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On the nature of singularities in general relativity*0
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It is shown that there is an upper bound to the rate of growth of the Ricci curvature near a singularity.

Singularities in the form of incomplete causal
geodesics appear to be a necessary property of
any spacetime which could be a realistic model
of the universe; the standard singularity theorems
imply such a conclusion provided we assume cau-
sality is not violated, and I have shown else-
where" that causality violation could not in gen-
eral pxevent the singularities. In fact, causality
violation arising from regular initial data would
in general create singularities. Once the inevit-
ability of singularities is proven, we should study
the nature of these predicted singularities: What
is the structure of a singularity in the generic
case'? 'There are several approaches one could
take to answer this question. First, one could
analyze the singularities in exact (and approxi-
mate) solutions of greater and greater generality.
This method of attack is very popular; examples
can be found in the woxk of Ryan and Shepley, '
Gowdy, ' King, ' Ellis and King, ' Khalatnikov and
Lifshitz, ' Collins and Hawking, ' Eardley, Liang,
and Sachs. ' Second, one could use global tech-
niques to see if the causal and differential struc-
ture of spacetime imposed limits on the nature
of the singularity. In my opinion, this second
approach, though not used as extensively as the
first, is superior to the first because of the gen-
erality of the conclusions. With the first method,
one is never certain that the singularity structure
derived in a particular model has any features in
common with the singularity structure of a generic
spacetime, since the singularity structure in the
model could be due almost entirely to the sim-
plifying assumptions necessary to construct the
model. Thus, no confidence can be placed in the
conclusions of the first method until they are con-
firmed by the second. As an example of the gen-
erality possible when the second approach is used,
Clarke has been able to show" that, in a generic
spacetime, at least one component of the Riemann
tensor must diverge in a frame which is parallel-
propagated along any incomplete timelike curve
contained in D(S), where S is a partial Cauchy
surface, This is an important result as there are
models in which this does not occur. ""

I shall follow Clarke and use the second ap-
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such that y)0, but y= 0at q and -p. [t is an affine
parameter along y(t), o' ~ 0, and n equals 2 or 3
depending on whether y(t) is a null or timelike
geodesic, respectively. ] If we define a new func-
tion x by x"=y, then Eq. (2) becomes

d'x
, +F(t)x=0,

where F(t)= (I/n)(R„K'K—'+ 2cr), and q and p will
be conjugate if and only if x=0 at q and p. Thus
the presence (or absence) of a pair of conjugate
points in a given affine-parameter interval is
equivalent to the presence (or absence) of a pair
of zeros of the function x in the same interval.

The latter is a well-known problem in the theory
of ordinary differential equations, and the theo-
rems which I quote without proof can be found in
the literature. "

Stum' con~pmison tkeo~em. Consider the two
equations

(4)

(5)

u" (t)+ F(t)u(t) = 0,
"(t)+G(t)v(t) = 0, .

where F(t) and G(t) are non-negative, continuous,

proach; in this paper I shall derive some very
general restrictions on the rate of growth of
A,hK'K' along certain classes of incomplete causal
geodesics. (K' is the tangent vector to the geo-
desic. ) My notations and conventions will be the
same as those of Hawking and Ellis, "who are
hereafter referred to as HE.

'The theorems of this paper will be based on the
properties of conjugate points along a causal geo-
desic. Recall that a point P along a causal geodesic
y(t) is said to be conjugate to a, point q along y(t)
if there is a Zacobi field along y(t), not identically
zero, which vanishes at q and p. It is well known

(HE, pp. 96-102) that such a Jacobi field will exist
if and only if there is a function y, defined by the
equations
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and G(t) «E(t) in the closed interval [a, b] and

G(t) &E(t) for at least one point in [a, b]. Suppose
that (4) has a solution u(t) having two consecutive
zeros at a and b T.hen all solutions v(t) of (5)
have a zero in the open interval (a, b).

Lemma I. A sufficient condition that every solu-
tion to {3)have at least n zeros in (a, b) is that

inf E(t) &
a&t&b b —a (8)

Definition. Equation (3) will be called oscillatory
on (a, b) if every solution ($0) has infinitely many
zeros on (a, b) Wh.en every solution ($0) has at
most a finite number of zeros on (a, b), (3) is said
to be nonoscillatory on (a, b).

