees while first study-
ing our procedure. At the beginning of any given
stage i, each event falls into one of three cate-
gories. (1) The event is unclassified. This means
that it is not dense and has not appeared in the
halo of any event more dense than f. (2) The event
is a boundary point and has therefore appeared in
the halo of at least one event more dense than i.
(3) The event is dense. In practice it is easy to
assign boundary points to the clusters. In the ith
stage, the only changes of classification mill be
to the events in the halo of i. Unclassified events
become boundary events; if there are dense events
from different clusters, the clusters are merged
together, and the boundary events are reassigned
accordingly. This procedure has the advantage
that at each stage, it focuses on the region of only
one density. Thus, if two dense events in another
region of phase space belong to different clusters
and are within R„the clusters are not merged
until they are both included in the halo of some
event. That is, two sharply defined but close to-
gether clusters are not merged until the averaged
density between them is large enough. A second
obvious advantage is that, at any stage of the anal-
ysis, only k events and not the whole event sample
are examined.

In summary, the events in the most densely pop-
ulated regions of phase space are classified first,
and those events that wi11 chain together the clus-
ters are left until last. In studying the results,
we have found it most informative to examine the
classification just before clusters of some mini-
mum size are about to be merged. It is as useful
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to examine clusters formed early in the analysis
as it is later on. By setting this minimum size
large enough, or by looking for regions of stabili-
ty, it is often clear where the classification is
most significant.

A detailed outline of this algorithm can be found
in the Appendix.

III. DISTANCE MEASURE

The essential physics problem encountered in
this kind of analysis is finding a distance measure
between pairs of events in the multibody phase
space. %e do not know whether a unique solution
can be found without a rather complete gauge theo-
ry of hadron production. %ithout a complete theo-
ry, we must take a phenomenological attitude to-
ward finding a measure. The "best" measure de-
pends on the probability density, the sample size,
and the clustering algorithm. But it is also clear
from Sec. II that it is not necessary to have a com-
plete understanding of the measure. The pattern-
recognition analysis is basical. ly an ordering
procedure in which events in densely populated
regions are identified along with their nearby
neighbors. Events that are far apart are not in
each other's halos, and only a rough estimate is
needed to establish this fact. The more important
information is the distance between nearby points,
since the order in which the events become dense
and the content of the halos are the crucial inputs
into the analysis.

The measure must carry information about most
of the degrees of freedom, since we have found
that one- and two-dimensional projections of the
data do not separate reaction mechanisms in high-
multiplicity final states. (For a given two-dimen-
sional projection the pattern-recognition techniques
will not be more effective than a visual examina-
tion for separating reaction mechanisms. ) Each
event is characterized both by the behavior of in-
dividual particles and by many-body coordinates.

In this paper we have taken a more phenomeno-
logical approach to the problem. %e first discuss
our choice of variables, and then give a solution
to the problem of finding the distance between two
four-vector s.

The flow of different sets of quantum numbers
could be determined by the current structure of
a hadronic theory. As a crude representation of
such currents, we have used center-of-mass velo-
cities of certain multiparticle sets for studying
several 12.6-GeV/c K p reactions. Our choice
was also guided by a study of the velocity plots.
In keeping with the spirit of principal-components
analysis techniques, ' we have chosen velocities
whose distributions are broad, and which seem

to be fairly independent of one another. These
variables presumably carry the most information.
'The velocities are taken to be coordinates in a
Euclidean space.

For the reaction K p-K ~'m p, we used four
longitudinal velocities: p(K «), p(«'«), p(v p),
and P(«'«p). We should emphasize that we have
experimented with many other sets of variables
and have found that, as long as the variables carry
enough multipartiele information, the final results
as reported in Sec. IV' are qualitatively similar.
(This comment also applies to the other reactions
we have studied. ) For the reaction K p -K «'v p«',
we used five longitudinal velocities: P(«'«),
P(«-p), P(«'«-«o), P(«'p«0), and &3(K-«-«'), all in the
reaction center of mass. Thus, each event is a
point in a five-dimensional space, and the distance
is just the Euclidean distance.

