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Two problems are considered. First it is argued that cosmological bounce c~~~ot arise from

ordinary electromagnetic effects. Second, it is conjectured that the attractive nature of the

shadow potential used in electrodynamics to obtain a stable point electron could be used also to

obtain cosmological bounce, provided it is attractive between all particles. To ensure this a
modified shadow potential is formulated which has mass instead of charge as its source. This

then leads to a negative static interaction energy proportional to T (T the temperature), pro-
viding the screening parameter is independent of T. For large enough densities (i.e. , tempera-
ture) this negative energy provides a mechanism that can turn the universe around.

I. INTRODUCTION

In the standard Friedmann models of the uni-
verse, there is implicit a singularity in the past
and/or in the future, a singularity characterized
by the radius R of the universe approaching zero.
In this paper we consider two topics associated
with this singularity that could possibly prevent
the collapse. If the collapse does not occur we
call it "cosmological bounce" in analogy with the
same expression used for charged spheres' or
charged spherical shells' of finite radius.

First we discuss the analogy of these charged
objects: Could electromagnetic effects prevent
collapse to a point? Could a charge occur at all?
In Sec. III various arguments indicate that electro-
magnetism will not prevent collapse, and that in
many cosmological models a net charge cannot
exist. The reason basically is that the electro-
magnetic energy density is positive, whereas
what is needed to prevent collapse is a negative
(attractive) energy density or pressure; this is a
rather paradoxical-sounding but well-known' pre-
scription. Positive energy contributes to gravita-
tional mass, which promotes collapse; to prevent
collapse one needs negative energy or pressure.

In Sec. IV of the paper we speculate that such an
attraction can possibly be found in the as-yet-un-
known forces which bind the electron. The idea is
that the potential inside the electron that binds it
must be very short-ranged, but, for large enough
densities of the universe, the potential could reach
out beyond the electron and effect an attraction be-
tween particles. The potential must act predomi-
nantly as an attraction and not as an attraction to
like charges and a repulsion to unlike charges;
otherwise no net attraction would occur.

To pursue the idea we employ a prototype of
such an effect, the "shadow potential, '"' used re-
cently in quantum and classical electrodynamics
to avoid singularities in the theory of a point elec-

II. BASIC MODELS

The closed cosmological models in this paper
start from the metric

ds =g;gdx dx

= dr' R(r}'[dy-'+ sin'y(d8'+ sin'8 dip'} J

(2 l)

in hyperspherical coordinates. The expansion or
contraction is described in comoving coordinates
by a velocity 4-vector u'= (0, 0, 0, 1).

The Einstein field equations then lead to

3R 2(R2+l)=zp, R=dR/d&c
4 ~

6R = —gR(TO —T,' —T2 —T, )

(2 2)

= —vR( p+ 3p) (2 3)

for a perfect fluid, where p is the energy density
and p is the pressure. Equation (2.3) contains the
general form in terms of the energy-momentum
tensor T, ' as well as the special case of a perfect

tron. By treating the screening parameter as a
universal constant and making the potential at-
tractive, we find the energy density associated
with this potential to be negative and proportional
to T' (T is the temperature), which for large
enough temperature (i.e. , density) can overcome
the T' term associated with kinetic and radiant
energies, and thereby cause the universe to turn
around at some small enough radius.

In Appendix B, a scalar potential is used. The
procedure is the same, but the point electron will
not transform as a Lorentz 4-vector if the poten-
tial is just scalar. Nevertheless bounce can occur
in much the same way.

Section II contains a brief review of the standard
Friedmann models, Appendix A briefly derives the
standard T' terms in these models, and Sec. V
contains a short discussion of the results.
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fluid.
From Eq. (2.3) it is immediately seen that if

p and p are positive then R is always negative,
which implies a. singularity (R =0) at least some-
time in the past.

Equations (2.2) and (2.3) also lead to

p+ 3(p+P)R/R = 0, (2.4)

which also comes from T'„., =0 for k=0.
Equations (2.2)-(2.4) are two independent equa-

tions in three unknowns, p, p, and R. For a com-
plete solution an equation of state is needed.