Proposition f. In Eq. (3) let E(t) be continuous
and positive in the interval (a, b) If e.ither

lim inf[(t —b)'E(t)] & —,
'

Now since u = (b —t)' ~'y, it is clear that in the in-
terval (c, b) u will have a zero if and only if y
does, and in this interval s varies from s = ln(b —c)
= finite number to s = -~. If m & 4, y will have in-
finitely many zeros inthis interval, and hence so
will u. The same procedure can be used with the
second inequality of (7). Therefore, if either of
the inequalities of (7) hold, all, solutions of (3)
have infinitely many zeros on (a, b); (3) is oscil-
latory on that interval.

Using the above results from the theory of or-
dinary differential equations and several proposi-
tions found in HE concerning relationships be-
tween the causal structure and causal geodesics,
we can prove the following:

Theorem l. Let S be a partial Cauchy surface.
To each point p L- intD'(S) there is a timelike geo-
desic X(t) from S such that no affine-parameter in-
terval (t„t, ) of X(t) satisfies

or

lim inf[(a —t)'E(t)] & —,',
12~'

inf R,yK'K &
{ )2

t~& t& t2 2

then (3) is oscillatory on (a, b) (Need. less to say,
both a and b are finite. )

Proof. Consider the equation

(8)

where m is a constant. If lim, , inf[(t -b)'E(t)]
& ng, then there exists a number c E (a, b) for which

[{t—b)'E(t)] &m for all tc (c, b); i.e., E(t)&m/
(t —b)' for all t I= (c, b) By the .Sturm comparison
theorem, between the zeros of any solution to (8),
there is a zero in every solution to (3) in the in-
terval (c, b). We noW show that all solutions to (8)
have infinitely many zeros in the interval (c, b) if
m & &. Consider the substitution

u= (b —t)'"y, b —t= e'

s=ln(b —t), u=e' 'y.

This gives

gal e 38/2
yds

Thus Eq. (8) becomes

d yu" + u=e " ' ——'y +me "(e' 'y)
(b —t)' ds'

=e "t', +(m ——,)y =0
,

'ds

ds , +(m ——,')y=0.

where K' is the tangent vector to X(t).
P~oof Suppos. e that every timelike geodesic

from S to p satisfies (9). Then we have

inf E(t) =- inf 3(R„K'K'+ 2o')
t~&t&tp t~& t&t2

for some interval (t„ t, ) along every timelike geo-
desic from S to p. By lemma 1, every timelike
geodesic from S to p would have a pair of con-
jugate points between S and p. However, by the
corollary on p. 217 of HE, this is impossible.

Theoren~ 2. Let S be a partial Cauchy surface,
and let x(t) be a timelike geodesic from S to a
point p on the b-boundary of D'(S) such that X(t)
is at each point a curve of maximal length from
S. Then, along X(t), R„K'K' satisfies

lim inf(t —t,)'R„K'K' (10)
t" t 1

where I;, is the limit of the affine parameter along
X(t) as X-p, and K' is the unit tangent vector to

(We assume that R,~K'K «0 for all causal vec-
tors K'. )

Proof. A timelike geodesic X(t) is at each point
a curve of maximal length from S if, for each
point q c a(t), the length of X from S to q equals
d(S, q) (HE, p. 288). Byproposition 4.5.9 of HE, a
timelike geodesic from S to any point q on tQe
geodesic is maximal if and only if there is no point
in {Sn a, q) conjugate to S along X. Thus X can
contain no conjugate points, since a pair of con-
jugate points would imply a point conjugate to S.
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If along A(t) (10) were not satisfied, that is, if

lim inf(t —t,)'R„K'K'& —,',
tI

X(t) would have an infinite number of conjugate
points by proposition 1.

Theorem 2 assumes that there exists a geodesic
normal to S to a point p on the h-boundary (HE,
p. 217). There will in general not exist, for all
points p on the b-boundary, a geodesic normal to
$ from S to p. For example, let S be the spacelike
hypersurface (x')'+ (x')'+ (x')' —(x')' = -1, x' &0,
in Minkowski space. Let (M', g') be the region of
Minkowski space for which S is a Cauchy surface,
i.e., the regionI (q=(0, 0, 0, 0}). Then the b-boun-
dary to (M', g') is J (q) (the past light cone from
the origin of coordinates q) and q is the only point
on this b-boundary for which there is a geodesic
normal to S to the point, since all geodesics nor-
mal to S intersect at q (HE, p. 120). However, in
many cases of interest, there will exist at least
one maximal geodesic from S to at least one point
on the b-boundary. For example, Hawking and Ellis
have shown (HE, pp. 272, 288) that if the following con-
ditions hold,

(a) R„K'K'» 0 for all causal vectors K',
(b) S is compact, a.nd

(c) the unit normals to S are everywhere con-
verging,

then there exists a timelike geodesic X which is
incomplete, which remains in D'(S), and which is
at each point a curve of maximum length from S.
Along this geodesic, (10) holds.