Although satisfactory for phenomenological pur-
poses, these measures lack rigorous theoretical
motivation. (Covariance is not a problem since
these quantities can be rewritten in manifestly
covariant form. ) Analyticity of scattering ampli-
tudes does give some information about a distance
measure. We cite an explicit example: The
"three-" vectors for the two space, one time dimen-
sion I.orentz group can be projected onto the com-
plex plane (Poincar&& plane) where a natural dis-
tance measure can be defined. " 'The invariant
distance between two three-vectors p"' and p"'
is given by

2 *(i),*(j) ~(i)&&(j)

where

~&
&~ &~(p&a) .p&&))1/2

p«) .p(j ) p(i)p(j) p(i)p(j) ~(i)~(j)

This distance has an obvious generalization to one
time, three space dimensions.

%e have used measures based on this distance
with success. The measure must satisfy several
invariance properties, including invariance under
the rotation of just one of the events about the beam
axis. Of course, multibody momenta must be in-
cluded in the component pieces of d„.'.

In summary, we have not derived from first
principles a complete distance measure. This is
not a serious problem in practice, since there are
adequate phenomenological measures. In our prag-
matic view, we have selected sets of coordinates
that reflect multibody effects. The results are
fairly independent of choice. However, in search-
ing for detail it is important to realize that some
measures may focus on certain regions of phase
space better than others. Thus, it may be useful
to analyse a set of data with several different mea-
sures.
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We analyze 1291 examples of reaction 1, and 880
of reaction 2. The cross sections for reactions 1
and 2 are, respectively, 0.69+0.04 mb and 0.40
~0.04 mb. All events were measured with manual-
ly operated Franckenstein engines, and the final
samples isolated with the kinematic fitting pro-
gram YACK. These yielded very good accuracy
in the measurement of momenta and angles, and
very few background events. A detailed descrip-
tion of the data is given in Ref. 14. High-quality
data are needed for these kinds of precise analy-
sis.

As discussed previously, an essential ingredient
in the analysis is the construction of a multidim-
ensional coordinate space in which to measure
event-to-event distances. The theoretical problem
of deriving a measure of distance from fundamen-
tal theory has not been solved. For the present
analysis, we follow the more pragmatic view ad-
vocated in Sec. III. The multiparticle motion is
characterized by the center -of -mass longitudinal
velocities,

FIG. 1.. Schematic of cluster formation for reaction 1.
As described in the text, each branch of the treelike
structure represents the development of a cluster.
Classification proceeds from the top {most dense events)
dovmward. The vertical scale measures the relative
density of the event population being sampled at any
point in the analysis: nz= number of dense events; N
=total number of events in the sample. For the sake of
clarity, smaller clusters fess than 50 events) are
represented by broken lines.

p
PL, i

where p~, and E, are, respectively, the c.m. lon-
gitudinal momentum and energy for a particular
combination of final-state particles labeled by
subscript g. The distance d„from event a to event
b is assumed to be the Euclidean distance between
the two event points in a space in which each coor-
dinate axis measures the vel.ocity of one of the
chosen combinations:

IV. AN APPLICATION TO DATA (4)

In this section we examine the effectiveness of
the distance analysis on some real data by applying
it to two exclusive channels from the Yale 12.6-
GeV/c K p experiment. We discuss the results for
the reactions

K P -K v v p (reaction I),
K p -K v'm w'p (reaction 2) .

The first of these is a fairly mell-understood chan-
nel in which the gross structure is dominated by
strong-clustering effects (diffractive excitation
of beam and target particles). Reaction 2 does not
yield so simple an interpretation when confronted
with conventional analysis techniques, although
some diffractive component is clearly present, "
and there is indirect evidence to indicate that simi-
lar clustering effects characterize a major portion
of the cross section. '

The data were obtained from an exposure of the
Brookhaven National Laboratory 80-in. bubble
chamber to a beam of rf-separated K mesons.

When analyzing a given sample of n-body data,
we select approximately n combinations of the
final-state particles whose distributions in the
chosen variable are well spread out, and also ap-
pear to carry significant dynamical information.
For reasons discussed in Sec. III, this choice is
adequate. Moreover, the method appears to yield
more of the essential structure of these event
samples than the conventional methods of analysis.