We shall concern ourselves primarily with the
epoch between 10"and 10" degrees Kelvin, where,
it was thought, electrons, positrons, photons,
and neutrinos existed in equilibrium with one
another. ' As an example of the use of the cosmo-
logical equations, consider the equation of state,
reasonable at this epoch (see Appendix A),

p= aT', p = aT'/3. (2.5)

Here a is a constant, and T is the temperature.
Instead of the three unknowns p, p, and R, there

are now two: T and R. Equations (2.2) and (2.4)
become

3R '(R'+ 1) = gaT',

T/T = R/R . -
Equation (2.7) is solved immediately;

T =Ko/R,

(2.6)

(2.7)

(2.8)

III. UNIFORM CHARGE DISTRIBUTION

It might be expected that a uniform charge densi-
ty cr in a cosmological model could give rise to
"gravitational bounce, " just as in the case of a
finite 3-dimensional charged sphere' or a finite
2-dimensional spherical surface. ' In this way,
the singularity of the big bang could be avoided.

However, it can immediately be seen from Eq.
(2.3) that the effect of charge on the cosmological
model will be different. In the symmetry assumed,

where K, is a constant of integration. Substitution
into Eq. (2.6) gives

R' = —1+ vaK, R '. (2.9)

The turning points are determined by R = 0.
They can occur for only one positive R. Further-
more, this R is an outer turning point, since the
right-hand side of Eq. (2.9) is positive only for
small R. Thus, a singularity at R=0 is inevitable.
Of course, this calculation is only schematic,
since as R increases the equation of state will
change. However, the general behavior of an outer
turning point is characteristic of closed Friedmann
universes.

homogeneity and isotropy, the electromagnetic
part of the energy-momentum tensor S" will satis-
fy S,'=S,'=S3j just as does the matter part, which
wa. s the isotropic pressure P in Eq. (2.3). How-

ever, S,'=0 for electromagnetism. Thus the com-
bination in Eq. (2.3) has an electromagnetic con
tribution

(3.1)

But So is the electromagnetic energy density,
which is proportional to E'+H', where E and H
are the electric and magnetic fields, respectively.
Thus the electromagnetic contribution to the right-
hand side of Eq. (2.3) is negative, increasing the
curvature magnitude -R .

The fact that the energy density is positive for
an excess charge can also be easily seen from
summing the self-energy of each particle plus the
Coulomb energies e'/r, , between the excess
charges. All the terms are positive. One can
avoid retardation if the Coulomb gauge is used.

Since the energy density associated with the ex-
cess charges is positive, their effect will be to
promote collapse, not prevent it.

Let there then be no excess charge, but rather
charge neutrality. The compensating positive and
negative charges will also give a positive field en-
ergy -E'+H'. On the other hand, if one does not
use the field form, but computes the energy on the
basis of particle interactions and self-interactions,
it seems at first glance that the energy could go
negative.

For simplicity consider a static situation. The
electromagnetic energy of each charge (the self-
energy) is, say, m. For N particles in a volume
t/', the self-energy density is mn-R, ', where
n =N/V is the number density (-R, ') and R, is the
interparticle distance.

The interaction energy between one charge
and another charge summed over the charges is of
the form -A/R, per particle, where A is a positive
constant. For a static ionic lattice, A is the Mad-
elung constant; in an electron gas, a term of this
type corresponds to the exchange energy. The
energy density is then An/R„-which is propor-
tional to R, '. For small enough R„ this negative
interaction energy -An/Ro will overtake the posi-
tive self-energy, mn of the previous paragraph,
making the total electromagnetic energy density
turn negative.

This is in obvious disagreement with the field
view that the energy density is proportional to
E'+H' and is always positive. The difference
could be important if cosmological bounce is con-
templated. One way to avoid the problem is to
notice that the (positive) kinetic energy also goes
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as R, ' for small enough R, (just as does -Au/ft, ),
as seen in Eq. (A7) of Appendix A, and the coeffi-
cient for this contribution is orders of magnitude
larger than for the Madelung ox exchange term.
Thus the negative Coulomb-interaction effect could
never win out.

However, this argument does not explain why the
two views of electromagnetic energy can give dif-
ferent results. The difficulty lies in the self-en-
ergy, which was taken to be ng pex particle, where
m is some constant. In fact, the electromagnetic
self-energy is known to diverge for a point charge.
For a finite extended particle of radius 8', it will
depend on the radius R'. An individual particle
characterization is legitimate only if the radius
A' is much smaller than A, . In the process of cos-
mological collapse, however, R, will go to zero.
As it does so, the self-energy will have to refer
to an A' which is going to zero faster than (or at
least at the same rate as) 8„ in terms of a limit-
ing process. For this reason, the positive self-
energy will dominate the negative interaction ener-
gy, and cannot be represented by a constant m,
as 8, continues to get smaller and smaller.

