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A general analysis of elastic neutrino- and antineutrino-proton scattering is presented which emphasizes the
use of these processes as probes of the space-time structure of the weak neutral current. %'e begin by
exhibiting the most general matrix elements in terms of the scalar (S), pseudoscalar (P}, tensor (T), vector

( V), and axial-vector (A) form factors. These matrix elements are then used to calculate the differential cross
sections do./dt and the proton polarization for incident v„and 6„.Based on these results tests are suggested to
discriminate between the S,P, T and V,A covariants which respectively Aip or preserve the incident neutrino
helicity. It is noted that when V, A, and T are all absent from the neutral current, the differential cross
sections take the simple form der"'"/dt = tf(t)/F. , ', where E„ is the laboratory energy of the incident neutrinos, t
is the square of the momentum transfer, and f(t) is a proton form factor. This observation suggests several
ways of discriminating between S,P, T and VA couplings including a comparison of do'/dt and do'/dt, and
an examination of the average momentum transfer gt). Since some of these tests are subject to the
"confusion theorem" (i.e., the ability of S,P, T to mimic V,A}, consideration is given to experiments in which
the proton polarization is measured. Although such experiments are difficult to perform, the expected effects
are strikingly large, and can lead to an unambiguous disentangling of V,A from S,P, T. A discussion is also
given of the v and v elastic cross sections which, when compared to experiment, suggest that the neutral
current is not predominantly S,P.

I. INTRODUCTION

In a recent Letter' we examined the data" on
elastic neutrino-proton scattering, v„P- v„P,
from the point of view of discriminating among
models of the neutral weak current. Of particular
interest was the possibility of probing the space-
time structure of the neutral current as charac-
terized by the usual Dirac covariants: vector (V),
axial-vector (A), scalar (S), pseudoscalar (P),
and tensor (T). We indicated that the data appear
to rule out a pure S„P neutral current and we dis-
cussed several ways of confirming this conclusion.
More recent data on the reaction v„p —v„p have
already provided one of the possible confirmations.
In this paper we present a discussion of our pre-
vious analysis.

The arguments we presented against pure S,P
coupling were based on the total elastic rate. Al-
though there is no fundamental theory to fix the
scale of the S,P neutral-current interaction, the
elastic cross section is constrained by the rate
for the inclusive reaction v„p —v X. Using the
methods of Sakurai and Urrutia, ' and of Adler
and co-workers, ' to estimate the elastic cross
section in terms of the inclusive one, we found
that the observed elastic cross section is larger
than the estimated one by a factor of approximate-
ly 2.

Extrapolating from high-energy inclusive scat-
tering to lower-energy elastic scattering is, of

course, a model-dependent procedure. %e there-
fore proposed a series of model-inoependent tests
of the conclusion that the neutral-current inter-
action is not pure S,P. The simplest of these is
the measurement of the cross section for anti-
neutrino-proton elastic scattering: For a pure
S, P interaction, the differential cross sections
for v„p -v„p and v„p - v„p must be precisely
equal at the same energy, for all admixtures of
S and P, and for all choices of the hadronic form
fa.ctors. Therefore the observation that o(v„p)
0 o(v P) immediately excludes a pure S,P inter-
action.

Other tests include the shape and energy depen-
dence of the v„p differential cross section do"/dt,
and the polarization of the recoil proton. The
shape and energy dependence tests follow from the
observation that when V, A, and T are all absent
from the neutral current, the differential cross
section takes the simple form

do tf(f)
dt E„'

Here E„ is the laboratory energy of the incident
neutrino, t is the square of the momentum trans-
fer, and f(t) is essentially a. proton form factor.
From Eq. (1.1) it follows that

(i) if do "(t = 0)/dt & 0, then at least one of V, A, 7
is present in the interaction, and

(ii) if E„'do/dt & constant for a fixed t and any
range of E„, then again at least one of V, A, or
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T must be present. When E„»m (the proton mass)
and ~t, the latter interactions lead to

E
2do'"

dt
(1.2)

In our Letter' we examined the implications of
point (i) for the shape of the t distribution. We
concluded that the shape cannot be used to con-
firm the smallness, or complete absence, of S,P
until the range of observable t values is extended
from 0.3 ~t~ —0.9 (GeV/c)' to values at or below

~t
~

= 0.2 (GeV/c) . In the present paper we study
the implications of point (i) for the average mo-
mentum transfer (t). For S,P couplings (t) will
be "large" because of the vanishing of do /dt
at t=0. However, for V, A interactions (t) will
tend to be "small" because dc~ "/dt is largest in
the forward direction and decreases as ~t~ in-
creases. Given reasonably shaped form factors,
the value of (t) must lie within definite bounds for
each of these classes of interaction, irrespective
of the detailed S,P or V, A admixture.

The test comparing neutrino and antineutrino
differential cross sections is based on the obser-
vation that

(iii) do"/dt ado'"/dt implies that the interaction
is neither pure V, nor pure A, nor pure T, nor
any combination of only S and I'. Besides exclud-
ing S,P this comparison is also an important test
of models which have a pure V neutral current.

The polarization of the outgoing proton, should
it become measurable, could also be a very useful
tool in analyzing the interaction. To see this, con-
sider angular momentum conservation for forward
scattering: If the polarization of the scattered
proton is anything other than -100% with respect
to the beam direction, then some helicity-con-
serving V or A. must be present in the interaction.
%e shall present detailed calculations which show
that polarization measurements away from the
forward direction can be similarly useful.

Besides illuminating the general character of
the interaction, vP scattering will, of course,
help determine the finer details of the space-time
structure (such as the Weinberg angle) and the
isospin structure of the hadronic neutral current.

The plan of this paper is as follows: The kine-
matics of vP scattering is described in Sec. II and
the most general form of the matrix element, in-
cluding hadronic form factors, is discussed in
Sec. III. Section IV contains the calculation of
the average momentum transfer (t) for different
interactions and different incident neutrino spec-
tra. Polarization is considered in Sec. V, and re-
sults for the total cross section [integrated from
~t

~

= 0.3 (GeV/c) to ~t
~
=0.9 (GeV/c)'] for various

theoretical models are presented in Sec. VI. De-

tailed formulas for the vp differential cross sec-
tion and the polarization of the outgoing proton
are given in the Appendix.

