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We discuss supergravity from an S-matrix point of view. Kinematical constraints on helicity amplitudes

determine the spin-2 and spin-3/2 Born amplitudes almost uniquely, and force Born amplitudes involving spin-

5/2 fermions to vanish. Global supersymmetry is then used to determine the Born amplitudes completely. We

suggest that Lorentz invariance, presence of only one (dimensional) coupling constant v, and global

supersymmetry lead to a unique locally supergauge-invariant theory of spin-2 and spin-3/2 particles. %'e dram

similar conclusions for a model uniting supergravity and the Wess-Zumino scalar multiplet.

I. INTRODUCTION

In a recent paper' Freedman, van Nieuwenhuiz-

en, and Ferrara proposed a Lagrangian for super-
gravity, incorporating fields for gravitons and
massless spin-&- fermions only. The action for
this system is not only generally covariant but

also invariant under local supergauge transforma-
tions. This Lagrangian is the sum of the usual
Einstein Lagrangian, a minimal eovariant genera-
lization of the Rarita-Schwinger Lagrangian' for a,

massless spin--;— Majorana field and an additional
four-fermion interaction term. Deser and Zu-
mino' were able to show that the four-fermion
interaction ean be obtained from an action consist-
ing only of an Einstein action with torsion and the
Rarita-Schwinger action by eliminating the torsion.
field by means of the equations of motion.

In this paper we examine the supergauge-invari-
ant system using an S-matrix viewpoint previously
applied to gravltatlon. 4 We show that the Born ap-
proximation for the two-particle scattering ampli-
tude in any local Lorentz-invariant theory describ-
ing gravitons and massless spin-& fermions is
uniquely determined by the following requirements:
(i) There should be only one coupling constant ~,
which should have the dimension of reciprocal
mass and which should enter the cubic part of the
Lagrangian linearly and the quartic part quadra-
tically, and (2) the theory should be globally super-
symmetric. %'e argue that the three- and four-
point couplings are uniquely determined and are
therefore those of the locally supersymmetric
Lagrangian. This result is the supersymmetric
analog of the theorems of W'einberg" relating par-
ticle content and Lorentz invariance to global
charge conservation and local electromagnetic
gauge invariance of the S matrix and to global
energy-momentum conservation and local gravi-
tational gauge invariance of the S matrix.

Another candidate for a supergravity theory
would incorporate a spin-2-spin--, '- system. ' How-
ever, we show that fermion-fermion and fermion-
graviton Born amplitudes must vanish in a theory
similar to that described above satisfying condi-
tion (l), but with spin-'; rather than spin--,' fer-
mions. Should the theory satisfy condition (2) as
well the graviton. -graviton Born amplitudes also
vanish. The graviton-graviton amplitudes are
already constrained to be those of conventional
Einstein gravitation' since only gravitons can be
exchanged in graviton-graviton scattering. %e
conclude that the gravitational constant v must
vanish. This result rules out the spin-2-spin--, "-

system as a candidate for an interesting super-
gauge-invariant theory.

The plan of this paper follows: In Sec. II we
summarize some constraints that helicity ampli-
tudes for massless particles satisfy in a Lorentz-
invariant local theory. If the theory in addition
satisfies condition (l) the constraints determine
the Born amplitudes for the spin-2-spin-~ sys-
tem uniquely, except for overall multiplicative
constants. For the system containing spin-$ fer-
mions and gravitons the &--; and 2-& amplitudes
ean satisfy the constraints only by vanishing iden-
tically.

In Sec. III we demonstrate that global supersym-
metry, if it is a symmetry of the S matrix, re-
lates the fermion and graviton amplitudes, re-
moving the ambiguity associated with the multiplic-
ative constants for the amplitudes of the 2-2 sys-
tem, and forcing the graviton-graviton amplitudes
to vanish for the 2-—, system.

In Sec. IV we discuss the form of the Born am-
plitudes for a system combining supergravity
and a massless Ress-Zumino (%'Z) scalar multi-
plet' in a globally supersymmetric way. The am-
plitudes involving two WZ particles and two super-
gravitons are again determined uniquely by the
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requirements imposed by kinematical constraints
and global supersymmetry.

In Appendix A we give some details of the kine-
matical considerations used in Sec. II. In Appen-
dix B we work out the action of global supergauge
transformations on helicity states. The explicit
form is not needed to establish most of the results
of Sec. III, but it provides a useful check.

II. THE BORN AMPLITUDES

We shall consider a theory that may be described
by the Lagrangian

L = L2+ KL3+ K L@+ K L5+ ' ' ',
where the free Lagrangian L, defines a Lorentz-
covariant field theory of two particles, a spin-
2 massless boson (the graviton) and a spin--,' mass-
less fermion. The interaction terms wL, and x'L,
are cubic and quartic in the fields and their deriva-
tives, and have the physical dimension of mass to
the fourth power. The coupling constant x has the
dimension of reciprocal mass; all its appearances
in f. have been explicitly indicated in Eq. (1).