But, if a renormalized mass m is used for a
point charge, then it is taking into account the
electromagnetic infinity plus a cancellation of that
infinity by some other interaction. And the nega-
tive Madelung type of term snl/ eventually domi-
nate, for small enough 3» the mass term, al-
though it will not dominate the kinetic energy. A
cancellation of this type could come from the sha-
dow potential discussed in the next section.

Thus the difference between an essentially posi-
tive energy density -E'+H' and a possible negative
one dominated by the exchange or Madelung term
lies in the fact that in the latter the renormaliza-
tion of energy implies additional nonelectromag-
netic interactions which help cancel the (positive)
electromagnetic infinities, making the total energy
density less positive.

As has been shown above, a net charge of one

sign will not tend to prevent collapse. It is inter-
esting to note that in many cosmological models
a net charge cannot exist. For example, in a
homogeneous isotropic universe, finite or infinite
(this includes all the Friedmann models), it must
be that E =H=O, otherwise isotropy is violated. '
From Maxwell's equations, divE =4gc, which im-
plies that the charge density 0 is also zero.

It could perhaps be argued that although the
average of E is zero over every macroscopic vol-
ume, the average of E' is not zero, and a net
charge could result from this. However, the
charge Q even in curved spaces ean be written'
as an integral over the surface enclosing the vol-
ume V containing the charge:

(3 2)

A,d, = (cur lA)„dS„, (3 3)

(3.4)

for a vector A. Here the subscript n refers to the
outward normal. Adding gives

(curl A)„dS„. (3.5)

The integral on the right is the analog of a charge
integral, and it is zero.

To apply the argument to Gauss's law in a 3-di-
mensional closed universe, choose a hypersurface S
S(+ ) or S(-) depending on the direction of the nor-
mal), enclosing a volume V, on one "side" and V,
on the other. We can write Gauss's law twice, as
in Eqs. (3.3) and (3.4), and then add. The right-
hand sides represent the charge Q, and the result
will be zero. The fact that Gauss's law can be
written as in Eq. (3.2) implies that the result is
valid for general curved spaces.

If the universe is not homogeneous or isotropic
on the one hand, nor finite and unbounded on the
other, the proof of zero net charge is difficult in
terms of Maxwell's equations. A finite bounded
universe could perhaps utilize Gauss's law, if one
goes beyond the occupied region to evaluate the
integrals. ' But infinite nonsymmetric universes
cannot be managed. However, if one adopts the

The integral in Eq. (3.2) is either zero or it has a
small value as a result of the fluctuations of E not
avex'aging to zero on the particular surface S in-
volved. If the surface is displaced a bit the inte-
gral must go from negative to positive etc. ,
otherwise E would not average to zero over every
maexoscopic volume. Thus in the immediate vi-
cinity of the original surface S there is another
one S', for which the charge Q' enclosed is zero.
Thus any macroscopic volume V ean be deformed
slightly to a volume V' which contains no charge.
Since the universe is supposed to be macroscopi-
cally homogeneous, the only conclusion is that
there is no overall charge density.

If the universe is closed and unbounded, then in-
dependent of the symmetry there also can be no

charge. ' Imagine a 2-dimensional universe in a
3-space, say, the surface of an ellipsoid. Draw
a closed loop on the ellipsoid and call it C(+) or
C(-), depending on whether it is traversed clock-
wise or counterclockwise. Qn one side is enclosed
a surface S„on the other a surface S,. Stokes's
law applied to C and S, and then to C and S, gives
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Faraday picture that if a line of force starts on a
positive charge it must end on a negative charge,
then all universes will have zero net charge. This
idea cannot be described by Gauss's law because the
idea is not uniformly converging. That is, given
any volume of an infinite universe, no matter how

large, more lines may be emerging than entering
and the net charge within may not be zero. Thus
one cannot apply Gauss's law and then let the
volume become infinite. But one could still say
with Faraday that every line that starts on a posi-
tive charge cannot just end abruptly in space, even
curved space, but must sooner or later find its
way to a negative charge. In this sense, the lines
of force notion is stronger than the Maxwell equa-
tions.

IV. COSMOLOGICAL BOUNCE: A MODIFIED SHADOW

POTENTIAL

In this section we speculate on what could con-
ceivably prevent the universe from collapsing to a
point [i.e. , prevent R from becoming zero in Eqs.
(2.2)-(2.4)]. From Eq. (2.3) it is clear that what
is needed is either a negative p or a negative p or
both. What could supply such terms?