II. KINEMATICS

The kinematics for the elastic scattering v (Q)
+p(P)-v„(Q')+p(P') is shown in the laboratory
frame in Fig. 1. Owing to experimental cuts, only
protons with a laboratory energy in excess of
some minimum value Po™'will be observed, and
so the accessible range of momentum transfer
for a fixed value of s is

t, &
gati &t, (s),

t, =2m(P,' "—m),

t, (s) = (s —m')'/s,

(2.1a)

(2.1b)

(2.1c)

where I is the proton mass. The kinematic range
defined by Eqs. (2.1) corresponds to the shaded
region in Fig. 1. In practice, of course, the inci-
dent neutrino beam is not monoenergetic but is
described instead by some flux distribution func-
tion C (Qo) such as that shown for the Argonne
(ANL) spectrum8 in Fig. 2 and Table I, and the
Brookhaven (BNL) spectrum' in Fig. 3 and Table
II. However, for each elastic scattering event,
the entire kinematics can be reconstructed, given
a knowledge of the proton 3-momentum P' and the
incident beam direction Q, In particular, the in-
cident neutrino energy Qo is given by

(P,'-m)'- /P'/'
2(P,' P' —m)- (2.2)

where the neutrino-beam direction has been taken

&(Q }

v (Q)

E

e 0.
-} = (a-ms) &s

p =p ~"=(assam~}gatns0 0

9 =-(&~Q}
(Q -Q} ~ -(P'-P )

8 ~ 90
-t =0
P'= }y}

p(p')

t (s+m }e~ cos8
(4 ma}gt(t-+ma}

FIG. 1. Kinematics for the elastic scattering process
v{Q)+P{P)—v{Q')+P{P') in the laboratory frame, where
the quantities in parentheses denote the 4-momenta of
the particles. The shaded region indicates the accessible
values of the kinematic variables for an experiment in
which the only protons detected are those whose energy
Po is in excess of some minimum value Po ——m

1 tmin/
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TABLE I. The Argonne neutrino spectrum. Qo is the
neutrino energy in GeV and 4(QO) is the corresponding
Aux in arbitrary units.
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to be along the z axis. Given Q, and P' me can
then deduce

s =m(m+2@, )

for each scattering event.

I I

FIG. 2. The Argonne neutrino-flux distribution. For
present purposes the absolute normalization of the neu-
trino flux is immaterial.
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TABLE II. The Brookhaven neutrino spectrum. Qo is

the neutrino energy in GeV and 4 (Qo) is the correspon-
ding flux in arbitrary units.
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FIG. 3. The Brookhaven neutrino-flux distribution.
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III. MATRIX ELEMENT FOR v„(v„)+p~v„(P„)+p

A. General considerations

Allowing the neutrino-proton interaction to have its most general point coupling form, we can write the
matrix element W for elastic neutrino-proton scattering in the form

(3.1)-(q') F, (q)5}I'(p, p') .
v2.

2=SearVa&~ r
Here u(q) and u(q ) are the incoming and outgoing neutrino wave functions, respectively, and we have I'~

=1, I'p=iy„ Iv=iy„, I'„=iy„y„and I'r=o„,. For incident antineutrinos s(q)-v{q') and u(q')-V(q).
The (Hermitian) hadronic currents SR'(P, P') are given by

9}I'(P,P') =z7(P')[C'(t)+tyg'(t)]u(P),

51("(P,P') =s(P')[iy,C'(t)+D (t)]s(P),

II„'(P, P')=is(P') y„[C,'(t)+y,D,'(t)]+ "q [C,"(t)+y,D,'(t))+ q' [C,'(-t)+y,D', (t)] u(P),

(3.2a)

(3.2b)

(3.2c)

))(",()', )")=( ()")Iw,x,fc", (()+&.D,'(()I+
2 v.k,"(()+v.))'(())+ q2' 'I(:",(()+vD", (()II (P),

5}i„„(P,P') =-(P') g [I;„C,(t)+ ,'ie„-„I"g, (t)]u(P},
a=1

I'~„=o„„=(~y„y- ,yy)/ i2, I"„=(y„q„—y„q,)/m, I'„„=i(y„k„—y„k„)/m,
I' f „=i(qP„-q„k„)/m', q =P P', 0 =-P+P', t =-q'.

(3.2d)

(3.2e)

C'{t) and D'(t) are defined to be real and dimensionless, and we have written the hadronic currents in
such a way that, for each of the five possible couplings, the terms proportional to D'(t) incorporate the
effects of a, possible parity violation. If time-reversal invariance is assumed then for 8, I', and T

a~ =D" -0
2

C T g)T DT DT 0

and if one assumes in addition that second-class currents are absent then

D3 =0.

(3.3)

(3.4)

Using the Dirac equation we further note that the terms proportional to q„make no contribution when
multiplied by the leptonic current.

We have written the matrix element in Eqs. (3.1) and (3.2) in a seemingly complicated form in order to
emphasize the point that parity violation in v„p scattering requires that some of the form factors D (t) be
different from zero. For the 8, P, and T couplings this in turn requires a violation of time-reversal in-
variance (assuming that second-class currents are absent) as can be seen from Eqs. (3.3) and (3.4). How-
ever, when we specialize to the case of incident left-handed neutrinos or right-handed antineutrinos, such
as would be the case for conventional neutrino beams produced via the charged-current interactions, the
matrix elements in Eqs. (3.1) and (3.2) can be considerably simplified. For v= v~ we replace u(q) by
~(1+y,}u(q) in which case the resulting matrix element g~ can be written in the form

q', =~ u(q')-.'(I+y,g(q)u(P")[S(t)+y, P (t)]s(P)I.

+is(q')y, p(1+y,)u(q)i~(P') &y, (t) +~'P, (t)+y,y,G, (t)+ "~ y,G, (t) u(P)

4,;(e ).,„-:((.~.).(e).-(~ )( p ~ „.T.(()).(~)I,
a=1

5(t) =C'(t)+iD'(t), P(t) =-C (t)+iD'(t),

P, (t) =C,'(t)+D", (t), F,(t) =C",(t)+D", (t),

G, (t) =C", (t)+D,'(t), G, (t) =C".(t)+D.'(t),

(3.5a)

(3.5b)

(3.5c}

(3.5d)
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T, (f) =C.'(f) u—,*(t) . (S.5e)

Although the S, P, V, and A contributions in Eqs. (3.5) can be written down by inspection using Eqs. (3.2),
the T contribution requires the use of some additional identities such as

1
+)Lff.~5 ~~» eJPog s

I
+XfA ~ ~Xff, e8+eS~s t

F,k„„(1+y,)(I,(T,k„„(a+&y, )p, = k(a+ &)g,k,„(1+y,)g, (t,k„„(1~y,)g„

(s.ea)

(s.eb)

(3.6c)

which serve to eliminate the terms proportional to c~ „z~~ in favor of F».
For incident right-handed antineutrinos, vz, the matrix element 9z is obtained by substituting v(q)

"v(q)k(1 —y, ) giving

v(q) 2(1-'y, )v(q')a(P')[S'(f) —yP (&)]u(P)

+~v(q)2(1 y, )y-&v(q')fa(P') yg, (~)+ 2' &.(&)+y,y,G, (f)+ 2' ' y,G, (&) a(P)

+v(Q)l((-v, )v, „U(()')M(p') Q (",„r:()) (p)} .
gal

Given the matrix elements in Eqs. (3.5) and (3.7),
we can calculate the differential cross sections
dk(s, f)/df for incident v~ and vz as well as the
corresponding longitudinal proton polarizations
O'" ". The results are given in the Appendix. %e
see from Eq. (A1) that Ck(s, f)/dt vanishes at f =0
for pure 8 and I' coupl~ngs, but not for V, A, or
T. This observation forms the basis of our at-
tempt to distinguish between 8, I' on the one hand,
and V, A on the other through the shape of the t
distribution snd momentum transfer (f}.

%e turn next to the high-energy behavior of
dk(s)/dt. In the limit s»m', f we find from Eq.
(Al) that for both v and v

dk(s)/dt ~ const V, A, T,
dk(s)/dt ~1/s' S,P.

Hence, if dk(e)/dt falls with increasing e the neu-
trino helicity is definitely flipping. On the other
hand, if dk(s)/(ff is a constant for large s, the
neutrino helicity may or may not be flipping. This
is a manifestation of the "confusion theorem, ""
and ean be understood by noting that the tensor in-
teraction involves antisymmetric neutrino and had-
ron tensors, and corresponds, like V andA, to
spin-opg8 exchange.

