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The stretching modes of a long, thin Gaussian spindle are calculated and compared with those of a long, thin
cylinder. The cross sections of these modes for gravitational radiation are calculated and compared. It is found
that the fundamental mode of the spindle has between 1.2 and 1.6 times the cross section of the fundamental
mode of a comparable cylinder, depending on how the comparison is made. The frequencies of the spindle
stretch modes are proportional to the square root of the mode number and only the fundamental mode
couples to gravitational waves. This behavior makes the spindle particularly useful for a single-antenna
anticoincidence experiment which looks for excitations of the fundamental mode that are not in coincidence
with excitations of higher modes. Such an experiment should be quite effective at rejecting nonthermal noise
and dern'onstrating the presence of gravitational waves.

I. INTRODUCTION

Acoustic resonator gravitational-wave antennas
are usually cylinders. ' Cylinders are easy to
make, easy to analyze, and easy to couple sensors
to. Furthermore, cylinders are compact, an im-
portant feature in low-temperature experiments.
However, the low-temperature techniques that are
now being used in gravitational-wave detection
promise a tremendous reduction in random ther-
mal noise. This improvement means more prob-
lems from nonthermal noise such as strain-relief
processes in the antenna and local disturbances
that manage to penetrate the isolation of the anten-
na. This paper considers a new antenna shape
which can discriminate between such spurious
signals and genuine gravitational-wave bursts.
Figure 1 shows the shape that will be considered:
the figure of revolution generated by rotating a
Gaussian curve about its asymptote. For lack of
a better name, I choose to call it a Gaussian
spindle.

The advantage of a Gaussian-spindle antenna is
that only its fundamental stretch mode can couple
to gravitational waves. Thus, one can do an anti-
coincidence experiment which monitors several
stretch modes and accepts an event in the funda-
mental made as a gravitational wave only if it does
not coincide with an event in a higher mode. A
cylindrical antenna is not very useful for this type
of experiment because all of its even-parity modes
couple to gravitational waves. Thus, an anticoin-
cidence experiment with a cylinder must either
accept all even-parity events as gravitational or
else assume a power spectrum for gravitational-
wave bursts and use the even-parity modes to sam-
ple the power spectrum of each event.

In order to keep the analysis simple, I will con-
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FIG. 1. A Gaussian spindle with shape factor 0.2.
The end-face locations for various truncated spindles
are shown.

sider only the properties of a long, thin antenna
and calculate only its gravitational cross sections.
It is important to remember that this analysis is
only part of the story. The final assessment of an
antenna can only be made when the antenna is part
of a specific gravitational-wave detector. It is
found that a long, thin spindle is just as easy to
analyze as a long, thin cylinder and has between
1.2 and 1.6 times the cross section of a compar-
able cylinder, depending on how the comparison
is made. This slight improvement in cross sec-
tion comes about only because all of the antenna
response is concentrated in the fundamental mode.
A similar improvement was noted by Bonazzola and
Chevreton for antennas similar in shape to the Gaus-
sian spindle. ' The increased cross section is more
than compensated for by the fact that the spindle
antenna is sensitive at only one frequency while the
cylinder is sensitive at many frequencies. Thus
one would be rather foolish to build a spindle an-
tenna solely to obtain an increased cross section.
The only good reason for building a spindle is to
do a clean anticoincidence experiment.

The Gaussian-spindle shape results from the re-
quirement that there exist a stretch mode with
uniform strain. This requirement guarantees that
only one mode will couple to gravitational waves
and is the key to the anticoincidence experiment.
It is this requirement, rather than the exact Gaus-
sian-spindle shape, that would govern the design
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of a realistic anticoincidence-type gravitational-
wave detector.

I find it convenient to use the notation and re-
sults given in the text by Misner, Thorne, and
Wheeler. ' I also find it convenient to use Planck
units defined by setting G = c = f(/2m= i.'