A graviton having four-momentum p and hei icity
~2 will be described by a tensor wave function

the fermions are on-shell and collinear, any term
in which 8, is contracted with g~, tI)„, or a matrix
y„ in M will give zero. Note that our choice of
helicity wave functions is consistent with the gauge
for which

~ay ~cb~bg ~ab p ~b)t

for fermions on the mass shell. We conclude that
a nonvanishing vertex arises only from terms in
which 8, is contracted with h„„. Since the contrac-
tion of y with g,~ or gb, vanishes, the Greek in-
dices of g,„must be contracted with those of gb„
leading to a vertex proportional to

e(p', x')" ~ g(p, x) .
However, when p= p' and XW X' the expression

above vanishes because of the orthogonality of
the helicity vectors e(p, X') and &(p, X). It follows
that a one-graviton-two-fermion vertex conserves
helicity if the two fermions are on-shell.

We let E(X„X,; X„X,; s, f, u) denote the helicity
amplitude for the process 1+2- 3+ 4. The square
of the center-of-mass energy is called s; the scat-
tering angle is called 8. Then

s= -(p, + p, )', t= -(p, —p,)', u= -(p, —p,)'.

q, „(p, +2) = &„(p,+1)g„(p,+1) .
A fermion having four-momentum p and helicity
+& will be described by a spinor-vector wave func-
tion

u„(p, +~2) = u, (p, +2)q, (p, +1) .

We define X„X„and &„by

X, = ~X, +X2+X3+X4~,

X„=
~

X~ —X2+ X3 —X4
~
.

(8)

The functions &„(p,sl) occurring in (2) and (3) are
the usual polarization vectors for a photon, and
the u, (P, +-,') are the usual spinors for a
spin-& fermion; these functions satisfy

p g(p, +1) =0, y pu(p s2) =0,

~(p, X)* ~(p, o) = 5„, u(p, X)* (p,u)= c6„,. (4b)

It is convenient to associate the graviton with a
local symmetric second-rank tensor field h, „and
the fermion with a local Harita-Schwinger Majora-
na field g„.

Although we shall not need an explicit form of the
Lagrangian the following result is useful: In Ref.
4 we have observed that the three-graviton vertex
conserves helicity when two of the gravitons are
on-shell and collinear. A similar result holds for
the graviton-two-fermion vertex. Indeed, that
vertex may be obtained from the interaction term

xh„„g,„M~""'~8 g

where M is a numerical matrix constructed from
y matrices. The interaction must have exactly
one differential operator in order to have physical
dimension of mass to the fourth power. Now if

When all the particles are massless the helicity
amplitude is a Lorentz-invariant function of s, t,
and u. Ader, Capdeville, and Navelet (ACN)'
have established a very useful theorem concerning
the kinematical singularities of helicity amplitudes
for processes involving massless particles only,
processes for which

cos(e/2) =(-u/s)'~' sin(8/2) =(-f/s)'~'. (7)

Define F as follows:

Z(~„X,; X„Z,) = (V s)"(~f)"~(~u) "Z . (8)

Then according to ACN the function F has dynami-
cal singularities only.

Equation (8) puts strong constraints on the am-
plitude F if the particles have high spin. Vfhen
we combine those constraints with our knowledge
of the possible forms for the dynamical singu-
larities of Born amplitudes, we are often led to
a complete determination of such amplitudes.

Let us consider the spin-2-spin-& system. If
it can be described by the Lagrangian given in
Eq. (1) the Born amplitudes will be proportional
to ~', have the kinematical factors displayed in
Eq. (8), and have the form implied by
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F(2 2 2, 2) =cK's'/(tu),

F(2, -2; 2, -2) = cK'u'/(st),

F(2, 2;2, -2) =0,

F(2, 2; -2, -2) = 0.

(10a)

(10b)

These amplitudes are the same as those' of the
conventional Einstein theory without the cosmologi-
cal term. The cosmological term is ruled out,
among other reasons, because it does not allow
the L„L» and L, of Eq. (1) to be independent of
K (or an equivalent parameter). The vanishing of
F(2, 2; -2, -2) is established using the theorem
mentioned earlier regarding helicity conservation
at a three-gx'aviton vertex with two gravitons on
shell; for details of the argument see Ref. 4 or
the analogous fermion argument in Appendix A.

If x' is assigned its conventional value, namely
32mG, ~here G is Newton's gravitational constant,
then the usual Einstein theory has c = t/4. The
&-2 amplitudes are the following:

F(g ~ -2i p ~ -2) = c K u /(st) ~

3 3. 3 3F(a, a', a, -z) =o,
3 3. 3 3F(„„--„--,) = 0.--

(11a)

(11b)

(llc)

(111)

The result given by Eq. (11d) is established us-
ing the helicity-conservation theorem proven im-

F= yl(stu),

with P a polynomial in s, I;, and u. The fact that
the possible dynamical singularities are simple
poles at s = 0, t = 0, or u = 0 has been taken into ac-
count in a symmetrical fashion by inserting the
denominator stu in Eq. (9). Furthermore, the
amplitude I' is dimensionless and satisfies some
symmetry properties which we have described in
Appendix A. Then, as is shown in more detail in
Appendix A, for a given choice of A. 's E is deter-
mined as a function of s, t, and u, up to a multi-
plicative constant.

e list below a basic set of amplitudes. Ampli-
tudes not listed can be obtained from the listed
ones by using the crossing operation, Bose or
Fermi statistics, or discrete symmetry opera-
tions (space reflection, or time reversal). The ap-
propriate relations are given in Appendix A in
Eqs. (A1) -(A4).

We are assuming that the theory is invariant,
under the discrete symmetry operations. Qther-
wise, although the functional forms of the unlisted
amplitudes are uniquely determined, the multi-
plicative constants are unrelated to the ones ap-
pearing in the listed amplitudes.