8. Comparison of vp and vp

%e now discuss the relations between the v and
v differential cross sections as given by Eq. (Al).
%Ve note that for each of the covariants S,P, T, V, A
taken separately do "/df =dk"/dt. This is trivially
true for the S and P eovariants which contain no
interference terms which can change sign. For the
V, A covariants the difference between the v and
v interactions appears, as is well known, only

through the V, A interference term. For T this
statement is a bit less obvious since the hadronic
matrix element in Eq. (3.2e) contains terms which
transform oppositely under parity, and whose in-
terference terms might thus be expected to dis-
tinguish between v and P in analogy to the V,A
case. From Eqs. (3.5a) and (3.7) we note that the
difference between the v and v matrix elements
arises from both the leptonie factors

1."„„(q,q') =a(q')k, „-."(I+y,) (q),

f ".(q, q') =v (q)-'(I y, )k,.v(-q'),

(3.9a)

(s.gb)

and from the replacement of T,(t) in the hadronic
factors H„"„(P,P') by T ) (t) in H"„„(P,P'). When the
squares of the corresponding tensor matrix ele-
ment, ~f' (v)~' and (f' (v)~', a.re computed, the
leptonic factors are seen, after some manipula-
tion, to be identical:

I
f'(»»I'=L.";".s(q q'»i;".8' P'),

I.„"„.,(q, q') = Tr(1.,"„J.".",)

(S.loa)

~ »(k,„y'qk. (,y q'),

I.„"...(q, q') = Tr(I."„„r.:",)

(S.lob)

Tr(k„„y q'k. ,y q). (3.10c)

Thus the difference between the v and v differential
cross sections arises solely from the replacement
of T,(f) by T,"(f) in going from v to v. Using the
fact that the covariants I''„„ in Eq. (3.2e) are
Hermitian, one can then show that H~„~ =H»o&,
and hence that dk"/dl =dk"/dt for the tensor matrix
element.
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C. Form-factor models

In the preceding subsections we considered the
phenomenological properties of the vp —vp and

vP - vp matrix elements without reference to
specific models of the various form factors. Our
purpose mas to point out the kinematic differences
between the helicity-flipping S,P eovariants and
the helicity-preserving V, A eovariants, such as
the behavior of the respective differential cross
sections at t=0. However, detailed experimental
results mill depend on the normalization and shape
of the hadronie form factox's. Hence some under-
standing of the expected behavior of these form
factors is necessary. Since observed quantities

do depend on form factors, one can use the data
not only to distinguish between V,A and S, T,P
covariants but also as a test of different models
of the V, A interaction, should the neutral current
turn out to be helicity-preserving. Thus, form-
factox' considerations at once complicate the prob-
lem of distinguishing between V, A and S, T, P and

at the same time make it possible to test different
detailed theories of the neutral curxent.

%e begin with the V, A interaction, which has
been the focus of considerable attention in recent
years. In most theories the V, A. neutral current
J'"„(x) is related in one way or another to the known

electromagnetic and weak currents 4„"(x) and 4„'(x),
respectively, whose matrix elements are given by

(P'~[Z,"(0)=6."„(0)+3-'~'S„'(0)]~P)=fu(P') yF",(t)+ "9 F,"(t) ~(P), (3.11)

(»(l(&'(»=~,""(»+(&',„"'(»l(l»=-(P') ~F((&+"2 &;(()+~&G„(t&+2 '&, 0;()&] (»—. (3.12)

In E(ls. (3.11) and (3.12) 5'„and 9'» are the usual
octet vector and axial-vector currents which satis-
fy the standard SU(3)(8&SU(3) equal-time commuta-
tion relations. The relevant eleetromagnetie and
weak form factors are given at f, =0 by

F,"(0)=1, F2(0) =}(,
&

——1.79,

F;(0)=1, F;(0) = p~ —i(,„=I."IQ+1.91=3.70,

(3.13) p~ and }(„arethe anomalous magnetic
moments of the proton and neutron, respectively. As
noted previously the term proportional to GJ.(t)
makes no contribution to elastic vp or vp scatter-
ing. Since the axial-vector current thus depends
on a single overall normalization G„'(0), ((() will
actually be independent of G„'(0) when the neutral
current is a first-class axial-vectox current,
which is one of the cases considered in Sec. IV
below.

One of the most popular models of the neutral
current is the so-called Weinberg-Salam (WS)
model" in which Z~ (y) is given by

+ az, (y),
where 8~ is the Weinberg angle, and hZ„(y) is a
V -& strangeness- and charm-containing current
which is conventionally assumed to have only a
weak coupling to ordinax'y lom-mass hadron states.
%e mill consequently set 4J„=O in oux calcula-
tions for the WS model. Combining E(ls. (3.11)-

(3.14) we see that the form factors F,(0), F,(0),
and G, (0) appearing in Eqs. (3.5), (3.7}, and (Al)
are given in the %8 model by

F,(0) = -'(1 -4x),
F,(0) = ~(i(,~

—}(,„) -2xp, ~=1.85 —3.59x,

G, (0) = 2G„'(0) =0.63,

(3.15a.)

(3.15b)

(3.15c)

where we have defined x= sin'8~. The presently
favored value is" x =0.35. In addition to the %8
model and the pure axial-vector current model me

have also considered a model in which 4„"(y) is
given by

~"„(y)= &',(y), (3.16}

i.e., the neutral current is a pure vector isoscalar.
In this case G, =O, and F,(0) and F,(0) are given

F,(o) =-',

F,(0) = &(y, ~+ p, „)= —0.06.
(3.17a)

(3.ln&)

F(t) F(f) G(f) 1

F,(0) F,(0) G, (o) (I -t/~')' ' (3.18}

with A =0.9m. %g shall see in Sec. IV that small
variations in A produce correspondingly small
changes in (t).

In addition to ascertaining the values of the form
factors E„F2, and G, at t = 0, me must also speci-
fy their respective t dependenees. On the basis of
the usual vector-dominance ax'guments me can pre-
sume that E„F„and 6, have the same t dependence
as the corresponding form factors in the charged-
current case. %e will thus assume that
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%e turn next to the helicity-flipping S,P, T
couplings. Since the very existence of these
couplings is yet to be demonstrated, we have
treated the corresponding form factors at t = 0 as
arbitrary parameters which we allow to assume all
possible values. Should measurements of (t) indi-
cate the presence of S,P, T couplings, then a
choice among various models of these form factors
can be made, as in the case of the V, A couplings,
given a precise knowledge of (t). Models of the
S,P, T form factors have been considered recently
by Adler et al. '

IV. CALCULATION OF (t&

FIG. 4. Pion-pole contribution to the pseudoscal. ar
form factor P(t) in Eq. (3.5).

p(F')

( )
P(0)

t/m, ' ' (4.1)

As we have noted, do/dt va, nishes a.t t = 0 for the

S,P couplings, but not for V, A, or T. This can
be understood by noting that in the S,P case

l.-(V') (e)l' e e'=t/2.
This behavior of dos ~/dt is obviously independent
of the details of the proton form factors and can,
in principle, be used to test for the presence of
S, P couplings in a relatively model-independent
way. In practice, since the region near t=0 is in-
accessible experimentally, one must apply this
test by studying the shape of the t distribution for
~t

~

~0.2 (GeV/c)', as discussed in the Introduction,
or by determining (t) in an experiment sensitive
to f, values not much bigger than this.