Section II considers the stretching modes of long,
thin solids and derives the Gaussian-spindle shape
from the uniform strain requirement. The normal
modes of long, thin spindles are derived and com-
pared to those of long, thin cylinders. The gravi-
tational-wave cross sections of these modes are
calculated and compared in Sec. IG. Single-antenna
anticoincidence experiments are discussed in Sec.
IV.

&„(x,f) = Re[((„(x)B„exp(-i(d„f)], (4)

where „ is a complex constant and n„obeys the
equation

X '(X((„')'+ (~„/v)'g(„= 0 .
These modes will be normalized so that

(6)

be finite. These modes will be compared with
those of a long, thin cylinder which are described
byEq. (1) with X= p((R' and by the boundary condi-
tions $'(l) = $'( —l) = 0.

The normal-mode solutions of Eq. (1) are of the
form

II. STRETCH MODES OF LONG, THIN SPINDLES AND

CYLINDERS

Consider a long, thin solid oriented along the x
axis of a Cartesian coordinate system. All that is
assumed about the shape of this solid is that it has
a normal stretch mode which can be approximated
by displacements x -x+ $ in the x direction alone,
where $ is independent of y and z. The displace-
ment function $ is then governed by the Lagrangian

where Al is the total mass of the solid. The total
energy in mode n is then

For the cylinder of radius 8 and overall length l,
the normal modes that satisfy Eq. (5) and the van-
ishing strain boundary condition as well as the
normalization condition of Eq. (6) are

n7rxcsin, n odd (even parity)

L = z X($' —v'$")dx,

where X is the mass per unit length, v is the
sound speed, overdots denote time derivatives,
and primes denote derivatives with respect to x.
This Lagrangian yields the acoustic wave equation

n7TX
v 2 cos, n even (odd parity)

with

l&„=pnnv .

(8)

(9)

X = X,exp( —c(x'), (2)

where X, and n are constants.
An axially symmetric solid which satisfies Eq.

(2) is defined by r ~R exp(-x'/l'}, where r = (y'
+z')'('. I choose to call this solid a Gaussian
spindle of radius R and length parameter l. Its
stretch modes are described by Eq. (1) with A

= fn(R'exp( 2x'/fz) and b-y the condition that the
total energy

E = z X($'+ v'(")dx

Now impose the requirement that the normal
stretch mode have uniform strain by substituting
$ = Kx exp(i(((t) into the wave equation. The result
of this substitution is a condition on the mass per
unit length X,

(ink}' = -(~/v)'x .
Thus, the mass per unit length of a solid which
has a uniform strain mode is required to have the
form

For the spindle of radius R and length parameter
l, notice that Eq. (5) is a form of the Hermite
equation' whose square-integrable (i.e. , finite-
energy) solutions normalized according to Eq. (6)
are

((z(x) = (2"n() ~( & (2((x/f)

with

l~„= 2n' 'v .

III. GRAVITATIONAL-WAVE CROSS SECTIONS

It is now a straightforward matter to calculate the
ways in which spindles and cylinders couple to
gravitational waves. I will follow the MTW pro-
cedure' of first calculating the Einstein A coeffi-
cients

A Gw
= P Gw/@

A~,» = P(((„/E,
(i2)

(is}
where P« is the gravitational-wave power radiated
by a mode with energy E and P«„ is the corres-
ponding nongravitational dissipation power. These
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coefficients can be used to compute a variety of
things, only some of which will appear here.

To find AG„, the basic geometrical quantity that
must be calculated is the moment-of-inertia factor
for each mode:

I(„)),= X u„'x'+ u'„x' dx,

where x'=x, x2= y, x'= z, and g„'= g„. For the
stretch modes considered here, u„'=g„' = 0 so
that the component

I(„)x,= 2 Xg„xdx (14)

Notice the Kronecker 5 that appears here. This
factor is of crucial importance for the anticoinei-
dence performance of the spindle antenna. It
arises solely from the fact that the spindle has a
uniform strain mode.