The graviton-graviton amplitudes are found to
be

mediately preceding Eq. (5); details are given in
Appendix A.

The 2-& amplitudes are the following:

F(2, —,'; 2, —,') = c"K's'( su-)'~'/(tu)

F(2 --'. 2 --') = c"K'u'( su-)"'(ts),

F(2, 2, 2, j}=F(2,-', ; 2, 2) =0,
F(2, --,';-2, -', }=F(2,—,'; 2, —,') =0.

(12a)

(12b)

(12c)

(12d)

In the next section we shall use global super-
symmetry to relate the constants e, e', and c,
and to check the functional forms given in (10),
(11), and (12).

Let us briefly discuss a theory containing spin
& instead of spin &, which is, according to Salam
and Strathdee' and Zumino, another candidate for a
supergauge-invariant system. If we continue to
assume that the Lagrangian is of the form given
in Eq. (1) it is easy to verify that all the spin-2-
spin- & and spin-$ -spin- & Born amplitudes must
vanish; Eq. (8) requires more powers of s in the
numerator than is consistent with the amplitudes
being dimensionless, proportional to e'„and con-
taining only the factor st in the denominator.
Since, as we shall see, global supersymmetry
relates these amplitudes to those for graviton-
graviton scattering, the latter must vanish as well.
But the graviton-graviton amplitudes cannot have
been affected by the introduction of fermions into
a system consisting of gravitons only, since no
fermions may be exchanged internally (in the Born
approximation), a.nd so the amplitudes must still
be those of Einstein theory. The only way the Ein-
stein amplitudes can vanish is for I{.' itself to van-
ish; gravitation must be switched off (and not just
in the Born approximation). This conclusion is
consistent with the assertion of Desex' and Zu-
mino' concerning the spin-2 —spin-& system.

III. IMPLICATIONS OF GLOBAL SUPERSYMME I'RY

%e assume in this section the existence of a set
of Hermitian supersymmetry generators Q, which
transform like spinors under the action of the
homogeneous Lorentz group (the index a is a spinor
index) a,nd each of which commutes with the S ma-
trix. 9 Vfe contract the generators Q, with the anti-
commuting c-number components q, of a Majorana
spinor; the operators Q(q) = q,Q, will then satisfy
simple eomrnutatjon relations with each other and
with other operators for our physical system (fer-
mions and gravitons). Let a(p, c} be the "in" an-
nihilation operator for gravitons of momentum p
and helicity X=2o; let c(p, cr) be the "in" annihila-
tion operator for fermions of momentum p and
helicity X = —,'c. We expect the action of Q(q) on a
graviton to produce a fermion with the same four-
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We also assume that the vacuum state is in-
variant under the action of Q(q);

Q(q) ivac) =0, (15)

that is, we exclude the case of spontaneous break-
ing of supersymmetry and of the attendant Gold-
stone fermions.

The supersymmetry algebra forces the commuta-
tor of two Q generators to produce a translation;
with our normalization convention

[Q(n), Q(I)] = »m"-PI (16)

momentum and handedness o. Handedness is con-
served by Q(q) since it can change spin by at most

So

[Q(q), a(p, o)1 = I'(q, p, o')c(p, cr), (13a)

[Q(q), c(p, o)1 =n(q p, o)e(p, o). {13b)

The coefficients l and a are linear in the anti-
commuting c-number variables q, .

Letting P„be the components of the free-parti-
cle "in" four-momentum operator and S the scat-
tering operator, we require that

[Q(n), S]=0, [Q(n), I.]=0,
(14)

d'pp. [e(p o)*u(p o)+c(p»o)'c(p o)].

The three-momenta of all four of our particles
lie in the x-z plane (the scattering plane). The
four-momentum of such a massless particle can
be written as

p=(E, Esi Hn, O, Ec ops), 0~ 5» 2v. (23)

According to Eq. (B22a), derived in Appendix B,
I'(7},p, +) = (2E)'~'(q, cos-,'8+ q, sin-,'8), (24)

where the four components of the Majorana spinor
g have the following forms when expressed in
terms of the two anticommuting quantities q, and

gp

'9 —zs'qg+'f4 ~ -Ry +'02~ 'qg+'q-2 y 'qy —'92)-~ (25)

Letting 8,. be the angle associated with the jth
particle, we have 8, = 0, 8, = m, 8, = 8, the scat-
tering angle, and 8, = 8+m. Then

Substituting the values given in Eqs. (10) and

(12) or values obtained from those by crossing or
using particle interchanges, we find that

3
I'(q') «cx'—

Pzl

«28 ( Sf) «8 ( SB)=-I(p) c K +I(q) c K
tu fQ

(22)

The vanishing of the commutator of Q(q) with P„
forces

I'(n, p &)*=&(q p &) (17)

while Eq. (16) and the Jacobi identity imply that

I(n, p, o)n(I, p, o)-I(I,p, o)~(n, p, o)= »6~ p&. -

1(p) =(2E)"'n„
I'(q) = (2g'~'q, ,

1/2 ~ 1/2
I"(q') =(2E)'~' -q, — +q, —

(26a)

(26b)

(16)

We complete the determination of l in Appendix
8, finding that

I'(n, p, o) = [f2(E)p]"'nr ~(p o)*~(p o) (19)

We are now in a position to relate helicity am-
plitudes using global supersymmetry. We illus-
trate the method for amplitudes in which all four
particles have positive handedness. Consider the
equation

(vac ~c(q', +)a{p',+)[Q(q), S]a(p, +)«a(q, +)«~vac)=0.