In this connection, notice that any mechanism
that holds the electron together (Poincare stress)
would be contributing energy and pressure of the
correct sign for cosmological bounce. A perhaps
extreme example can be seen in the classical mod-
el of an extended electron in general relativity
proposed a few years ago" in which the matter
density in the electron was found to be negative.
By imagining that the positive self-energy due to
Coulomb interactions gets canceled out when R,
becomes so small that electrons and positron
overlap, one could conclude that for small enough

R, there appear actual negative energy density and
pressure from the interior electron-positron mat-
ter.

Rather than pursue this rather drastic point of
view, we shall consider a slightly less drastic
modification of the "shadow-potential" idea intro-
duced in quantum electrodynamics4 and applied by
Chiang' to describe a classical electron without
self-energy divergence difficulties.

The shadow potential is a vector field which pro-
vides a Poincare stress. The ordinary Coulomb
plus the shadow potential from a. point charge is4'

dow) term of Eq. (4.1) represents the vestige of
an internal binding force that holds the electron
together. It is not necessary for us that this term
actually be the shadow potential. In fact it could
be gravitational or something else in origin, pos-
sibly arising from the negative matter density ef-
fects mentioned above.

The essential ingredients of the shadow potential
for us are the order of magnitude and the range of
the binding forces in the electron that it gives. In
addition we shall require that it be predominantly
attractive when acting and that the range A be a
universal constant, or at least not a strong func-
tion of temperature.

However, we wish to push further the explicit
form of the shadow potential as in Eq. (4.1) and the
references cited, since it already provides for a
stable electron in a simple way. To do this, the
Lagrangian must be modified to avoid repulsion.
The simplest such modification would be to make
the source the mass current" j„with the positive
coupling constant f:

f=/ / em/. (4.2)

A,(*) ff d'* I=-
xexp(-A '

~x —x' ~)j™(x'). (4.5)

In the Coulomb gauge, Eq. (4.5) is generally valid
for k=0. Equation (4.5) for a point mass m gives
back the shadow term of Eq. (4.1).

The energy-momentum tensor defined from

Here e/m is the electron charge to mass ratio.
Thus the complete Lagrangian is

L=L, +L

= —(16') 'F(„F'~+ (16') '(F~~F' -2A A~A )

f j( )Ak (4.3)

Here A, will be called the "modified shadow poten-
tial. " A„ is the usual electromagnetic 4-potential,
F,,=A, , -A, , and similarly for F,.„.

The Lagrange equation for A, is then in the
Lorentz gauge

(a A'}Z,=4,f1&"&, Z=v' 6,'. (4 4)

In a static situation the solution is

(p = (e/r)[1 —exp(-r/A}] (4.1}
contains the usual electromagnetic term construc-
ted from the A, plus the shadow term T,, where

in terms of a screening parameter A (Chiang's M
is A ') which must be at least as small as the
classical electron radius R„=e'/mc'. One of the
possibilities for A is that it is a universal con-
stant. We shall adopt this view. The second (sha-

r'= (4~)-'[F,„F~.
+ b,'. ( ,'F~, F~'+ 2A 'A„-A—")]. (4.6}

Thus the basic equations are essentially as given
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(4.7)T,'= (8 7)[-'[(vA)'+ A-'A'],

where A =A, =A'. From this the total energy in a
volume is

T,'= —(8 ) 'fd x[ A(V'——A'}A' +V (AVA)]

by Chiang, and his results will ensue, namely,
that in the limit of a point electron (or positron)
the object will transform as a Lorentz 4-vector
and will have finite (renormalized) self-energy.

Our interest is to use Eq. (4.6) to take into ac-
count interactions between electrons, between
positrons, and between electrons and positrons.
For simplicity, we shall confine the calculation to
a static situation:

Associated with this energy density is a negative
pressure p» computed from

dUse
dv N~~N

(4.11)

where Usp Vip Using the definition of interpar-
ticle distance R, in Eq. (A3) of Appendix A and the
fact that V-R, ' if N, (=-n, V) and N are constant,
we get from Eq. (4.11) that"

Pa~ = psx (4.12}

To continue, we need now to put the shadow
terms alongside the ordinary terms (subscript 0)
of the type mentioned in Eq. (2.9). In sum we have

p, = aT', p, = —,'aT',

, , exp(-A '
) x -x'

I )
Ix —x p p=- bT, pap= —bT .