In terms of the moment-of-inertia factor for the
nth mode, Aa„ for that mode is given by'

2 2
AGe &51(n)zg M n

For the nth mode of a cylinder, Eqs. (9) and (15)
then imply

Aea~ = ~~M l (18)

For the nth mode of a spindle, Eqs. (11) and (16)
imply

AG„= ~2M t-'v'0, „.
The coefficient AG~ alone can be used to calculate
the frequency integral of the direction- and polari-
zation-averaged cross section'.

o= ( o) d&/= g&&&d Ao&N

From Eqs. (9) and (18), the frequency-integrated
average cross section of the nth stretch mode of a
cylinder for gravitational-wave absorption is

oc=P« 'M&/'n '
(n odd),

a result obtained earlier by wheeler and Huffini. '

is dominant. One can easily show that the other
components are all much less than (R/f}'f&„», and
may therefore be neglected. For the cylinder,
one substitutes Eq. (8) into Eq. (14), looks the re-
sulting integral up in a table, and finds that

2 c&„»,= (-1)"2'/'« 'M b&
' for n odd .

The even-numbered modes give zero by symmetry.
For the spindle, the calculation is greatly simpli-
fied if one notices that, from Eq. (10), x = &f«8&(x).

One substitutes this result into Eq. (14) and uses
the orthonormality relation, Eq. (6), to obtain

The corresponding result for the nth stretch mode
of a spindle follows from Eqs. (11}and (18):

(22)

Notice that the Kroneeker 5 factor that originated
with the uniform strain property causes all of the
higher modes to have zero-integrated cross sec-
tion for gravitational waves.

The frequency-integrated average cross sec-
tions of the fundamental modes are particularly
easy to compare because they depend only on the
mass and sound speed of each antenna and not at
all on the ratio ft/f, the quality factor, or the
resonant frequency. For a cylinder and a spindle
of the same mass and sound speed, Eqs. (21) and

(22) yield

&y /oc -&& /8 1 (23)

other comparisons are also possible. For ex-
ample, one can write the cross section in terms
of the resonant frequency (d and the shape factor
R/f. For a cylinder and a spindle with the same
shape factor and resonant frequency one finds that

g /oc 23/2 &/2
1 60 (24)

(25)

where q is a strain-viscosity constant.
II. Dissipation is a surface effect proportional

to the squared rate of change of the strain so that
the volume integral in Eq. (25) is replaced by a.

surface integral. Model I is probably valid for all
metal antennas and for single-crystal antennas
with uniformly distributed imperfections. It is
also valid for a perfect crystal subject only to
Landau damping (phonon viscosity). Model II
might apply to a nearly perfect crystal with a lot
of surface imperfections caused by cutting and
polishing.

For the cylinder with volume dissipation, Eq.
(25) together with Eqs. (4) and (8) give

In order to go further with this comparison of
cylinders and spindles, one must estimate the in-
ternal damping rate A~„,. This estimate is a
treacherous business because the damping mecha-
nisms for very long wavelength sound waves are
not completely understood and because A«„ in-
cludes the dissipation in the sensors that couple
the antenna to the detector. I will assume that
weakly coupled or perhaps nondissipative sensors
(based on a 8",UlD, for example" ) are used so that
most of the dissipation is in the antenna. Two dif-
ferent models of the dissipation will be used:

I. Dissipation is a volume effect proportional to
the squared rate of change of the strain so that
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ger (26)

qI 2 (28)

Thus, for a given resonant frequency, one gets
the same Q with any mode of either antenna. If
one now computes the gravitational-wave cross
section of the fundamental mode at resonance,
then one finds that, for a given antenna mass and
fundamental frequency, the ratio of the spindle
cross section to the cylinder cross section is given
by Eq. (23). This is the ratio calculated by Bonaz-
zola for a shape very similar to the spindle. He
found a 20% improvement over the cylinder so that
the 23%% improvement found here is reasonable.