Before turning to the detailed calculation of (t)
we note that since (t) is completely determined by
do/dt and the experimental cuts, a complete ex-
perimental determination of the differential cross
section would make a study of (t) unnecessary.
However, given the limited data which are present-
ly available, an analysis of (t) is very worthwhile
for the following reasons: Firstly, (t) is insensi-
tive to experimental errors in determining the
overall scale of do/dt and, secondly, because fair-
ly rigorous statements can be made regarding the
values of (t) that are allowed by various coupling
types such as V, A or S,P. Hence (t) provides a
quick check of whether a given experiment is con-
sistent with a specific coupling.

To see how sensitive (t) is to the nature of the
interaction, we assume that the form factors ap-
pearing in do/dt have a common t dependence of
the form (1 —t/A') ' characterized by an as yet
unspecified mass A. For P(t), which can be domi-
nated by the pion-pole contribution shown in Fig.
4 if the pseudoscalar current transforms as an
isovector, we ~ill assume in addition that P(t)
may have the form

The differential cross sections do'/dt correspond-
ing to+=V, A. and —=S,P, T can then be expressed
in the form

do'(
)

-G' 1
dt * 82 (s-m')'

(4.2)

Q ft„'(s)f„„(t„t, )
(t'(s)) = "

Z ft'„(s)f„(t„t, )

where we have defined

(4 2)

In
fn(f1 ~ t2) d

(1 /A2)4 (4.4)

For the pion-pole contribution we require in addi-
tion the integrals Z„(t„t, ) and K„(t„t, ), where

gn

dn(4~ t2) = dt
(1 / 2)2 ~

1

(4.5a)

(4.5b)

Although neutrino beams are not monoenergetic,
it is nonetheless of interest to examine (t'(s)) for
a fixed value of s before confronting the problems
associated with the neutrino spectrum. Figure 5
compares (t ) —= (t ~ ) and (t') =(tr ")at an incident
neutrino energy Q, =m/2, which is near the peak
in the Argonne flux distribution. For the V,A ma-
trix element we use the previously described
%einberg-Salam model parametrized by x = sin'6~,
and we have taken A =I for illustrative purposes.

where the coefficients 8'„(s) can be read off direct-
ly from Eqs. (AS). For the terms proportional to
P(t) we substitute (1 —t/m, ') for (1 —t/A') if pion
dominance is assumed. From Eqs. (4.1) and (4.2)
we see that the averages (t'(s)) derived from do'/dt
can be written as
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FIG. 5. (-tjm ) as a function of t& for a monoener-
getic neutrino beam with E„=—@0=m/2 (corresponding
to a maximum momentum transfer -t2 ——0.5m ). For
each value of the minimum momentum transfer t& (or
the proton momentum IP'I) the doubly hatched region
gives the range of values of (—tlm ) corresponding to
an arbitrary admixture of the form factors S(t) and P(t).
The arrows labeled S = 0 and P = 0 denote the extreme
cases S (t) = 0 and P(I;) = 0, respectively. The singly
hatched band gives the corresponding predictions for
the steinberg-Salam model of the t/, A current discussed
in the text, with x =sin Oz,. Note that the distinction be-
tween V, A and S, P increases as I t, l

decreases. Inclu-
sion of a T contribution would blur this distinction. All
form factors are assumed for simplicity to have the di-
pole t dependence of Eq. (3.18) with A=m.

I

0.3
I

0.5
I

0.7
I I

0.9 I. I

&-t/m ~&

I

I.5

FIG. 6. Allowed ranges for (—tom ) as a function of

t& or P™nfor an incident neutrino beam characterized
by the Argonne spectrum of Fig. 2 and Table I. For
each value of t&, the top, middle, and bottom bands cor-
respond respectively to the WS model, an arbitrary V, A
model, and to an arbitrary combination of S, P, and T.
In the top band the right edge corresponds to x = sin Hz,

1 1= 0, the next vertical lines to x = & and x = 3, r espec-
tively, and the left edge to x=xm;I= 0.6. In the middle
band the dotted and dashed lines correspond to a pure
vector isoscalar current and a pure axial-vector cur-
rent, respectively. It should be emphasized that no eon-
elusions can be drawn from experiments with large val-
ues of tt because of the strong influence of unknown form
factors. The bands with large t& in this figure ha, ve been
included merely to illustrate the dependence of (-tlm )
on t& in the form-factor models we have considered.
This same remark applies to the upper bands in Figs.
7-9 as well.

The vertical scale gives the experimental cut on
the 3-momentum of the outgoing proton, or equiva-
lently the value of ! t, ! in Eq. (2.1). We see from
Fig. 5 that if !t,! is very small the V, A predictions
for (t) fall into bands which do not overlap those
for S,P. As expected (-t ~ ) is larger than
(-t '"), and a clear distinction between the helici-
ty-preserving and helicity-flipping cases is ap-
parent. However, as ! t, ! increases the &,A band

begins to merge with the S,P band, and at !t, !
= 0.27m' the distinction between the two begins
to disappear.

This behavior reflects the fact that, although the
S,P differential cross sections rise for small t,
they turn over and fall, more or less as the V, A
exoss sections do, when the t dependence of the
form factors begins to dominate that due to the in-
teraction. Since the t dependence of dc /dt is
similar to that of der "/dt, inclusion of the tensor
contribution would further blux' the distinction be-
tween the helicity-preserving and helieity-flipping
eases. This is another manifestation of the "con-
fusion theo rem. "'

We turn next to the case where the incident neu-

trino beam is not monoenergetic. We define (t)
to be the result obtained by computing (t)

=[attn(t)]/[Zn(t)],

where n(t) is the number of
events with momentum transfer t, and any value
of s. We have determined the possible range of
(t) values for each general type of interaction as a.

function of the experimental cut in t, for this situa-
tion. Figures 6 and 7 give the results correspond-
ing to the ANL and BNL spectra, respectively. In
each figure, for each value of the cut in t, t„ three
horizontal bands are shown which cox'respond to
the following cases: The top band gives the results
for the Weinberg-Salam model with the internal
lines denoting x= —, and x= 3. The middle band cor-
responds to an arbitrary V, A model characterized
by the three parameters F,(0), F,(0), and G, (0)
defined in Eqs. (3.5). The maximum and minimum
values of (- t/I') in this band are obtained by ex-
tremizing the three-dimensional parameter space
spanned by F, (0), F,(0), and G, (0). Also shown in

this band are the results for the pure vector iso-
scalar current (dotted line) and the pure axial-
vector current (dashed line). The lowest ba.nd in
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FIG. 7. Allowed ranges for (-tom ) as a function of
t& or P™nfor an incident neutrino beam characterized
by the Brookhaven spectrum of Fig. 3 and Table II. For
details see text and caption to Fig. 6.

each ca.se gives the range of (- t/m') fo»n»bi-
trary combination of S, P, and T characterized
by the five parameters S(0), P(0), T, (0), T, (0),
and T,(0). (We have assumed that OR, contains
only first-cia. ss currents. ) The corresponding
five-parameter space has been extremized with the
extrema corresponding to the ends of the bands.
We see from these results that an arbitrary V, A

coupling can give rise to values of (- t/m') that
are not obtainable from the Weinberg-Salam model
for any value of x. This is, of course, not sur-
prising and indicates that a distinction among the
V, A models themselves is possible based on a
measurement of (t). We see from Fig. 7 that the
results for the general V, A case can, in turn, be
reproduced at BNL energies by an appropriate
combination of S, T, P form factors, although the
converse is not true.