Furthermore, in some situations there is a
Gaussian normal coordinate system from $ to the
b-boundary. Along each timelike geodesic genera-
tor of this coordinate system, (10) holds. For in-
stance, in the dust-filled Friedmann universe we
have p= I/(6vf') near the singularity along the
timelike geodesics which are normal to the sur-
faces of homogeneity. " This gives

lim inft'R„K'K'= lim inf 84m
t-0 t-0 6rt'

which satisfies (10).
In an orthonormal frame which is parallel-

propagated along X (with K= E,) we have, for per-
fect fluids, R„K'K~=4v(p+3p), where p is
the energy density and p is the pressure. Since
we would expect the nongravitational forces to be
repulsive (i.e., p &0) near the singularity (there
are exceptions to this expectation-condensation
phenomena, for example, but these apply only over
short periods of affine-parameter time}, theo-
rems 1 and 2 physically say that the energy density
cannot diverge faster than -I/t' along some time-

like geodesic X(t) which hits the singularity at
affine-parameter time t=0. (This confirms a
conjecture made by Misner and Taub. ")

Theorems 1 and 2 can be used to give an upper
limit to the range of validity of a perturbation cal-
culation. For example, Zel'dovich and Starobin-
ski" have calculated curvature-induced particle-
production rates by considering the particle-pro-
duction process as a perturbation in an empty
Kasner universe. Along geodesics normal to the
surfaces of homogeneity (these geodesics have
no conjugate points in the empty Kasner universe},
the energy density of the created particles is
p-hc 't ' near the singularity at affine-parameter
value l =0. The principle pressures have com-
parable values, but neither p nor the other com-
ponents of T„are calculated exactly; approxi-
mately (?), we have

R„K'K'-Kc 'I '= (2.6x 10"cm')t '
in geometrical units. It is immediately obvious
from theorem 2 that the t ' divergence cannot con-
tinue indefinitely, for the back reaction of the
created matter on the metric would give rise to
conjugate points along the geodesic congruence
normal to the surfaces of homogeneity. To get
an estimate of just where this occurs, we use
theorem 1. Equation (9) will hold on an interval
nf, &I &I, (n &1) if

hc 'I, '= 12m'I, '(1 —n) '

For sake of concreteness, we set ~=0.1, ob-
taining a pair of conjugate points in the range
(0 If„f,). T. his gives f, -10 '4 cm, or p-10'" g/
cm'. Thus the perturbation breaks down when the
created-particle energy density become compar-
able to the Planck density (10"g/cm'). (This
fact is known from other considerations; see Ref.
14, p. 804. )

There are theorems analogous to theorems 1
and 2 which restrict the rate of growth of R„K'K'
along the generators of H(S}.

Theorem 3. Let S be a partial Cauchy surface,
and let X(s) be a null geodesic generator of H'(S).
Then there is no affine-parameter interval (s„s,)
of X(s) 3i H'(S) satsifying

inf R„IRK &
8m'

S1CSCS2 S2 S1

where K' is the tangent vector to X(s).
Proof. If (11) were obeyed in some interval

(s» s, ) along X(s) A H'(S), then by lemma 1 A.(s)
would have a pair of conjugate points in (s„s,).
But by proposition 4.5.12 of HE, this would con-
tradict the achronality of H'(S).

Theorem 4. Let S be a partial Cauchy surface,
and let X(s) be a generator of H'(S}, with X(s) in-
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tersecting the 5-boundary in the past direction at
affine-parameter value s,. If R,~K'K'~ 0 on X(s),
then along A.(s) we must have

lim inf(s, —s}'R,~K'K~~ ~, (12)
S~S

y

where K' is the tangent vector to X(s).
Proof. If along a(s} (12) were not satisfied, that

is, if

lim inf(s, —s)'R,~K'K'& —,,
S~S1

A.(s) Cl H'(s) would have an infinite number of con-
jugate points, by proposition 1. But this vrould

contradict the achronality of H'(5), by proposition
4.5.12 of HE.

The most interesting thing about theorems 3 and
4 is that they restrict the rate of growth of
R,„K'K along all generators of H'(5}.
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