For the cylinder with only surface dissipation the

Q is found to be

(29)

For the spindle, one obtains

Q'" = -'k(n) v'7l 'If (u (30)

where the first few values of k(n) are k(1) = 2 't',
k(2)=-, 2 ' ', k(3)=&2 ' '. One can see that the
spindle modes are much more vulnerable to sur-
face dissipation effects than the cylinder modes.
The ratio of resonant gravitational-wave cross
sections for the fundamental modes of a cylinder
and a spindle of the same mass and resonant fre-
quency now becomes

&sII /&CIi &2/(8~2) 0 87

Thus, when surface dissipation dominates, the
spindle shows a 13~jp loss in resonant cross section
in comparison with a cylinder.

IV. SINGLE-ANTENNA ANTICOINCIDENCE EXPERIMENTS

An anticoincidence gravitational-wave detector
would monitor several different modes of the an-
tenna and accept an event as a gravitational-wave
burst only if it appears solely in the fundamental
mode. This arrangement is designed to discrimi-
nate against spurious events that drive the antenna
according to the equation

-$+ v'$" =f(x) &(t)

for the cylinder and according to a similar equa-
tion for the spindle. Here f could be the impulse-

The corresponding result for a spindle with volume
dissipation is easily obtained by using the proper-
ties of Hermite polynomials,

(27)

A more familiar quantity to compare is the quality
factor Q= v/Ad, .„. By using Eqs. (9) and (11) to
eliminate the length parameter 3, one finds the Q
of the nth mode for each antenna to be

field exerted by the sudden release of a locked-in
thermal strain in an antenna which has been cooled
to a low temperature. It could also be due to an
acoustic or electromagnetic shock that has de-
feated the antenna shielding. In terms of the inner
products (n„,f) = J Xu„fdx, the normal modes of
either the cylinder or the spindle are driven ac-
cording to the equation

—.U(„+Mu)„'$„= (n„,f ) 6(t) . (31)

Thus, each mode acts like a harmonic oscillator
that has received a hammer-blow impulse of (u„,f)
and thus receives energy (n„,f)'/(2ilf). The total
energy of the spurious event is then divided more
or less evenly among all of the normal modes of
the antenna whose wavelengths exceed the charac-
teristic size of the region where f is nonzero. The
exact distribution of energy depends, of course, on
the nature of the spurious event which determines
the overlap integrals. The unique value of the
Gaussian spindle antenna is that there is one and
only one type of broad-spectrum event that puts all
of its energy into the fundamental mode, namely a
gravitational-wave burst.

Before going on to discuss anticoincidence ex-
periments done with spindle antennas, I will first
describe the consequences of attempting such an
experiment with a cylinder. Qnly the odd-parity
modes of the cylinder are insensitive to gravita-
tional waves. But an anticoincidence experiment
which monitors only the odd-parity higher modes
will interpret any approximately-even-parity event
as a gravitational-wave burst. If the experiment is
working near the thermal-noise limit, an unac-
ceptably large fraction of spurious events could
get through. Because the anficoincidence technique
necessarily produces a slight degradation of the
overall signal-to-thermal-noise performance of
the detector, the result could easily be a net loss
in sensitivity or a gain that is too small to be
worth the effort. A modified anticoincidence ex-
periment which monitors both the odd- and the
even-parity modes of a cylinder is possible if one
is willing to use sophisticated data analysis. For
example, one could monitor the first three modes.
A gravitational-wave burst will excite modes 1 and
3 but not mode 2. If the burst has a flat power
spectrum then Eq. (21) implies that mode 1 will
receive nine times as much energy as mode 3. If,
on the other hand, the burst has a square-law
power spectrum, then it will put exactly the same
amount of energy into both modes and be indistin-
guishable from a spurious noise signal. If one has
some reason to believe that the gravitational waves
have a nearly flat power spectrum, then one can
make a succession of such power-spectrum hy-
potheses and calculate the evidence for each. "
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However, it is easy to invent sources of gravita-
tional-wave burst which produce rapidly rising
power spectra. For example, a decaying black-
hole binary system will produce a burst that rises
in frequency as it rises in intensity. A cylinder-
based anticoincidence detector could not distin-
guish such bursts from spurious noise.