In this connection it is useful to summarize the
status of the "confusion theorem"' ~n vP and vp

scattering. Recall that for v„e and v„e scattering
it was shown, assuming massless electrons, that
for any admixture of V and A. interactions, there
is a corresponding admixture of S,P, T interac-
tions which yields both the same v„e cross section
and the same v„e cross section. For vP and vP
scattering the situation is as follows:

(i) For kinematic conditions under which m is
not negligible, a V+A coupling can be reproduced
by an appropriate combination of S,P, T couplings,
if we assume that all the proton form factors have
a common t dependence. If all the proton form
factors are retained, then V+A is the only cou-
pling which we know for certain can be confused
with S,P, T: Other V, A couplings may also be
subject to "confusion" but this question has not
been settled to date.

FIG. 8. .(-tom } as a function of t, or P™nfor an
incident neutrino beam characterized by the Hrookhaven
spectrum. For each value of t& the left and right bands
give the V, A and 8, P predictions under the dynamical
assumptions stated in the text. The arrows indicate the
predictions for a pure vector isoscalar current (I), a
pure axial-vector current Q), the steinberg-Salam
model with x=o, and a pure scalar current (P=O). For
further details see text, and caption to Fig. 6.

(ii) If mt 0 and we set F,(t), G, (t), T,(t), S(t),
and P(t) equal to constants, and all other form
factors equal to zero, then we ean rigorously show
what only V+ A can be confused with S,P, T. This
result has been noted earlier" for the case of
massive electrons.

(iii) At very high energies, where we can safely
set m = 0, then any V, A theory can be confused
with S,P, T, irrespective of which V, A forrn fac-
tors are included.

Even when a, rigorous confusion theorem does
not exist a "practical confusion theorem" may
hold if a given set of data for der"'"/dt can be fitted
by both V, A and S,P, T models within the existing
experimental errors. Examples of this have been
discussed by Adler" for deep-inelastic neutrino
scattering. When sufficiently good vp and vp data
become available, it will then be appropriate to
examine the "practical confusion theorem" in
greater detail by attempting to fit the results with
both V, A and S,P, T models.

When the number of observed events is suffi-
ciently large, one can consider a more refined
weighted average t. This is obtained by separating
the events into bins of fixed s, computing (t(s))
for each bin, and then combining these bin aver-
ages, weighting each by the beam flux at the cor-
responding energy. The resulting average, which
we denote by (t)„, may perhaps provide a, more
sensitive discriminator between different interac-
tions. The (t) values which result from various
interactions are shown in Figs. 8 and 9 for the
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0.20

Brookhaven neutrino and antineutrino beams, re-
spectively. The V, A bands correspond to the
Weinberg-Salam model with x = sin'0~ ranging be-
tween 0 and 1. Although the maximum value of
(- t/m') is obtained for x =0, the minimum corre-
sponds not to x = 1 but to some other value which
is usually in the vicinity of x= —,'. In Fig. 8 the two
vertical lines in each V, A band correspond to the
representative values x= —,

' and x= 3, with the
former value giving the higher result for (-t/m')
The dashed and dotted lines denoted by A and I in
both figures correspond to a pure axial-vector
and a pure vector isoscalar current, respectively,
as discussed in Sec. III. In the S,P band the value
of (- t/m')„depends on a single parameter,
IS(0)/P(0) I, with the lower end of the band corre-
sponding to P(0) =0. The upper end, for which
S(0) =0, is given by either the solid vertical line
or the dashed vertical line corresponding respec-
tively to the dipole form or the pion dominance
form for P(t). The dipole form is assumed to be
characterized by a mass 4 =0.9m in all of the
V, A, S, and P form factors. We see from Figs.
8 and 9 that (t)„distinguishes clearly between a
V, A model of the Weinberg-Salam type and an
arbitrary S,P coupling. However, the dependence
of the observed t distribution and of (t) on the
shape of unknown hadronic form factors must not
be forgotten. We have tried to get some feeling
for this dependence by varying the mass A in the
dipole form. It was found that a 10' increase in
A resulted in roughly a 10% increase in ( t)„
when the other parameters were held constant.

To summarize this section, we have shown that

0370
I

'
I I

O. I 5
I I I I I I I

0.4 0.6 0.8 I.O I.2 I.4 1.6 I.8 2.0
(-f/m2 )

FIG. g. ( t jm ) as a function of t
&

or P™nfor an
incident antineutrino beam characterized by the Brook-
haven spectrum. We assume (as is approximately the
case) that the v and v spectra have the same shape albeit
different normalizations. For further details see text
and captions to Figs. 6 and 8.

(t) provides a crude distinction between V, A and

S,P, T interactions. If the experimental results
for (-tlm') fall well outside the V, A bands then
a clear signal for neutrino helicity-flip will be in-
dicated. However, if a, value of (-t/m') in the
V, A band is obtained, one can study do/dt at
Brookhaven for

I
t

I

~ 0.2 (GeV/c)' to help rule out
a dominant S,P term. Even if such a possibility
is indeed ruled out, one has still not distinguished
between V, A and S, P, and T. To accomplish this
in vp or vp scattering would probably require a
future generation of experiments, such as a mea-
surement of the proton's polarization, to which we
turn in the next section.

V. POLARIZATION PHENOMENA

If polarization measurements in vp scattering
should ever become feasible, then one would ex-
pect rather striking polarizations, of the order of
100%%up, to be produced by some kinds of interactions.
Furthermore, the polarizations resulting from V, A
are quite different from those produced by S, P, T
and so they ought to be very informative should
the momentum-transfer data, turn out to be com-
patible both with V, A and with S, P, T.

From angular momentum conservation alone,
one can show that the polarizations observed at
certain angles can give unambiguous evidence for
the presence of certain kinds of couplings. For
example, consider vP scattering at 0' in the cen-
ter-of-mass (c.m. ) frame. At this angle, a mea-
sured proton recoil polarization which is anything
other than -100% in the neutrino-beam direction
would prove that there is a V, A component in the
neutral weak force. For, as shown in Fig. 10, if
only the neutrino-helicity-flipping S, P, and T
couplings are present, then at 0' the proton spin
must flip in the opposite direction, so as to con-
serve angular momentum along the beam line.
Thus, the incoming protons can interact only if
their spins point in the neutrino-beam direction,
and when they emerge, all their spins must point
against it.