(20)

Working this out, we find that

~(q') Z(2, 2; 2, 2) 1.(p')Z(-.', —,'; 2, 2)

= r(p) «F(2, —.'; -'„2)+I (q) «E(2, —,'; 2, —,'), (21)

where I'(p') =1(q,p', +), and so on. ~e have taken
care to observe the minus sign that results when
a I' or b, is moved past a Fermi operator.

for arbitrary q, and q, . The nontrivial dependence
of I'(q, p, o) on the momentum four-vector, illus-
trated by Eqs. (26), is just right to allow the co-
efficients of q, and q, in Eq. (22) to vanish separa-
tely, provided that

C =C.

In a similar fashion, starting with

&vac
I
&(q' + )a(p', +) [Q, S]c(p,+) 'c(q, +)*[vac}= 0,

we find that

ctt

We have therefore established the following
theorem: Except for an overall multiplicative
constant, which can be absorbed in the definition
of v anyway, the Born amplitudes for the spin-2-
spin-& system are completely determined by
Lorentz invariance, invariance under global
supersymmetry transformations, and the form
of the Lagrangian specified in Eq. (1).

A similar method applied to the spin-2-spin-&
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amplitudes immediately leads to the vanishing of
the graviton-graviton amplitudes, showing that
such a theory is trivial.

We can now draw some conclusions about the
uniqueness of the effective Lagrangian for super-
gravity. The uniqueness of the graviton-graviton
amplitudes implies that the relative strengths of
the three-point and the four-point graviton inter-
action terms is fixed. Similarly, the uniqueness
of the fermion-fermion amplitudes, which contain
both graviton exchange terms and four-fermion
contact terms, implies that the relative strengths
of the four-fermion contact terms and the one-
graviton-two-fermion interaction terms are fixed.
The requirement of global supersymmetry then
fixes the relative strengths of all three- and four-
point couplings.

There are two main ingredients (beside global
supersymmetry) that have been used in estab-
lishing these results: Lorentz invariance and
minimal coupling. Lorentz invariance of the
helicity amplitudes in a theory of massless par-
ticles with high spin is the S-matrix equivalent
of gauge invariance. We take as our definition
of minimal coupling the requirement that the»-
point term in the Lagrangian contain x to the
power n-2 as a multiplicative constant, and that
otherwise L„depend only on the fields and their
derivatives, with no other dimensional factors.
This requirement of minimal coupling is very
powerful. In a theory having gravitons only, it
excludes cosmological interactions as well as gen-
eralized Weyl interactions (ones with terms pro-
portional to R', R,@"",and so forth). We con-
jecture that the considerations here applied to
the four-point Born amplitudes, when suitably
extended to the n-point tree amplitudes, will
establish the uniqueness of the full Einstein ef-
fective Lagrangian for pure gravity, a result
previously established in a slightly different way

by Boulware and Deser. "
When our considerations are extended from

four-point supergraviton tree amplitudes to the
general n-point supergraviton tree amplitudes they
should lead to the uniqueness of the generally co-
variant supergauge-invariant effective Lagrangian
up to field transformations which do not affect the
,S matrix.

IV. SUPERGRAVITY AND SUPERMATTER

In this section we shall investigate some prop-
erties of tree amplitudes in a globally supersym-
metric theory incorporating supergravitons and
matter particles of low spin. We shall assume
that a successful marriage of supergravity and the
Wess-Zumino scalar supermultiplet' is possible.
For simplicity we shall take the WZ particles to

be massless, though an extension to massive WZ
particles is relatively straightforward. The re-
sulting model is presumed to contain two coupling
constants, the supergravity constant II. and the
Wess-Zumino dimensionless constant, which we
call P.

In order to present the form of the Lagrangian
we assume, we introduce some convenient ab-
breviations for the local fields involved. Any linear
combination of Ness-Zumino fields and their deriv-
atives will be called W', and 8'can be a different
combination everyplace it occurs. For example,
the two N~'s in lV' need not be the same WZ fields.
Similarly any linear combination of supergraviton
fields and their derivatives will be called G. The
free Lagrangian then has the simple form

L = W2+ G'. (27)

We define the following two replacement opera-
tions:

q - &V+PA '+~AG+~$", (28a.)

(28b)G-6+KG .

The most general effective Lagrangian we will
allow can be obtained from the free I.agrangian
by repeated application of the two replacement
operations (28a), (28b). The three-point and four
point couplings we will allow are then of the form

L"'= PW'+ ~G'+ ~W'G+ ~W'

L"'=P'W4+ x'G'+ x'W'G'+ Px5"G

+ &'0V'G+ Px TV4+ z'8'4. (29b)

An expression such as Pg" stands for a sum of
terms of that form, with each term in the sum
having the physical dimension of mass to the
fourth power. A similar remark applies to each
coupling indicated in Eqs. (29), with the proviso
that ~ is understood to be a reciprocal mass, and
that P is dimensionless.

We shall look at the Born amplitudes for pro-
cesses involving two external supergravitons and
two external WZ particles. Our assumption, Eqs.
(29), on the form of the interaction terms in the
effective Lagrangian implies that these ampli-
tudes will be proportional to x'.