The Gaussian-spindle antenna has one fundamen-
ta.l advantage over the cylinder: If one sees an
event in any spindle mode other than the fundamen-
tal, then one knows that the event is not gravita-
tional radiation. This property makes it possible
to discriminate between any sort of gravitational-
wave burst and broad-spectrum spurious noise
bursts. No assumptions about the gravitational-
wave power spectrum are needed. Furthermore,
because the spindle resonant frequencies go as the
square root of the mode number instead of linearly,
they are much closer together than those of the
cylinder. Having the frequencies closer together
makes it more difficult for a narrow-bandwidth
noise burst to masquerade as a gravitational wave.

For detection schemes that monitor the end-face
displacement of the antenna, the spindle has a con-
siderable practical advantage because, for a given
mode energy, the end-faces of a truncated spindle
move further than the end-faces of a cylinder. In
the coordinate system that I am using to describe
the spindle, it is reasonable to truncate it by re-
quiring -2t & x & 2l. For the cylinder, one finds
that the end-face displacement produced by an en-
ergy E in the fundamental mode is given by
(agric)'=4EM '(~c) '. For the truncated spindle
with the same mass and fundamental resonant fre-
quency, the squared displacement is eight times
as large as this. Qf particular interest for anti-
coincidence experiments is the fact that, for mode

3, the squared displacement of the spindle is found
to be 225.33 times that of the cylinder.

V. DlSCUSSION

In terms of cross sections and quality factors
the Gaussian spindle is just about as good a gravi-
tational-wave antenna as a cylinder. The improve-
ments of 23% or 60/p that the spindle offers under
certain assumptions are not, I think, of any great
significance. Similarly, the loss of 13% that can
occur when surface losses are dominant is also
rather insignificant. The Gaussian spindle be-
comes a viable gravitational-wave antenna only in
a detector that has beaten the thermal-noise prob-
lem by cooling the antenna to a very low tempera-
ture but continues to be plagued by bursts of non-
thermal noise. In that situation, it offers a very
large improvement in real sensitivity through the

anticoincidence technique. Furthermore, if gravi-
tational-wave bursts are actually detected in the
fundamental mode of a Gaussian spindle and not in
higher modes, then a convincing case for their
identity can be made.

I consider the detailed design of a gravitational-
wave detector to be outside the scope of this paper.
However, in order to avoid leaving an over-opti-
mistic impression of the Gaussian-spindle antenna,
I offer a few remarks about detection schemes.
The central consideration in the design of any de-
tector that uses a Gaussian-spindle antenna is to
preserve the uniform strain property of the funda. -
mental mode. Unfortunately, this property is
rather fragile. Sensors that couple strongly to the
antenna will change the boundary conditions and
can destroy the uniform strain property. Thus, a
detector with strongly coupled sensors must be
designed carefully with the shape of the antenna
adapted to the sensor locations and sensor proper-
ties so as to achieve uniform strain. Another dif-
ficulty with strongly coupled sensors is that they
can introduce dissipative coupling between antenna
modes, thus destroying the anticoincidence prop-
erties of the antenna.

The antenna considered in this paper is obviously
highly idealized. The infinitely long "whips" on its
ends are clearly impossible to construct. A real
antenna would be truncated. A partial remedy for
the fact that a truncated spindle has vanishing
strain at its ends might be to attach a nonresonant
flat plate to each end-face in order to simulate the
effective mass of the missing "whips. " An alterna-
tive procedure for simulating the missing "whips"
is to couple the end-face movement to a large in-
ductance through a capacitative or inductive trans-
ducer.

late added in proof. The anticoincidence de-
tection scheme has been discussed for spherical
antennas in a talk presented by R. V. Wagoner and
H. J. Paik at the Accademia Nazionale dei Lincei
International Symposium on Experimental Gravi-
tation, Pavia, Italy, 1976 (unpublished). It is
also discussed for disk antennas by H. J. Paik,
Phys. Rev. D 15, 409 (1977).
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