One may look for this behavior, or its absence,
either by studying the dependence of the cross sec-
tion on target polarization, or by measuring the
polarization of the recoil protons. The latter ap-
proach is somewhat facilitated by the fact that
longitudinal polarization of the protons in the c.m.
frame would appear as transverse polarization in
the lab. This makes it possible to measure the
polarization by rescattering, and is due to the fact
that protons suffering extremely small deflections
in the c.m. frame emerge very near 90'to the beam in
the lab. Of course, for precisely 0', the proton
has no recoil momentum at all, and so one must
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ask to what extent the 100% polarization expected
from Fig. 10 persists away from I, =0. To explore
this question, we have calculated the laboratory-
frame polarizations produced by S,I', T and V, A

interactions when the beam energy Q, «m. (The
expressions applicable to the general case are
given in the Appendix, but a discussion going be-
yond the simplest cases would seem premature at
the present time. ) When the neutrino energy is
low, ~t „~«m', and the proton recoil may be
treated nonrelativistically, terms of order q/m
in the proton matrix elements may be neglected,
and the t dependence of most form factors may
safely be ignored. For the S,I', T case, it is pos-
sible, in addition, to neglect the S,I' amplitudes
relative to those from T, so long as ~&
«(- t,)'~'. (Recall that the S,P contributions
vanish at f =0.) Thus, the "S,P, T" amplitudes
may be taken to result from the T interaction

X =—$„o~~lf) „if)~(T~ o (1 + Tj'5)fp,
C

2
(5.1)

fg„—1 „(1+1,)t„fly „(~ ~~,)g-„
2

where p and u are constants.
We denote the longitudinal polarization of the re-

coil proton in the laboratory frame by 6'„and the
transverse polarizations along (Q && Q') & p' and

Q x Q' by 6't and 6'„, respectively. We express
these in terms of the angles 8' and 8 at which the
neutrino and the proton, respectively, emerge
in the laboratory relative to the beam direction.
A. beam of low-energy neutrinos, interacting via
the tensor coupling (5.1}, will produce recoil
polarizations given by

-2 sin(8+ kB')cos28'
1+cos (—8 )

(5.3a)

where v' and 7. are effectively constants. '~ Similar-
ly, the V, A amplitudes result from

(5.3c)

For antineutrinos, each component of the polar-
ization simply changes sign:

(pv Q) P (5.4}

If the coupling is V, A, Eq. (5.2), the polarizations
produced by neutrinos are

v sin(8+ 28')cosk8' —a cos(8+ 28')sin28'
t 2a'+ (v' —a') cos'(-,'8')

(5.5a)

v cos(8+ ~8')cos~B'+ a sin(B + ~8') sin&8'
2a'+ (v' —a') cos'(-,'8')

(5.5b)

6"=0.
tI

(5.5c)

Antineutrinos will give polarizations related to
these by

8'"(s/v) = -5'"(-~/~) . (5

In Fig. 11 we have plotted the transverse polar-
ization 8", versus -I/m' for the case of neutrinos
with a laboratory energy Q, =0.05m (an energy
characteristic of LAMP F, for example). We show

the polarization which corresponds to pure T, Eq.
(5.3a), and the special cases of the V, A polariza-
tion, Etl. (5.5a), which correspond to pure V,

pure A, V+A, and V —A . One sees from Fig. 11
that over a considerable range in t, the polariza-
tion produced by the T interaction remains ex-
tremely close to the -100k required by Fig. 10
at t=0. This means that even for T accompanied
by some S and I', the polarization will be close to
-100% so long as ~t«(-I )'~'." We next ask
how likely it is that a coupling involving a V, A

component will yield something different. As il-
lustrated in Fig. 11, most pure V, A combinations
give polarizations which are very different from
that due to S,P, T. Even for V+A, it is only for

-2 cos(8+ ~8')cos~B'
1+cos'(-,'8') (5.3b)

FIG. 10. Behavior of the neutrino and proton spins
for 0' scattering in the center-of-mass frame, when

only S, P, and T couplings are present. Note that the
scattering of neutrinos off protons with initial+helicity
via an S,P, g interaction is strictly forbidden by angular
momentum conservation.

-1
,00I 002 003 004 .005 .006 007 .008 .009

FIG. if. The transverse polarization, along the di-
rection (Q XQ') x P', produced by a neutrino beam with

q, Qab) = 0.05m.
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incident neutrinos that the polarization resembles
that from S,P, T; for antineutrinos these two
coupling schemes give large polarizations that
differ in sign. Allowing for the possible simu1. -
taneous presence of S, P, V, A, and T„one finds
that at I;=0

5~5 =qy5g& q,i

Q p p /5 /X

(6.3a)

(6.3b)

(6.3c)

(6.3d)

pp -2va —2(ir I'+ ir i')
v'+a'+2(iv' i'+17. i') (6.7a)

To proceed we define the quantities

(6.3e)

and

-2va+2( iv I'+ Iv I')
v'+a'+2(i~i'+ lvl') ' (6.7b)

VI. ELASTK CROSS SECTIONS

Having already discussed what can be learned
from the shape of the differential cross section
in elastic neutrino-proton scattering, let us now

see what can be learned from the overall rates
for vp- vp and vp- vp. Just as the weak-coupling
constant, G, is determined by an analysis of muon
decay in the case of charged-current interactions,
the coupling strength of the weak neutral inter-
actions, G = XG, is determined from experimental
studies of the processes vN- vX and vN- vX.
This procedure was first employed by Adler and
Tuan'6 and also by Sakurai and Urrutia' and we
shall outline it here in some detai1. .

We begin by writir~ the neutral-current effective
matrix element (for accelerator neutrinos) as'" "

egNc =—[iT„(1+y,)|)„(6'+r, )

+$„(1+y,)v, „t)P „
+q„y.(1+y,)q„(6:.+6,.)], (6.1)

where A. is the parameter which characterizes the
strength of the neutral-current interaction relative
to that of the charged-current interaction. We
also define the hadronic currents, F, as follows:

& =g so&'+g s 8'+gs8& 8

+5 g P0+ 5 ++P3+5+gP8+5 &

0 3 8

0 3 8
&g -gV0&i. +gV3&f +gV8P, i

0 3 8
+5g gAO+5p +gA3+5@+gA85g &

+op =groew+gr3&ag+gr8&ap ~

(6.2a)

(6.2b)

(6.2c)

(6.2d)

(6.2e)

where 5'~, 8'5~, f ~~, F~~„, and F
&

are identified with
the usual nonet of quark currents (q is the quark
field),

These expressions show that, in principle at least,
polarization measurements can always determine
whether or not the interaction includes a V, A. com-
ponent.

v(vN- vX)
cr(vN- p X) '

v(vN vX)8-=
v(vN- p, 'X) '

(6.4)

+[l(l)"'g .+l(l)"'g, .]'
+ (kgv. )'J, (6.6)

for the S,P case.
It is straightforward to determine X' for a given

space-time structure of the neutral current using
Eqs. (6.5) and (6.6) and the experimental values
for R„and 8-„. We have taken these values from
Refs. 5 and 16, and using these values we have
computed the cross sections shown in Table III."
However, for the Weinberg-Salam model the over-
all strength of the neutral current is fixed once
x =sin'6I~ is specified, and hence the correspond-
ing cross sections have been computed directly
without reference to the preceding normalization
analysis.

From Table III we see that the experimental val-
ues R„=0.23 + 0.092 and 0.17 +0.053 faB within the
range predicted by the WS model, but appear to be
larger than the predictions of S,P models. This
suggests that the neutral current is not predomi-
nantly S,P.