The Wess- Zumino scalar supermultiplet con-
tains three particles: a scalar boson, a pseudo-
scalar boson, and a spin-& Majorana fermion de-
scribed by fields A, B, and p, . In Appendix B
we demonstrate the utility of introducing chiral
fields

8 =(-')"'(A+iB), 8 =(-,')' '(A —iB). (30)

We now list a basic set of amplitudes describing
the scattering process W+ G- 5'+ G, using helicity
values as labels for the particle types. We let + 0
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be associated with 8, particles, and -0 be asso-
ciated with 8 particles. This assignment is con-
sistent with the fact that space reflection sends
8, into 8,. [The space-reflection operation is
still described by Eq. (Al) of Appendix A. ) The
amplitudes not listed can still be obtained by
crossing, particle-interchange, and discrete
symmetry operations, just as in the pure-super-
gravity case. Using kinematical considerations
analogous to those of Sec. II and Appendix A, we
find that

3

F(2 & 2 ', -2, -2) =f,2K' —+f„K't,

3 3
3

F(2& 2& 2&2) f 4K' +—f,5K t
&

SQ

3 1 3 1
F(z&z, -z&2)=0&

F(2 2 2 2)

and that

F(2, -2, » -0) = C,K'2 u(-st)

(34c)

(34d)

(34e)

(34f)

(35a,}

F(2, 0; 2, 0) = c,K' —, (31a) st)" '-
F(2, =2; 2, 0) =f„K' (35b)

F(2, -0; 2, -0) = c,K' —,
F(2, 0; -2, 0) =f,K' +f,K't—,

F(2, 0; 2, -0) =f,K'

t3
F(2, 0; -2, -0) =f4((2 +f,K't—,

(31b)

(31c)

(31d)

(31e)

F(2& —,, ——„+0)=f„' K'I 3 (4) 2 t (-St)
SQ

f (s)K2( st)(/2

(,), t(s —u)( st)' '-
F(2, —,'; 2, +0) = 0,

F(2, —,'; -'2& +0) = 0.
(35(i)

(35e)

F(2, -0; -2, 0) =f,K' +f,K't, — (31f}

u -su 't'
F( ',

& -0;—,', -0-) = c,'K' +f,K'( su)' ', -
t

s(-su "'
F(-,', 0;-'„0)= c',K' +f,K'(-su)' ', (32a)

We now require that the system exhibit global
supersymmetry, and deduce relations between the
constants c„c', c", c„and c„and the ft& We
write the action of the supersymmetry operations
on the annihilation operators b(p, s) and d(t), +)
associated with 8, and g, respectively, using re-
sults derived in Appendix B:

F(~2, 0;-~2, 0) =0,
F(2, 0; 2, -0}=f2( su)'i', -
F( , 0; ——,-0) = 0—,

F(2, -0; --,', 0) = 0,
and that

F(2, —,; 2, —,) = c,'K'2 S( Su)-
t (-2)su(t2

F(2, 2, -2, —,') =f„K'
SQ

2 u(-su)F(2, =, ; 2, 2) = c,"K'
t

F(2, —,'; 2, --,') = 0,
F(2, —,'; -2, --, ) = 0,
F(2, =,';-2, —,') =0,

3 I 3 1 2Slf
F(2& 2& 2& 2)= C(K —+f)(K S

t

3 1 3 1F(2, -2, 2, -2) = c,K'—+f„K'u,

(32b)

(32c)

(32d}

(32e)

(32f)

(33a)

(33b)

(33c)

(33(i)

(33e)

(33f)

(34a)

(34b)

[q(n), b(t, ~))= tr(n, p, +)*d(p, ~),

[(()(n), d(t), +)]= (I'(n, p, +)b(t)-, +),

(36a)

(36b)

(37)

We conclude that all the W+ G- W+ G amplitudes
are determined up to one overall constant c,.

We note that these amplitudes have additive con-
tributions from three kinds of graph: one with
two WWG vertices, one with one GGG vertex and
one WWG vertex, and one with a single WWGG

with the I' still given by Eqs. (B22). Note that
handedness, or chirality, is conserved by the
supersymmetry operation, although spinless par-
ticles clearly have no helicity. Our choice of the
chiral spin-0 fields 8, was designed to "diagona-
lize" the action of supersymmetry operations in
the Wess- Zumino supermultiplet. Note also that the
I' and I'* have been interchanged in Eqs. (36) as com-
pared to Eqs. (13).

Using methods similar to those displayed in
Eqs. (20}-(26), we find that
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contact vertex. Unless each of these graphs van-
ishes separately (which can happen only in the
trivial case, with the WWG coupling vanishing),
we observe that the individual graphs do not pos-
sess the form required by the ACN theorem.
Since the sum does, the relative strengths of the
different graphs are fixed, which fixes the rela-
tive strength of the WWG and GGG vertices. But
the GGG vertex must be that of pure Einstein
theory, so the constant c, can only be zero, or
have the value obta, ined from the Einstein coupling
of gravitation to other matter, ' that is,

C~=C. (38)

APPENDIX A

We give in this appendix some details of the
computation of the helicity amplitudes of Sec.
II. Helicity amplitudes satisfy the following re-
lations as a consequence of spa, ce-reflection sym-
metry, time-reversal invariance, and particle
interchange. (We do not follow the Jacob-Wick
second-particle phase convention, " but instead
follow the conventions of Ader, Capdeville, and
Navelet. ')

Space-reflection symmetry implies that

F()i„X4;X„X,; s, t, u)