(4.13)

xp(m[(x)p[m[(xi} (4.8)

The second form emerges here when the surface
term is neglected and Eq. (4.4) is used in the
others. We have in mind a uniform distribution
of charges so that the A, of Eq. (4.5) is a constant
(-4vA'fmn) Thus .not only can the surface term
be set equal to zero in Eq. (4.8) but also the V'A

term. However, the second form in Eq. (4.8) has
a familiar look: it is just like an ordinary elec-
trostatic Coulomb interaction, except that it is
screened and negative. Here p(™is the rest
mass density.

The energy in Eq. (4.8) divided by the volume is
what we shall use as the shadow energy density.
We select out the contributions that correspond to
interactions between electrons, between positrons,
and between electrons and positrons, but not the
self-energy terms. We have in mind the epoch of
the early universe when only electrons, positrons,
and neutrinos in equilibrium are thought to have
existed. ' Equation (4.8) becomes

a- 10 eV/cm;

b -10"(A/R„)' eV/cm'.

(4.14)

(4.15)

Notice that at T, = 10', p» is approaching p, in
magnitude if A is of the order of R„.

Substitution of Eq. (4.13) into Eq. (2.2) and (2.4)
gives

3R 2(R'+1) =x(aT —bT ),

T/T = —R/R,

(4.16)

(4.17)

respectively. Equation (4.17) can be integrated
immediately;

T =ED/R, (4.18)

The T' behavior in the shadow terms comes from
the factor n, ' in Eq. (4.10}using Eq. (Al} of Ap-
pendix A. T is an abbreviation for T» the tern-
perature in units of 10' degrees Kelvin. The
quantity a is found from Eq. (A7); b is found from
Eq. (4.10) using Eqs. (A3) and (A4):

p p=V ' Todx

= —(n/2) g f'm'x, , 'exp(-r, .~A '). (4.9)

where K, is a constant of integration. Substitution
into Eq. (4.16) gives a final equation for R:

R = —1+AR —BR (4.19)

where

Here n is the total density of particles [=n, + n,
where n (n, ) is the number density of electrons
(positrons)] and r, &

is the distance between parti-
cles i and j. The sum over j is assumed to be in-
dependent of i and is performed by making the ap-
proximation of a uniform density n of particles:

A= 3KaKO, (4.20)

B= 3tcbKD . (4 21)

From Eq. (4.19}we shall only extract the fact
that there are tuo turning points, obtained by set-
ting R =0. They are

ph~ = —,' n' f'm' d'xx—'exp(-xA '}

277+2f2~/2+2

= —Smn 'e'A' . (4.10)

R ' = —'A[1 s (1 —4BA ')' ]

Real positive roots occur when

1)4BA = 12K ba g

(4.22)

(4.23)
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If Eq. (4.23) is violated, the right hand side of Eq.
(4.19}is negative for alf R. Thus all physical so-
lutions of Eq. (4.19) correspond to an oscillating
universe between the radii R, and R .

The conclusion is that if the modified shadow
potential is assumed to exist, then the universe
can bounce back before collapsing to a point.

With the modifed shadow potential proportional
to mass, the radiant energy will also contribute
to the interaction energy, indicating that the turn-
ing point of Eq. (4.22) is a low estimate.

V. DISCUSSION

In this paper we have considered two possible
sources for the prevention of cosmological col-
lapse: ordinary electromagnetism and the modi-
field shadow potential. The former does not tend
to prevent collapse. Its effects are thus different
from what they are in the collapse of stars. Fur-
ther, there can be no overall charge of one sign,
in homogeneous isotropic models.

Qn the other hand, if the shadow potential is
modified to be attractive between all particles,
then its effect is in the right direction for the pre-
vention of collapse. The idea here is that the force
that prevents the explosion of the electron (taken
here to be the shadow potential) might also serve
to prevent the collapse of the cosmos to a point.

The two types of interaction (ordinary electro-
magnetic and shadow) may be contrasted by notic-
ing that although the electric field E,. and the shad-
ow field E,. (computed from A) must both average
to zero in homogeneous isotropic models, the con-
sequences of this fact are different. From E,- =0
it follows from Gauss's law that the average
charge 0 must be zero. But from E, =0, the aver-
age "shadow charge" need not be zero, as can be
seen from Eq. (4.4). The term A 'A, there does
not average to zero.

The reason that the effect of the shadow potential
becomes so important at small R is beca.use its
interaction energy is proportional to n' (n the den-
sity), as is seen in Eq. (4.10). This itself stems
from the assumption that the screening length A

is a constant independent of R or the temperature
T.