VII. CONCLUSIONS

We have considered what one can learn about the
space-time stxucture of the neutral weak inter-
action from vp and vp elastic scattering. We have
seen that it is relatively easy to rule out a pure
S,P coupling. Indeed, the observed rate for vP
elastic scattering, and the fact that the elastic vt)

Using the form of the weak neutral current dis-
played in Eqs. (6.1) and (6.2) along with the as-
sumptions of the quark-parton model, Adler ob-
tains'"' "
A„+ 3R-„=x'([g», (-,')"'+g», (3 )'"]'+g»,'

+ [g,.(-')'"+g,.(3)"']'+(g~,)'3, (6.6)

for the case of an arbitrary combination of V and

A, and

3(&„+&-„)= ~'I[r'(3)"'g..+ 2(3)"'gs.]'+ (~ gs )'
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TABLE III. Flux-averaged neutrino- and antineutrino-proton total cross sections, for the
models defined in the text. The flux-averaged charged-current cross sections used in com-
Puting Rev'=o. (vP vP)/o(vn P P) and R—", =o.(vP vP)/o(vP P n) are o(m P P)
=3.02X10 8 cm and o(vp p,+n) =1.14X10 39 cm .

Model
~v

(]0 40 cm2) (10 4 cm2) Rel

Weinberg-Salam

x=0
0.10
0.20
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00

X+ +5K

&~+ 5~

7.97
5.65
3.90
2.73
2.36
2.14
2.06
2.13
2.70
3.85
5.58
7.88

10.77

3.19

1.50

3.00
1.86
1.29
1.30
1.52
1.89
2.40
3.06
4.80
7.13

10.04
13.53
17.60

1.20

1.09

0.264
0.187
0.129
0.090
0.078
0.071
0.068
0.070
0.089
0.127
0.185
0.261
0.356

0.105

0.050

0.264
0.163
0.113
0.114
0.133
0.166
0.210
0.268
0.421
0.625
0.880
1.186
1.543

0.105

0.096

3 1 8 3 1 8FR+&3 r X+ r 5K+~3 F5X

3 1 8+X. +~~ X

boa

+8 + f'8

$'3 + p3

@0+F0

p3

g3b

p8

p'8

p0

p0

p3+ p'8b

p0+p8
$'3 + f' 8 + g' 3 + + 8 b

5 5

5.15

5.21

5.46

0.478

1.38

2.06

1.57

0.146

1.57

0.269

1.95

0.702

2.44

2.44

0.702

2.65

0.702

2.08

1.51

0.022

2.31

5.21

5.46

0.478

1.38

2.06

1.57

0.146

1.57

0.269

1.95

0.702

2.44

0.702

2.65

0.702

2.08

1.51

0.022

0.170

0.172

0.181

0.016

0.046

0.068

0.052

0.005

0.052

0.009

0.064

0.023

0.080

0.080

0.023

0.087

0.023

0.068

0.050

0.001

0.203

0.457

0.478

0.042

0.121

0.182

0.138

0.013

0.137

0.024

0.171

0.062

0.214

0.214

0.062

0.232

0.062

0.182

0.132

0.002

~ We have used the fermion-current model of Sakurai (Ref. 7).
A dipole form factor was assumed for W5 in this case.
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and vp cross sections differ, already appear to
accomplish this. Further vp measurements that
would confirm this conclusion have been indicated.

By contrast, in vp elastic scattering it is very
difficult to distinguish between a combination of
S, I', and T on the one hand, and some admixture
of V and A on the other, as we discussed in Sec.
IV. Nevertheless, one can ask whether the shape
of the f distribution, and correspondingly the aver-
ag e value of t, are consistent with a V, A inter-
action. If they are, one can attempt to determine
the details of the coupling (the Weinberg angle,
for example), although such an attempt is com-
plicated by our uncertain knowledge of the ha-
dronic form factors which are involved.

In closing, we comment briefly on the evidence
concerning the space-time structure of the neutral
weak force from other reactions. Table IV pre-
sents a summary of the processes which have been
considered to date as probes of the neutral weak
current. ' "~ """*'~"Some of these are similar
in nature to those considered earlier in the study
of the charged weak current. ""Evidence that the
coupling is not dominantly S,I' has come from the

y distributions in high-energy inclusive scatter-
ing, "and very recently from the angular distri-
bution for the process vga —vpm . That the neutral
interaction is V and A, and not some combination
of S, P, and T, is very much harder to show in
neutrino reactions on nucleon or electron targets.
Neutrino experiments with nuclear targets'0' ' and
measurements in e'e collisions" are potential
sources of clean information on this issue. The

scattering of electmn-type neutrinos from elec-
trons is also a possible source of insight, because
of its sensitivity to interference between charged-
and neutral-current effects. '0 For example, if
the v,e cross section is less than the value ex-
pected (from y, decay) for the charged-current
interaction acting alone, then the neutral current
of the electron must contain a V -A piece. Final-
ly, we note that the observation of parity violation
in an atom, at a level corresponding to a weak
coupling of order G~, the Fermi coupling con-
stant, would imply the presence of a V&A neutral
weak interaction of this strength. Parity-violating
S,I', T atomic weak interactions have already been
shown to be at least one thousand times weaker
than this by using the limits on the electric dipole
moments of certain atoms and molecules. " Fur-
thermore, because of their phase, parity-odd
S,I', T amplitudes cannot interfere with the electro-
magnetic amplitudes to produce the parity-violat-
ing effects for which one is looking. "
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APPENDIX: DIFFERENTIAL CROSS SECTION AND POLARIZATION FORMULAS

In this Appendix we give the detailed expressions for the vp and vP differential cross sections and for the
polarization of the outgoing proton. These can be obtained from Eqs. (3.5) and (3.7) by use of standard
techniques. The necessary trace calculations were executed with the aid of scHOONSCHIP (a CDC 6600 pro-
gram, written by M. Veltman, for symbolic evaluation of algebraic expressions), and checked against the
results of ASHMEDAI, written by M. Levine. In order to facilitate the comparison of our results to those

TA33LE IV. Summary of hadronic probes of the neutral current. A x indicates the current component to which the
given experiment; is sensitive.

Experiment Isovector Isoscalar References

v+p v+p
v+N v+N+m
v++~ v +X
v(P)+ d vP)+ d
v+ 'He-v+ 'He
v+ ~2C v+ ~2C(15.11 MeV)

v+ nucleus v+ nucleus
+ 1' meson

X X

X X

X X

X X

1-6, 13, 16, 17, 19-21
6, 13, 16, 17,22, 23
6, 10, 13,16,17,22, 24—28
29
10
10,30

31
10,32
32
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of Adler et a/. ' we let the form factors appearing in Eqs. (3.5) and (3.7) be arbitrary complex functions of
the momentum transfer t. %e then have

-Bs(s -m'}' dc"
= S I' t(t —4m')+ IPI't'+ IT, I'8[4(s —m')'+ t(4s+ t —2m')]

~ ( — ')( — "t)- IT.I', [( — ')" t], 16t , jet

+
I T, l' —,f-16m'(s -m')'+ t[(2s+ t)' —4m'(Bs+ 2t —5m')]J

—4t[2(s -m')+ t][~2 Re(ST,*)~ Re(PT,*)~ Re(ST;)]

+ Re(ST,*)—,[-Bm'(s -m')+ t(t+ 2s —6m')] —16t'Re(T, T,*)

+ —,[4(s —m')'+ t(- 4m'+ 4s+ t )][Re(T,T,*) —2 Re(T,T,*)]

+ 2(l E, I'+
I G, I')[2(.—m')'+ t(t+»)] —IE.I' —,[(s —m')'+ «s —2m'}]2t

—8
I G, I2m't 7 4[Re(E G*,) + Re(E G,*)]t[t+2(s —m')]