= n, n, n, ns(-1)"'(-I)""

x F( X„-x,; x„-x,;s, t, u), (Al}

with X, as in Eq. (6), and X, the sum of the spins
of the four particles involved. The q,. are intrinsic
parity factors associated with each of the parti-
cles. Time-reversal invariance implies that

F(X» X4; X„X,; s, t, u)

= ( 1)~&F(X„X,; X„X4;s, t, u), (A2)

with X, as in Eq. (6). Interchanging particles 1
and 2 in the amplitude yields

F(X„X4;)i.» X» s, t, u)

relation holds:

F(X,Z; X„X;s, t, u)

( 1)si4( 1 )sss is(as-~)s)( 1)s) xi( I)s4-x4

x F(X„—X,; -X„X,; t, s, u), (A4}

where s,. is the spin of particle i, and v„ is zero
unless both particle 1 and particle 4 are fer-
mions, in which case o,4 is one. Usually, cross-
ing relates the amplitudes for particles to those
for antiparticles. However, since we deal only
with Maj orana fermions, and our bosons are
their own a,ntiparticles, in our case crossing re-
lates particle amplitudes to each other.

In Ref. 4 we have discussed in detail the de-
termination of graviton-graviton amplitudes.
Here we shall discuss the spin-& —spin-& and

3 3 3spin-2-spin-& amplitudes. For the 2-2 ampli-
tudes the procedure parallels that for the gravi-
ton-graviton amplitudes given in Ref. 4. We can
restrict ourselves to four amplitudes, and using
Eq. (8) we find that

F(&) &, &) —s) =(s™)''F(+++ —),
3 3 3 3F(s) —s, s) -2) =u F(+ -+ -),

F( , , —,; =„=,) -= F(++ —-) .

(A5a)

(A5b)

(A5c)

(Asd)

In the Born approximation F can only have sim-
ple dynamical poles at s=0 and t=0 and u=0;
furthermore F is proportional to K', so we can
write that

KF= it)(s, t, u},stu
(A6)

where p must be analytic in s, t, and u according
to the theorem of ACN. ' The simplicity of Born
amplitudes then forces p to be a polynomial in
s, t, andu.

Furthermore, the original helicity amplitudes
F have been defined in such a way that they are
dimensionless. We find that

= ( 1)~'( 1)"'(-1)"'F()i.s) X4; X» X,; s, u, t),
(A3)

K S
s u

(A7a)

where s, is the spin of particle 2, and 0» is unity
when particles 1 and 2 are both fermions, and is
zero otherwise.

Note that in the case of massless particles,
the relative parity of the states of different hand-
edness is not determined by invariance under pro-
per orthochronous Lorentz transformations, and
must be determined by examining the interactions
the associated local fields enjoy, or by conven-
tion.

For massless particles the following crossing

its[(stu)'t']'
F(z, z, z, -z) = )t)sos(+++ -),

stu

2 3Ku
F(„=,;-„=,) = y-, (+ -+ -),

(A7b)

(A7c)

2K
F(s) s; —s) -s) = it 4(++ —-),stu 4 (A7d}

where the subscript on the function P indicates
its polynomial degree.
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The particle-interchange relation given by
Eq. (A3} implies that F(,', —,'-, —,', —,'} must be sym-
metric when u and t are interchanged holding s
fixed. That is, expressing F (or @}as a function
of s and t alone, since s+ t+u=0 for massless
particles, we have that F (or g) should be invar
iant under the operation

t- (s+t). (A8)

The only first-order polynomial in s and t invari-
ant under the operation of Eq. (AS) is c's, where
c' is a dimensionless constant. Then Q, (++++ )
=c s.

Clearly there is no polynomial of degree &, so
F(&, &, 2, -&) vanishes. It is interesting to note
that quite generally, for processes involving ex-
ternal massless particles, the coefficient of square
roots in Eq. (8}, namely X, + X, +X„, will always
give an odd power if the sum of the helicity flips
is an odd integer. For example, if the same par-
ticles come out of the reaction as went in, an odd
power results when exactly one fermion flips its
helicity, and an even power results otherwise.

3 3 3 3
By crossing operations F(g g 2 2 s t u)

=F(2 2 2 2 u, t, s). Finally, by using crossing
operations and particle interchanges we deduce
that F(2 p 2 Q) is totally symmetric in s, t,
and u, and that therefore p,(++ —-) must be a
totally symmetric fourth-degree polynomial in

s, t, and u. There is only one polynomial in s
and t simultaneously symmetric under the inter-
change s- t, t- s, and the operation of Eq. (A8),
up to an overall constant factor, so p,(++ —-)
= c'(s'+ t'+ u'}.

We now use an argument that refers to the spe-
cific form of the Lagrangian given by Eq. (1}. The
pole at t = 0 in the F( , 2, --,', --,') giv-en by Eq. (A td)
is produced by a diagram in which a graviton is
exchanged in the t channel. We have argued in
Sec. II that at t = 0 (for forward scattering, that is)
the two-fermion-graviton vertex must vanish when
the fermion helicity is flipped. Since that vertex
appears as a factor in the residue of the pole at
t= 0, the residue must vanish. But inspection of
the term

Application of the ACN theorem to F(2, —,; 2, —,)
leads to the expression

ss( su) ~

F(2, -', ; 2, —,') = P,(++++),
stu (A9)

so the polynomial of the zero degree can only be
the dimensionless constant called c" in Eq. (12a).