Reaction 1: K p~K m w p

The sample of 1291 events corresponding to
reaction 1 was analyzed in a four-dimensional
velocity space [Eqs. (2) and (4)] using the c.m.
velocity variaMes p~, p,~, p, ~, and p,„~.The
clustering pattern obtained is illustrated in Fig.
1. Here the vertical scale measures the relative
local density, with the highest density at the top,
and each branch of the treelike structure corre-
sponds to the development of a significant cluster.
Recall (Sec. II) that the analysis proceeds by clas-
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FIG. 3. The K"7r m invariant-mass distribution at various points in the development of the beam-excitation cluster
of reaction 1. The designations C, D, E, G refer to the diagram of Fig. 1.

sifying successive events in the order in which they
become dense. During this process clusters are
formed, grow, and ultimately merge together,
while new clusters may appear along the way. The
signature for significant structure is the persis-
tence of disjoint clusters of data points after many

steps. In the diagram of Fig. 1, the branch cor-
responding to each cluster begins at the density
level where the cluster originates, and extends
downward to the level at which it merges with
another cluster. 'These merger points are labeled
A, B, C, . . . , G. At each of these points the total
number of events in each cluster (dense events
plus boundary events) is indicated. The diagram
has two distinct arms which result from the evolu-
tion of two large, well-separated classes of events.
These two major clusters finally merge at point
G after -,'of the events have become dense, and a

total of 972 events (75% of the sample) have been
classified. Upon inspection of the events in these
clusters we shall find that the left-hand arm cor-
responds to diffractive excitation of the incident
kaon, and the right-hand arm to diffractive excita-
tion of the target proton.

%e first examine the development of the arm
AACDG. Here we see that events in the most
densely populated regions of our velocity space
first form several relatively small clusters.
These quickly merge together to form a larger
cluster which then remains stable through many
steps of the analysis.

Figure 2 shows the events in the two early clus-
ters which merge together at point B. Both of
these consist of the diffractively produced Q mes-
on, with Kvrn masses confined to near-threshold
values and K v' masses in the K*(890) band. The
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FIQ. 6. Reaction 1. Invariant-mass distributions for events not yet classified at point G of Fig. 1 (see text).

larger of these two clusters gives the appearance
of a strong p' signal in the n'n" mass distribution,
with nearly all of the eventslyingintheZ~'/poover-
lap region [Fig. 2(b}]. There is no significant p
signal in the smaller cluster [Fig. 2(d)]. It is un-
likely, however, that these two clusters result
from two different production mechanisms, or
from distinct decay modes of the Q. Rather, they
reflect the alignment of the K* along the beam
direction in the decay of the Q. Qne cluster picks
out events in which the K goes forward relative
to the m' [Fig. 2(c)], and the other has selected
the opposite configuration [Fig. 2(f)]. Thus, ap-
parent clustering effects can result from the non-
isotropic decay of resonances. The apparent p'
in the larger cluster is just a kinematical reflec-
tion. In these data (and, we expect, in all cases
of relatively high energy and final-state multipli-
city) these effects give rise to relatively small
clusters among the most dense events, which quickly
merge together and are not to be confused with the
more persistent structure characteristic of truly
different production mechanisms.

Following the merger at point 8 (referring again
to the diagram of Fig. 1) we have a single large
cluster which continues to grow as more events
become dense, until the merger at point G. Figure
3 shos some "snapshots" of the Knw mass spec-
trum as this process continues. As the cluster
develops, the Q peak first grows, and then the
spectrum spreads out to higher values of the Ken

vr' p
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FIG. 7. Schematic of cluster forxnation for reaction
2 (see text).
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FIG. 9. Reaction 2. The beamlike cluster. Distri-
bution in the mcmentum-transfer (t'~t-t~, J from the
target to the outgoing proton. The dashed curve {hand
drawn) shaws the distribution for the total sample. The
data points for the total sample are shovm lightly drawn,
but for the sake of clarity, are suppressed below (

t'
~

~0,8 (QeVjc)~.

mass. Finally, a peak corresponding to the J.
meson appears. Figure 4 shows in more detail
the configuration of events in this cluster as it
appears just prior to the merger at point G. The
fully developed cluster has all of the characteris-
tics of that component of reaction 1 which is due
to diffractive excitation af the incident K .

Similarly, the right-hand arm (EEG) of the dia-
gram in Fig. 1 consists of events corresponding
to diffractive excitation of the target proton. As
can be seen from the mass plots in Fig. 5, the
clustering pattern indicates two contributions from
this mechanism. The most dense events, which
appear in the 86-event cluster at point E, exhibit
a very sharp threshold rise in the porn mass spec-
trum, with pm' and pn masses lying below 1.5
GeV. As the cluster develops further, very few
additional events appear near threshold in the p7rn

mass spectrum. 'The 59-event cluster that joins
the larger cluster at point E, for instance, is much
more spread out in its pn' and pm" mass spectra.
The pen mass spectrum of the fully developed clus-
ter at paint G appears to be a superposition of
these higher-mass contributions on top of the initi-
al, tightly confined (in velocity space) threshold

enhancement. 'The momentum-transfer distribu-
tion for the full cluster [Fig. 6(d)] has the expon-
ential shape typical of quasielastic processes.