The calculation of this paper is schematic in the
sense that the nonshadow energy density and pres-
sure of Eq. (4.13) are not even qualitatively cor-
rect when R gets sufficiently large. However, the
characteristic feature, in closed Friedmann uni-
verses, of an outer turning point is contained in
them, and the additional effect of the shadow terms
is to provide the inner turning point. Both together
give a universe oscillating between outer and in-

ACKNOWLEDGMENTS

The author wishes to thank the Instituto de Fisica
e Quimica de Sao Carlos and in particular Profes-
sor Roberto Lobo for inviting him to their campus
and for making his stay a great pleasure.

APPENDIX A: DENSITIES IN THE ULTRARELATIVISTIC
LIMIT

The densities n, of electrons and positrons are
obtained in the epoch considered in this paper from
equations of the type'

where

= 16 x 10 T 'I„cm ', (Al)

In the relativistic limit, the particle energies
are taken as E—= cp, where p is the momentum.
Here x= cp/kT, and T, is the temperature in units
of 10' degrees Kelvin. The Fermi function f con-
tains a, zero chemical potential, since the number
of positrons is assumed equal to the number of
electrons. The factor of 2 in Eq. (Al) is from
sp Ulo

The interparticle distance R, is defined by

n= n2, = /3( 47(R,'),
and comes out to be

R =2X10 T I ~ em0 9 n

(A3)

(A4}

which lies between the Compton radius R„,and
the classical electron radius R„ in the epoch con-
sidered:

ner turning points. For open universes there
would occur just one inner bounce.

Notice that at the inner turning point the total en-
ergy density aT4 —bT' cannot be negative. Substi-
tuting R from Eq. (4.22) into the condition p„,~ ~ 0
gives

(4.24)

where v = 4BA '. With v ~ 1, this inequality is al-
ways satisfied. It can be seen by the same method
that the total pressure is always negative at the
inner turning point.

Note added in proof An .article by A. Das and
P. Agrawal, Gen. Relativ. Gravit. 5, 359 (1974),
ha, s recently come to my attention. It surveys a
number of wave fields in Friedmann cosmologies,
and bears on, although does not much overlap,
the problem as discussed in the present paper.
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R„=h/me=2. 5 x 10"cm,

R„=e'/mc'=3. 0X 10"cm.

The energy density is computed from

p, =v '2(v/8 's 'f d /t('p)/

=5 & 10 'Ts f„,„eV/cm,

(A5)

(A6)

where I„,„ is normalized to about j. in the ultrarel-
ativistic region:

potential y rather than the vector shadow poten-
tial. However, not all the nice properties will en-
sue that occur when the vector potential is used.
We briefly describe here what happens.

The scalar Lagrangian has the form (to within
an overa, ll sign)

L = (gv) '(n "V„V,. A—'W') fp'"-q,
where q" is the Minkowski metric. The Lagrange
equation of motion is

t„.=(24 )'fd'*[( c'/kT)'+*']"'f

(A8)

2(p —4 f p(Ill)

The energy-momentum tensor is

(82}

The pressure associated with this is p, /3 from the
definition in Eq. (4.11).

APPENDIX 8: A SCALAR POTENTIAL

From the point of view of obtaining a binding
force in the electron, one could consider a scalar

For a static situation

T'. = (4v) 'V" V, .+ (gv) '5', V/ (OV/V)

+15if p(m)+

And the integral of this is

(83)

(84)

d'xr'= 4p ' d'xq"q --,' '5' d'xd'x'p' 'x p' 'x' x-x' 'exp —A ' x-x'

The ordinary electromagnetic Lagrangian (16w} E,~F-" gives, with A =A, =A',

s7",= —(4 )''f &'x&'A, ,+(&A' —-', &',')ffd'xd x v( )( ')'~ *xx'~'';

where o' is the charge density.
The problem is this: the sum of Eqs. (O'I) and

(85) does not get rid of the singularity for a point
electron in both the space diagonal components T~
(ii= 1, 2, 3) and the time diagonal component Tcc.

By choosing the overall sign of I. one way or the
other, either the kk components (0=1,2, 3) or the
00 component of the sum becomes finite, but not

both. With one of the choices, the scalar potential
will lead to cosmological bounce, just as in Sec.
IV of the paper.

Thus from the point of view of cosmological
bounce, either the scalar or vector potential will
work. But only the latter provides for a stable
point electron with energy and momentum trans-
forming as a Lorentz 4-vector.
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