Application of the crossing operation of the fer-
mions in Eq. (A9) implies that

and there is no polynomial of degree minus one,
so that amplitude must vanish.

APPENDIX B

In this appendix we compute the transformation
coefficients I' of Eqs. (13), (19), and (24) explicit-
ly. While their form follows almost uniquely from
general considerations, such as those embodied in
Eqs. (17) and (18) and the spin--,' transformation
law for Q(q) under Lorentz transformations, it is
useful to derive them from the explicit supergauge
transformations of Ref. 1 (and also from the ex-
plicit supersymmetry transformations of Wess and
Zumino).

The Lagrangian is invariant under the following
local variation of the fields:

4
8q, „(x)=- D„(x)q,(x)

+
8 (P,r.4, + 4.r, 4,)o:,'q, (x),

8V„(x)=
2 tt,(x)r,,g,.(x),

(Bla)

(Blb)

&g, „(x)=
2 n, ( )[xr„„4,.(x) + r„„4„(x)] (Blc)

Here o 8= —,'[y, ys], V; is the vierbein field, g„„
the metric field, and

F(2, -q ', 2, -2, s, t, u) = F(2, 2, 2, 2, u, t, s) . (A10)

Finally, applying the ACN theorem to
F(2, -', ; -2, —,') leads to the expression

/& su( su)F(2, 2., -2, q) = (f),(++ -+), (All)
stu

C K
D( qx,}( )x= s, q,(x) + (o„2(s)x,'o, st(}x ,}

with

(B2a)

shows that it vanishes only if c'= 0.
We may restrict ourselves to a consideration

of the 2-~ amplitudes displayed in Eqs. (12),
since the others can be obtained by the discrete
operations of Eqs. (Al)-(A4). The odd-powers
theorem for reactions with the same particles
coming out as going in enables us to conclude im-
mediately that three of the six amplitudes vanish:
F(2, —,; 2, --,'), F(2, —,; -2, -~), and F(2, --, ; -2, —,}.

~...=![v".(s„v,„-s„v,„)+ v:v,'(s.v„,) v"„]
—lo-&1 (B2b)

The coefficients q,(x) anticommute with anything
having a spinor (Latin) index; they are otherwise
arbitrary, except that they satisfy the Majorana
condition, which with our conventions for repre-
sentations of the Dirac algebra is given by Eq.
(25). Note that we have adjusted our normaliza-



tion condition for the supergauge transformations
to yield, for the iterated transformations, the
spacetime translations specified by Eq. (16),
which represents a trivial deviation from the
conventions of Ref. 1.

We shall extract from Eqs. (Bl) the trans-
formation of the "in" fields under a global super-
symmetry operation (q, a, constant) induced by a
supergenerator Q(q), with f 5/= [Q(q), g], and so
on. We assume that the asymptotic "in" fieMs
and "out" fields satisfy commutation relations with

Q(q) obtained by taking the asymptotic weak limit
of the commutation relations for the interacting
Heisenberg fields. In this limit only terms linear
in the quantum fields survive (W. e realize that
we are being rather cavalier about asymptotic
limits for a theory of massless particles, but we

proceed undauuted. ) It is therefore sufficient to
expand the gravitational fields g„„and V in

powers of the quantum fields h, „and c„' and to
retain only the linear part. Then

with

We find, for the "in" fields,

(84)

[Q(q), g,„(x)]= i [S~h„(x) —9 h, ~(x)]a,',~q, , (85a)

[Q(7)), h „(x)]= ziq[y„g„(x)+y„g (x)]. (85b)

While these commutation relations were derived
from the local supergauge relations given by Eqs.
(Bl}, let us empha, size that Lorentz invariance,
locality, linearity in q and the fields, and the
fact that the spinor supergenerator has dimension
& are sufficient to establish the form of the right-
hand sides of Eqs. (85a) and (85b). The relative
normalization of those right-hand sides is de-
termined by the condition that the free Hamiltonian
be invariant, and the overall normalization by con-
vention.

We now expand the "in" fields g and h in terms
of particle creation and destruction operators in
order to obtain the commutators of Q(7]) with such
operators. We write

n, .t*]= Q f & (u]]~„.(u, ~le"' (u, ] ~ ~..[u, ~)"~"' tu, ]']. (86a}

(p}=[(2 ) 2E]
= Ipl p' =p'

(87)

terms proportional to P, which we repla, ce using
Eq. (86b). So we end with [Q(q), a(p, o)] as a linear
combination of c(p', o') and c(p', o')*, summed
over p' and 0', with coefficients proportional to
e""(p,c)*, q, and u's or u*'s. That is,

and the matrix D= Cy„with C the charge-con-
jugation matrix. In our representation

0 io2 0 . 1 0C= . ', y'=-f, y, =fy'. (86)io, 0 ' 0 -1
We have replaced the helicity label X on the wave
functions u and & by the handedness label 0 in the
obvious way.

Then

[(2v)'2E(p)]" '

x q""(p, c)~,

]t](n), at], (r)] = I, J d']'[K(], w ]', /]e(]', (r')

+ I (p, o; p', c')c(p', c')*].