After the merger at point G, no new clusters
of significant size develop. Re expect the events
that remain unclassified at this point to consist
partly of the tails of the diffractive clusters, part-
ly of experimental background, and partly of events
corresponding to various reaction mechanisms of
small cross sections that have not been resolved
as separate clusters (but which might be resolved
with more statistics, or a better measure of dis-
tance) In. fact, these unclassified events contain
no diffractionlike signals. They do exhibit distinct
R"'(890) and n "(1236)peaks (Fig. 6). The residu-
al g~ appears in association with low-mass pm,
and is probably the result of simultaneous K'N'
production. The &" is peripherally produced,
with relatively low Z n" mass recoiling, suggest-
ing one-pion exchange.

Thus, the two large clusters at point G appear
to contain the whole of the diffractive component
in reaction 1, and this selection has been made
very cleanly. (Note that the ratio of beam-to-tar-
get excitation thus obtained is 2: 1, in agreement
with the widdom of conventional analyses, factori-
sation assumptions, and so forth. )

Reaction 2: K p ~K g'p mop

The 880 events of this reaction were analyzed
in a five-dimensional velocity space, constructed
as before with the longitudinal velocities p,~.,
p,.» p,„.,» p,„,» and pr., ~. The hierarchy of
clustering patterns is shown in Fig. '7, which is
constructed in a fashion analogous to that of Fig.
1. Here we again observe the development of
two major clusters, one significantly larger than
the other, which remain separated until they merge
at point C after V0% of the events have been clas-
sified. Unlike the previous case, no large satellite
clusters develop along the way. (Numerous small
clusters of 15 events or less are not shown in the
diagram. In this diagram, A and 8 are arbitrarily
chosen points at which to illustrate the develop-
ment of the larger cluster ).

Figure 8(a) shows the larger of these two clus-
ters at successive stages of its development. It
is a beamlike cluster with exponential falloff in
the momentum transfer to the proton (Fig. 9). The
most dense events have a prominent co signal,
with a corresponding threshold enhancement in
the Kv mass spectrum [the shaded area in Fig.
8(a)]. These events also show a sharp, narrow
enhancement at what appears to be a higher thresh-
old near 1850 MeV in the Ksn mass. This second
enhancement is associated with 3n masses be-
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FIG. 10. Reaction 2. The targetlike cluster. (a), (b), (c), (d): The p7t', p7f' 7r, p31t, and 31t invariant-mass dis-
tributions. (e) The distribution in momentum transfer (t =t —t~») from the incident to the outgoing E

tween 1000 and 1100 MeV, and lies at the thresh-
old for production of KA„K*(890)p, or K*(1420)m.
We shall not attempt to make a case for KA„and
there is no clear evidence for K~(1420) in the Kwv

mass spectra. However, a K~'(&90)p signal is
very much in evidence, as seen in Fig. 8(b). (For
an I = 2 K*p system decaying to K m'm m' the p
dominates, which is observed to be the case; p'

is not possible. ) This sharp rise in the K3m mass
spectrum between 1750 and 1950 MeV appears to
be a complicated amalgam of several different am-
plitudes. The K&u and K*(890)p contributions are
shown shaded in Fig. 8(a). The pattern-recognition
algorithm has not resolved the co component as a
separate cluster, although, upon inspection of the
3n mass spectrum, one expects that such a separa-
tion should be achieved with a more complete and

appropriate set of variables.
The growth of the beamlike cluster as more

events become dense follows a pattern similar to
that seen in the previous reaction: The most dense
events fall near thresholds in the K3m mass spec-
trum, with subsequent events contributing at suc-

cessively higher masses. There is a strong cor-
relation between the 3m and K3m masses, resulting
in a striking similarity in the shapes of these mass
distributions at each stage of the development
shown in Fig. 8(a). The momentum-transfer dis-
tribution exhibited by events in this cluster (Fig.
9), while it is exponential in shape, is less steep
than the elastic distribution or the quasielastic
events found in reaction 1.

It is not obvious whether these events should be
interpreted as "diffractive" or not. Indeed, the
K(d and K*p components have steeper t distributions
(not shown) than that observed for the total sam-
ple. Qn the other hand, the kinematic structure
of these components blends smoothly with that of
the other events in the cluster, and the well-known
mass dependence of the momentum-transfer slope
could account for the observed t distribution.