+4 Re(E,E,*)t2 —IG, I' —,[(s-m')'+ st]. (Al)

The upper and lower signs in (Al) correspond to v and v, respectively. For the purpose of calculating (t)
it is convenient to express the differential cross sections do'/dt (corresponding to + = V, A and —= S, P, T)
in the form

do' 6'
(A2)

in which the coefficients R„(s, t) of each power n of t in Eg. (Al) are exhibited explicitly. The t dependence
of 8„'(s, t) then arises solely from the form factors E,(t), G, (t), . . . , etc. If we factor out the assumed t
dependence of the form factors as in Eq. (3.18), do'/dt can then be expressed in terms of the functions
R„'(s, 0) =—ft„'(s) in which the expressions E» G». . . mean E,(0), G, (0), . . . , etc. The coefficients A„'(s)
then determine (t(s}) through Eg. (4.3}. We have

Z', (s) =~ 8(s-m')[Re(EG,*)+Re(EG,*)]+4s(IE, I'+ IG, I')

(IE,I'+ IG. I'}-8 'IG I', (A3b)

R;(.)=2[IE,I" IG, I"2R.(E,G,*)].4R.(E,G,*).4R.(E,E,*)- ',
A, (s) = 32(s -m')'

I T, I',

& (s) =-4m'ISI'+16(» ™}IT,I' —
~ (IT.I'+ IT, I'+4IT, I')

16(s —m')'

(A3d)

- 8(s —m')[+2 Re(ST,*)w Re(PT,*)+ Re(ST,*)]v 32(s —m') Re(ST,*)

+32, [Re(T,T,*) —2 Re(T,T,*)],

JI. (s)= ISI'+ IPI'+BIT, I'- . IT.I'- 2 IT3l'

+ —,(s -m')(s —5m')
I T. I' -4[+2 Re(S T;) + Re(PT,")~ Re(ST„*)]

x —,(s —Bm') Re(ST,*) —16 Re(T, Tg)+ 32, [Re(T,T,") —2Re(T,T,*)],8 (s -m')
(A3f)
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lt, (s) = —,(s —2m')
i T, i'+ g Re(ST,*)+, [Re(T,T,*) —2 Re(T,T,*)],16, , 4 8

(A3g)

R, (s)=, [T, l' (A3h)

We turn next to the polarization 6' which we define as follows:

do'(w)/dt do (-w)/dt

do'(w)/dt +do (w)/dt
(A4)

da'(w)/dt are the differential cross sections for producing a proton with spin pointing along +w, where w

is an arbitrary direction. For longitudinal proton polarization so &'"" is given by

P'P' P'
=(W W

(tong) r (long) Oong)t O (A5)

while a transversely polarized proton is described by

(trans) (n p)K), (AS)

where n is a unit vector transverse to the proton 3-momentum, i.e. , n ~ P = 0. For other polarization di-
rections se& can be appropriately defined subject to the transversality condition

wyPy= 0. (A7)

In what follows we quote the general polarization formulas for V, A and S, T, P in the form

(A8)

where 6';„,„, correspond respectively to polarizations in and out of the scattering plane. In each case the
upper (lower) sign describes v (v). We have

(P;„(V,A) =—{+4m'ti F, i'w t Re(F,F,*)(t+4m')+ Sm'Re(E, G,*)(s —m')

+ t[2(s —m')+ t][Re(F,Ga)+ Re(F,G,*)]+ t'i F, i'

+ t Re(F,G,*)(2s+ t)+ t Re(G,G,*)(t —4m')} (Q+ Q') w

4m' PPl $ 6m'[2(s-m')+ t]iG, i'(Q —Q') ~ w+ [8Re(F G,*)+2Re(FG,*)]Q w — Re(F G,*)t Q' ~ w

+—(+t[2(s —m')+ t][Re(F,F,*)+ Re(G,G,*)+
i F, i']+ tgRe(F, G,*)+ 4m't Re(F,Ga)

+ [4(s —m')'+ 4t(s —m')+ t'][Re(F,G,*)+ Re(F,Gga)] Ip w, (A9a)

2i
(Pont(V, A)=+ —s tt gw QrsP Qg(-2mt[lm(FtG, *)+Im(FgGg) —Im(FgGt)]+8m'Im(E, Gt))n yh n y

2i
+ —e„s&gw PiP&Qgt2 t[2(ms —m')+ t][im(EtFf)+ Im(G, G,*)]J, (A9b)

& = 2m'(IFt I'+
I Gt I')[2(s —m')'+ t(2s+ t)] —Sm tl Gt I'

+ 4m't'Re(F, F,*)+ 4m't[Re(F, G,*)+ Re(E,G,*)][2(s —m') + t]
—t

i G, ~'[(s —m')'+ st] —t i F, ~'[(s —m')(s —m'+ t) —m't], (A9c)
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+;n (S,P, T) = +—(Bm'
I T, P(m

2 —s) + 4m 2t[s Re(T,T,*)+ s Im(r, r,*) —Im(T2T;) (2(s —m 2) + t)]

—2t Im(r, r,*)[-Bm'(s m—')+ t(2s+ t —Bm')]+ m't(t —4m')Im(sr +)

~ 2m't Re(PT,*)+ m't'Re(PTf)} (Q+ Q') ~

~-(4m't(4m'-t)ae(r, r;)+2m'[2(s-m')+t]ae(ST, *)}(Q—Q') I

~ —(-Bm't
I Ti I'+ 4m't[ae(T, Tf)(t+ m')+ Im(T, T;)(t —Bm')]}Q ~4

a —{-4m't[
~ T, ~'+ 2 Im(T, T,*)]+16m'Re(T, T,*)[(s—m')'+ st]

+ 4m'[(s+ t)'+ (s —2m')' —2m'][ae(r, r;) + Im(T, T3~) ]
—4m ~t'Im(T, T) —2t Im(T, T4~) [4(s m'—)'+ t (4s+ t —4m')]

+ m't[2(s —m') + t][sRe(PT,*)+ Im(ST f) x 2 Re(PT,*)] m't—Re(SP*)}P sv, .
6',„,(S,P, T) =—s q~;nr Q'sP& ps[+ 2m't Re(PT,*)~ 4m'Im(ST;)]8i

(A10a)

Bi
+

& &„s&its P'sP& Qs(a 2m't Im(ST()+ Bm' Im(T, T,*)[2(s -m')+ t]

+ Bm'[Im(T, T,*) —Re(T,T,*)](s —m') + 4m't[Im(T, T,*)—Re(r,rg) ]

—4t Im(T, T,*)[2(s—m')+ t]},
X =

I
Sl'm't(t —4m')+

I
Pl'm't'+ ir, I'Bm'[4(s —m')'+ t(4s+ t —2m')]

—[T,p16mt(s —m')(s-m'+t) —[T,pl6mt[(s-m')'+ st]

+
~ T, p (-16m'(s ——m')'+ t[(2s+ t)' —4m'(6s+ 2t —5m')]}

(A101)

—4m't[2(s -m')+ t][+2ae(Sr,*)+ae(Pr,*)+ae(sr,*)]

a Re(ST,*)4mt[- Bm'(s -m') + t(t+ 2s —6m')] —16m't' Re(T,T,*)

+ Bmt[4(s -m')'+ t( 4m'+ 4s+ t-)][Re(T,T,*) —2ae(T,T,*)] . (A10c)
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