Carrying out the time differentiation and the
spatial integration induced by Eq. (89a) produces
a momentum-conserving ~ function in Z and a
P(p+p') in L; however, the time differentiation in
I. produces a factor E-E', which makes I vanish.
So we find that

Z(p, c;p', o')

= f(2&)""'"(p,o)'n,y...u,.(p, o') 5'(I —p'}.
(Bll)

To calculate [Q(q), a(p, o)] we replace a(p, o) using
Eq. (89a} and use Eq. (85b) to eliminate the re-
sulting commutator [Q(7)), h, „]. That results in

The factorization of q"" and of u,„given by Eqs.
(2} and (3), and the orthogonality condition given
by Eq. (4b) allow us to simplify K further:
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K(p, o", p', o')

=i(2E)'~' )7,e "(p, o}~y„,u(p, o)5, 5'(p p'),

(B12)

which leads immediately to the result quoted in
Eq. (19).

A similar procedure, applied to [Q(q},c(p, o) ],
leads to the expression

[Q(n), c(P, o)]

d'p' [K(p, o;p', o')a(p', o')
a

+ f (P, o", P', o')a(P', o'}']. (B13)

Carrying out the spatial integration induced by
Eq. (B9b) and the differentiation induced by Eq.
(B5a) leads to the expressions

In order to complete the computation of

I'(7), p, o) =i(2E)'~'qy e(p, o)*u(p, o) (B19)

we use the following facts: For our purpose p
may be taken in the x-z plane, so that p has the
form given in Eq. (23},

p=(E, Esin8, 0, Ecos8) .

Then

e(p, +) = w(2)' '(0, cos8, +i, -sin8), (B20a}

u(p, +) = (-,')'~'(cos-,'8, sin-,'8, cos-,'8, sin-,'8),
(B20b)

u(P, -)=(&)"'(-sinE8, cos&8, sinEH, -COSEH).

(B20c)

Our three spatial y's have the form

K(p, o", p', a')

2u~(priv) oqbpEN ua(p t ) Rb 53( ~)

0 -is,
io'~ 0

(B21)

f(p, o;P', o')

2u~(p, o) cob peg~~(p ~
o ) q~ 2(E)53

(B14a)

The Majorana spinor q= g~y, is computed using
Eq. (B8) for y, and Eq. (25), which imposes the
Majorana constraint g, = Dblab*.

Then straightforward computation reveals that

f'(q, p, ~) = (2E)'~'(q, cos-,'8+ ri, sin-,'8), (B22a}

&(q, P, -) =(2E}' '(-q,"cos-, 8 —q, sin-,'8) .

K=
2E „,Gap, o)'(y P)[r ~(p, o))n]

x 5„,53(p p') .

From Eq. (4a) we deduce that

u(p, o)*y p = 2iEu(p, o),
from which we conclude that

(B15}

(B16}

&(q, p, cr) =i(2E)'~'u(p, o)y q(p, o)q. (B17)

We have anticipated the demonstration that L
vanishes, which depends on showing that the fac-
tor

~,(p, )* b'pg~a(p', ')*nb

within L itself vanishes. The 5 function in L con-
strains the four-vector p' to be (E, -p). Expres-
sion (B18) can be rewritten using the method ap-
plied to K, so it becomes

(B18)

lu(p, o)*(r P')-[r E(p', o')*)n

But Eq. (4a) shows that u(p, o)*(y ~ p') = 0.

(B14b}

The sum over p in E@; (B14a) produces a handed
ness-conserving 5„. from the factors e'(p, o)~
and e,(p, o') in the wave functions u(o}~ and g(o').
Using the fact that o~E= E(g -y~y") and that
e(P, o} P = 0 we obtain a simpler form for K:

[Q(n},A)= ~~,

[Q(n), B)=in, C,

(B23a)

(B23b)

[Q(q), $] = iy ~ S(A+ y,B)q+i (F+y,G)ri, (B23c}

[Q(n), F]=in'8&,

[Q(q), G] =im, y. 8 4.

The constraint equations

(B23d)

(B23e}

F = mA —P(A' —-B ), G = -m B+ 2PAB (B24)

imply that F(in) =-mA(in) and G(in) =-mB(in) so
that the "in" fields satisfy

[Q(n},Al = in4,

[Q(~), B]=far, C,

[Q(q), g] = i(y ~ a m)(A+y, -B)q

(B25a)

(B25b)

(B25c)

Defining the chiral fields 8, via Eq. (30), we find
that

(B22b}

We now discuss briefly the supersymmetry op-
erations within the Wess-Zumino supermultiplet
consisting of the scalar and pseudoscalar fields
A(x), B(x), the auxilia, ry fields F(x), G(x), and the
Majorana spin--, field P,(x). They satisfy
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[Q(r)), b(p, +)]=ivE Q ri(I+iy, )u(p, o)d(p, o),

(B26a}

of 1+iy, . Our y, has the form

y5 S ~ (B27)

[Q(r)), d( p, o) ] = -iv E([u(p, o) (1 —iy, )r}]b(p, + )

+ [u(p, o)(I+iy, )n]b(p, -)],
(B26b)

where b(p, + ) and b( p, -) are the destruction opera-
tors associated with the chiral fields 8, and 6,
and d( p, o) is associated with g, .

In the massless case the u(p, a) are eigenstates 2i&Zqu( p, &r} = ir(r},p, o)* (B29)

We find that

[Q (r)), b( p, rr) ]= [2iv E rpa( p, o) ]d( p, o), (B28a)

[Q(rl), d( p, c) ] = [-2ivE u( p, c)r}]b(p, o). (B28b)

Using Eqs. (B20b), (B20c) we find that
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