The smaller of the two clusters found in this
reaction is targetlike in nature. 'The behavior of
these events for the fully developed cluster as it
appears at point C in the diagram of Fig. 7 is
shown in Fig. 10. The predominant two-body re-
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sonance is h (1236). There is an &u signal in this
cluster as well, smaller by a factor of -2 than the
~ contribution to the beamlike cluster. The 4"
contributes to a threshold population of the pw'm

mass spectrum [shaded area in Fig. 10(b)], which
in turn is very similar in shape to that observed
for pmm masses in the targetlike cluster of reac-
tion 1. The prr rr' and pw rr' distributions (the lat-
ter is shown in Fig. 11) are much broader, and
exhibit no prominent threshold enhancements.

The p3w spectrum is spread over a wide range
of masses, with the pru component [shown shaded
in Fig. 10(c)] contributing near threshold. The mo-
mentum-transfer distribution falls significantly
less steeply than does that of the beamlike cluster.

Figure 11 shows the contribution of the beamlike
and targetlike clusters to a selection of the multi-
particle mass distributions for this reaction. The
events that remain unclassified at the point where
the two clusters merge contain no additional

Kp =Krrm'p
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FIG. 11. Some bvo-, three-, and four-body invariant-mass distributions for reaction 2. In each case the open his-
togram shows the total sample (880 events), the dashed area contains the events in the beamlike cluster {482 events),
and the heavily shaded histogram shows the events in the targetlike cluster (128 events).
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threshold behavior in the K3m or p3n masses, and

no additional co signal.
For our present purposes we conclude that the

clustering patterns that we have "discovered" in
these two reactions do correspond to real dynam-
ical structure, and appear to have revealed the
essential features of the reaction mechanisms in-
volved.

APPENDIX: AN ALGORITHM FOR THE DISTANCE ANALYSIS

We present here a detailed outline of an algorithm
which performs the distance analysis. In general,
the approach to this problem will depend on
whether computing time or storage space is more
crucial. The following method is the fastest and

conceptually the simplest we could devise.
Let N be the total number of events to be ana-

lyzed and let k be the threshold density. We first
construct the halo array h, » where for each event

i, h„is its jth nearest neighbor: 1 ~ i ~ N and
1 ~ j ~ k. Only one calculation of each distance
R,

„

is necessary: If R, is smaller than the dis-
tance between f (or m) and its kth nearest neighbor
so far computed, then m (or /) is added to f's (or
m's) halo and the previous kth nearest neighbor
is removed from /'s (or m's) halo. This requires
storing 2kN numbers (k, &

and r,&) plus the event
coordinates needed to calculate the distances.
The r, ~ array of k smallest distances 'can be elim-
inated if the distance between each pair is com-
puted twice. However, a list of distances to the
kth nearest neighbor, for example r, ~, is needed
to compute the order in which the events become
dense: d, is the event which has the jth shortest

distance to its kth nearest neighbor, 1 ~i «¹
Note that h„.and d, are integer arrays of event
labels.

The distance analysis itself can be done entirely
in terms of N, k, h, ,, and d,.; no further reference
to the data is needed. The events and their halos
are analyzed in the order d„d».. . , d„.. . , d„.
At the ith stage, each event is either unclassified,
or it is a boundary event assigned to some cluster,
or it is a dense event assigned to some cluster.
The classification of event j (at stage i) is c,. The
main information of the analysis is carried by this
N-dimensional vector, and it is changed at each
stage. At the ith stage (d, becomes dense), there
are several possibilities: (1) The halo of d, has
no dense events. Then start a new cluster with
dense event d„and reclassify the unclassified
events in the halo of d, as boundary events of this
cluster. (2) The dense events in the halo of d,
all belong to the same cluster. Then add d, as a
dense event to this cluster and assign the unclas-
sified events in the halo of d, as boundary events
of the cluster. (2) The dense events in the halo
of d, belong to two or more different clusters.
Then all. the dense and boundary events of these
clusters (including events not in the halo of d, )
are merged into a single cluster, and the unclas-
sified events in the halo of d, are classified as
boundary of the merged cluster. We have found it
convenient to write out the premerger classifica-
tion if the second largest cluster has some mini-
mum number of dense events. The classification
vector c~ at this stage then gives a partition of the
data into clusters of events, but the interpretation
is subject to the considerations discussed in Sec. II.
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